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For the case of a reaction-diffusion system, the stationary states may be represented by
means of a state surface in a finite-dimensional state space. In the simplest example of a
single semi-linear model equation given in terms of a Fredholm operator, and under the
assumption of a centre of symmetry, the state space is spanned by a single state variable
and a number of independent control parameters, whereby the singularities in the set of
stationary solutions are necessarily of the cuspoid type. Certain singularities among
them represent critical states in that they form the boundaries of sheets of regular stable
stationary solutions. Critical solutions provide ignition and extinction criteria, and thus
are of particular physical interest. It is shown how a surface may be derived which is
below the state surface at any location in state space. Its contours comprise singularities
which correspond to similar singularities in the contours of the state surface, i.e., which
are of the same singularity order. The relationship between corresponding singularities is
in terms of lower bounds with respect to a certain distinguished control parameter
associated with the name of Frank-Kamenetzkii.
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1 INTRODUCTION

Apparently, literature offers little help in provid-
ing a comprehensive definition of combustion [1],
a process which is nevertheless of considerable
importance for our present-day industrial civiliza-
tion. It has therefore been suggested that com-
bustion is perhaps best described by means of a
working definition, e.g., combustion is the science
of exothermic reactions in flows with heat and
mass transfer. Such definition, as has already
been observed [1], is too narrow because there
are combustion phenomena which are not en-
compassed by it. On the other hand, the above
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definition is too loose in that it comprises many
processes which do not qualify as combustive
ones. The conversion of iron into its oxide, for
example, constitutes an exothermic reaction
which one would hesitate to designate as com-
bustive if it is a slow corrosion process. There
are some qualifications lacking in the above defi-
nition, and they are precisely those which make
the combustion processes interesting from the
point of view of a physicist or applied mathema-
tician: for an exothermic reaction accompanied
by heat and mass transfer to qualify as combus-
tive, it needs to evolve far away from thermo-
dynamic equilibrium such that the nonlinearities
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in the process mechanism cause the appearance tical difficulties, as there are as yet no generally
of certain characteristic phenomena. These could applicable solution methods available. A special
be in the form of self-similar combustion waves case may arise depending on whether a certain
which are for instance connected with the con- solution strategy is applicable which is based on

cept of flame propagation as an inherent charac- what has been termed "nontrival local behav-
teristic of the system, or ignition and extinction iour". Here, the system is viewed as a collection
phenomena which are related to the characteristic of identical local homogeneous elements ("parti-
singularities in the solution set and to the branch- cles", so to speak), and local behaviour thus is
ing of solutions. Therefore, supplementing the equivalent to the temporal evolution of the local
above working definition, combustion processes element which is modelled by a system of ordin-
comprise exothermic reactions accompanied by ary differential equations on account of the as-
heat and mass transfer, for which the nonlineari- sumption of local homogeneity. The overall
ties of the process mechanism are essential, behaviour of the system then results from diffu-

sively coupling the local elements. The case of
autocatalytic feed-back for isothermal systems

2 COMBUSTION AND lends itself particularly to this treatment [3], but
REACTION-DIFFUSION SYSTEMS typically, combustion processes are accompanied

by heat release and therefore are strongly suscep-
Although there are many combustion processes tible to thermal feed-back due to the strongly non-
for which convection is of major importance, linear temperature dependence of the Arrhenius
reaction-diffusion processes exist which are cap- expression for the reaction rates. These are given
able of combustion also. For such systems, con- in terms of the exponential function and thus
vective transport does not occur but due to no nontrivial local behaviour arises and the strat-
catalytic or thermal feed-back, the process can egy of perceiving the system as a collection of
reach critical states and is capable of self-accel- identical local elements cannot be pursued. In
eration, two properties which are regarded as order to derive the asymptotic states of the sys-
hallmarks of combustion [2]. Thus, in reaction- tem and the characteristics of its spatio-temporal
diffusion systems, the phenomena of ignition and evolution, a straight-forward solution of the non-

extinction and of combustion wave propagation linear partial differential equations of the model
are observed, is required.

Generally, in the investigation of the character- It is the objective of this paper to show how to
istic phenomena of a process, the asymptotic determine the critical stationary states which are
states of the system (e.g., the steady states) are intimately connected with ignition and extinction,
found to be of primary importance. Due to the and the appearance of combustion waves of
essential role of diffusive transport in combus- small amplitude. This is achieved by deriving nec-

tion, its mathematical representation excepting essary conditions in the form of lower bounds
some rare cases of high symmetry is given in for the bifurcation set and the bifurcation dia-
terms of partial differential equations. Therefore, grams associated with the set of stationary solu-
the characteristic features of combustion should tions of the model system.
be obtained by means of an investigation of the
asymptotic states of a model system of partial
differential equations. 3 THE MODEL PROBLEM
Due to the essential role of nonlinearity in

combustion, the modelling equations are highly A simple example which allows for the discussion
nonlinear and thus present tremendous mathema- of the characteristic features of combustion is
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provided by the following single equation:

L[y] + Aw(y; )Ot
y 0 on OD.

in D,
(1)

Eq. (1) typically results for a reaction-diffusion
system for which the Lewis-number Le is equal
to 1, with L designating a uniformly elliptic dif-
ferential operator, y the temperature, the time,
A, some control parameters, and w a nonlinear
function of y and . Thus, Eq. (1) represents the
initial/boundary value problem of a semi-linear
parabolic differential equation for a region D
with boundary OD. The function w(y; ) incorpo-
rates the combined effects of heat release and
reactant consumption in a thermodynamic sys-
tem which is open according to the boundary
condition for Eq. (1). The control parameter A is
distinguished in that its changes have no influ-
ence on the convexity with respect to y of the
function w(y;), this convexity being of primary
importance for the occurrence of characteristic
phenomena in the solution set of Eq. (1).
represents the well-known "Frank-Kamenetzkii
parameter".
For Eq. (1) to treat homogeneous and quasi-

homogeneous chemical reactions [6-8], a general
rate law for w is assumed:

w(y; , , n) .y)n exp( y/(1 + fly)). (2)

Here, ,/3,n designate control parameters which
influence the convexity of w with respect to y,
with ranges according to:

> 0. (3)/3>0, n0, cS
The physical and mathematical characteristics of
the system modelled by Eq. (1) are to a large
extent due to the properties of the function w.
An important one among these is the require-
ment of w(0)>0 due to which solutions of
Eq. (1) exist which are strictly positive in D. For
these solutions to be smooth in D, the following

restrictions have to be imposed:

y< 1/ (in case>0), A ->0. (4)

Inspection of Eq. (1) reveals that under the con-
ditions of Eqs. (2)-(4), y=0 results for A=0,
representing the only stable homogeneous state
of the system.

4 THE STEADY STATE MANIFOLD

The stationary states are given as solutions of the
semi-linear elliptic boundary value problem asso-
ciated with Eq. (1), which results from imposing
the condition of stationarity:

Y=o. (5)Ot

The set of stationary solutions of Eq. (1) is to be
investigated for the class of reaction rates w with
a shape given by Eq. (2), with stability and bifur-
cation depending on the values of the control
parameters A,,/3,n. In order to facilitate this
investigation, only a relatively simple geometry is
admitted: the region D is supposed to be entirely
convex, with a centre of symmetry at xoD.
Under this condition, a stationary solution y of
Eq. (1) possesses a unique maximum Ym which is
located at x0:

Ym y(xo), xo D. (6)

As has been shown in [4,5], Ym may be used as
an independent parameter, such that the set of
stationary solutions of Eq. (1) results in the fol-
lowing parametric representation:

(A(ym;,c,/3, n), y(ym;,,n)). (7)

By means of Eq. (7), the stationary solutions of
Eq. (1) are represented by a state surface:

*= A(ym; ,/3, n). (8)
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In a finite-dimensional state space spanned by
ym,,fl, n. The cross section A(ym) of the state
surface obtained by keeping ,/3,n constant is
termed "bifurcation diagram", whereas the pro-
jection of the surface along the ym-axis into the
subspace of control parameters A, ,/3,n is called
"bifurcation set" [7].

AN APPROXIMATION OF
THE STATE SURFACE

In order to determine those sheets of the surface
given by Eq. (8) which represent stable stationary
solutions of Eq. (1), the bifurcation points have
to be determined. A numerical search for these in
a multi-dimensional parameter space is a "hope-
less task without an intelligent strategy for loca-
ting the likely places to start the search" [9].
Such information, e.g. as to sheets of stable sta-
tionary solutions and as to the geometry of their
boundaries, may be gained with the help of lower
bounds of the state surface given by Eq. (8). For
ease of application, the lower bounds are derived
from linear boundary value problems associated
with Eq. (1).

For a given value of Ym, let M(y; Ym)-ay-at- b
be a linear majorant of w(y) for 0 =Y-Ym:

0 < w(y) =< M( y; Ym). (9)

Here, the coefficients a,b are appropriate func-
tions of Ym (for an example, cf. Eq. (22)). Then a

parameter AM may be determined from the fol-
lowing linear elliptic boundary value problem ob-
tained from the stationary version of Eq. (1) by
replacing w( y; ) by M(y; Ym):

L[u]--1-- AMM(u; Ym) 0 in D,

u 0 on OD, u(xo) Ym.

It is important to note that the properties of the
nonlinear function w(y;) persist in having an

influence on the linear problem of Eq. (10) via
the coefficients a, b of M.

In parametric representation, the solution of
Eq. (10) is of the following form:

(AM(Ym), U(ym)). (11)

Subtracting Eq. (10) from Eq. (1) for the case of
stationary solutions furnishes:

L[y- u] + Aw(y) AM(au + b) 0

y-u=0 on0O, (y-U)lxo=O.

in D,

(12)

A rearrangement of Eq. (12) leads to

L[y- u] + AMa( y u) + Aw(y) AM(ay + b) O.

(13)

Assuming for a moment: AM > A, Eq. (13) fur-
nishes on account of Eq. (9)"

L[y- u] + AMa(y- u) > O inD,

B[y- u] y- u O on0D, (Y-U)lxo -0.

(14)

For the solutions of Eq. (10) to be useful in the
context of an investigation of the stationary solu-
tions of Eq. (1), they have to be strictly positive
in D (cf. the discussion which led to the restric-
tions embodied in Eq. (4)). Therefore, it is re-
quired that

AMa < /z. (15)

Here, # designates the principal eigenvalue of
the operator (L, B). Under the condition of Eq.
(15), there exists an inverse of the operator
((L + AMa)[y- u],B[y- u]) which is in the form
of an integral operator with strictly negative ker-
nel in D[10]. Therefore, a solution (y-u) of Eq.
(14) is strictly negative in D and the condition
(y-u)=0 at the interior point x06D cannot be
satisfied. Consequently,

AM(Ym) < A(ym). (16)
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The solution set of Eq. (10) therefore furnishes a
surface AM(Ym;,fl, n) in the state space defined
for Eq. (1) which bounds the state surface
A(ym; ,/3, n) (cf. Eq. (8)) from below:

AM( Ym; ,/3, n) ----< A( Ym; ,/3, n). (17)

L[fi]+AM(-fi+I)--0 inD,
fi 0 on OD, fi(x0) Ym;
and withM--M, fi--fi

L[]+M(fi+I)--0 inD,

fi 0 on OD, fi(xo) --Ym"

(20)

For any combination of the independent control
parameters {,/3, n, the parameter Avt may be ob-
tained for the chosen value of Ym with the help
of a characteristic curve M(J3m) which is derived
from the solution of the following reduced prob-
lem associated with Eq. (10):

L[fi]+M(efi+l)--0 inD,
(18)

fi 0 on OD, fi(xo) m"

Here, +1 for linear majorants M(y;ym) with
positive slopes and =-1 for negative slopes.
The usefulness of linear majorants and the corre-
sponding linear problem of Eq. (10) which is
associated with Eq. (1) stems from the fact [11]
that the solutions of Eq. (10) represent so-called
upper solutions from which the stationary solu-
tions of Eq. (1) may be obtained by monoto-
nously decreasing iteration. This is a consequence
of Eq. (9), from which it is deduced that the
expression (eft+ 1) in Eq. (18) must be posi-
tive in D. Thus, the following conditions are
obtained:

--lO<fi< in D.
(19)

Here, as in Eq. (15), # designates the principal
eigenvalue of the elliptic differential operator L,
under the condition of the eigenfunction vanish-
ing on the boundary OD.
The two cases +/-1 give rise to two separate

branches of the characteristic curve )kM(Jm) one
of which is the extension of the other, because
the case of --1 results from the case of
--+1 by formally allowing negative values for
M and for fi in Eq. (18):

The general shape of the characteristic curve

M(J3m) is displayed in Fig. 1. Inspection of Fig.
reveals that the two stipulations of Eq. (19) are
indeed satisfied. With the help of the maximum
principle [10], it is easily derived that the char-
acteristic curve M(m) is strictly increasing
whereby the inverse function 93m --)3m(,M) exists
also.
A general linear majorant M will be of the

following form:

M( y; Ym) ay + b. (21

Here, the coefficients a,b are functions of Ym.
For the example displayed in Fig. 2, M(y;ym)
represents a secant with

a- (W(ym) w(O))/ym, b- w(O). (22)

According to Eq. (10), the corresponding lower
bound AM(Ym) of A(ym) derives from the solu-
tion of the following problem:

L[u] + AM(au + b) 0 in D
(23)

u 0 on OD, u(xo) Ym.

/!

-1

FIGURE The characteristic curve for the reduced problem
given by Eq. (1 8).
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m Y

FIGURE 2 An example of a majorant M(y; Ym) of the func-
tion w(y) for 0 < <y --ymo

Under the condition of AMa </Zl, Eq. (23) pos-
sesses a unique solution. Due to the operator L
being homogeneous, Eq. (23) may be reduced to
Eq. (18) by a simple stretching transformation,
provided a, b 0:

L-u +aAM u+l =0 in D,
a a a

u 0 on OD, -u(xo) -Ym.
(24)

Comparison of Eq. (24) with Eq. (23) reveals their

being equal. Therefore, the solution (AM(Ym),
U(ym)) of Eq. (23) may be obtained from the
reduced problem (Eq. (18)) by the stretching
transformation:

AN EXAMPLE FOR A SURFACE
OF LOWER BOUNDS

In order to provide an example, functions w(y)
are investigated which are strictly increasing at
least for an initial part of the positive y-axis (i.e.,
for0 < <--y--y0) so that there exists a unique in-
verse function of w on this interval. In addition
to that, if w(y) is convex or convex-concave for
0<ym <

Y0, then there exists a subinterval
0 < <-y- Yl Y0, where secants may serve as linear
majorants according to Eq. (9) (cf. Fig. 3). With
the help of Eq. (22), a secant-majorant is ob-
tained for 0 <= Ym < Yl, for which:

M(y;ym) ay + b y(w(ym) w(O))/ym + w(O).
(27)

By choosing an appropriate scale for the w-axis,
w(0) may be obtained, so that:

a (W(ym)- 1)/ym, b- 1. (28)

Under the conditions of Eq. (19), a unique solu-
tion exists for Eq. (18), where e--+1 for the
present case, as w(y) is strictly increasing. The
inverse of the operator

K[fi] Lift] + AMfi (29)

a
fi--u, AM--aAM. (25)

AM(Ym) in particular may be determined from
the characteristic curve AM(33m) as follows:

a
AM(Ym)-- M(Ym). (26)

For a given geometry, the characteristic curve

M(Pm) associated with the stationary system
may be derived analytically or numerically from
Eq. (18) once and for all. For a given combina-
tion of parameters ym, Gfl, n, a suitable linear

majorant M(y;ym) (cf. Eqs. (9),(21)) furnishes a
lower bound AM(Ym) of (Ym) by means of
Eq. (26).

may be represented by an integral operator with
negative kernel G which depends on AM, so
that the solution of Eq. (18) is obtained in the

M,-w(y)(y;y)

y yo

FIGURE 3 A strictly increasing function w(y) which is

convex-concave for 0 < <
=Y =Y0.
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following form:

t ---AM L G(x, x’IXM)dx’. (30)

Due to the existence of the centre of symmetry at

x0 E D, the location of the maximum m of t is
fixed, so that Eq. (30) furnishes

f;m --M fD G(xo, x’ M)dx’. (31)

Abbreviating

F(AM) G(xo, x’ [-AM)dx’ (32)

the characteristic curve AM()3m) is given implicitly
due to Eq. (31) as

)3m tF(t). (33)

For an arbitrary value of Ym with 0 -< Ym -< Yl,
the lower bound Am(Ym) (cf. Eq. (23)) is found
from Eq. (33) according to Eq. (26) as

a-Ym aAMF(aAM). (34)

For secant-majorants, the coefficients a and b are
given by Eq. (28) whereby Eq. (34) reduces to
the following form:

W(ym)- + ’F(’). (35)

Here, a parameter ff is introduced with

aAM (W(ym) 1)AM/Ym. (36)

For strictly increasing functions w(y), an inverse
function exists, so that Eq. (35) may be solved
for Yrn=Ym(ff). Inserting Ym(ff) in Eq. (36) fur-
nishes At() as

AM(C) ym/(W(ym) 1). (37)

By means of Ym(() from Eq. (35) and AM(() from
Eq. (37), the lower bounds AM(Ym) are given in

parametric representation

(ym(), AM(If)). (38)

With the help of Eq. (38), a surface ,M(Ym; ,/3,n)
is thus obtained which is below the state surface
A(ym;,/3, n) for any combination of the para-
meters Ym, ,/3, n.

THE GEOMETRY OF THE
STATE SURFACE

According to Eq. (17), AM(Ym;,/3, n) represents
a surface in the state space associated with the
stationary solutions of Eq. (1) which is below the
surface A(ym; ,/, n) at any point (ym, , fl, n).
Employing the concepts of singularity theory [7],
the geometry of the surface AM(Ym;,fl, n) may
be investigated with the help of its bifurcation
diagrams, i.e., the cross sections AM(Ym) which
result for constant combinations of the para-
meters , fl, n. The bifurcation set is another use-
ful concept which allows for a geometrical
interpretation: it designates the contours of the
surface AM(Ym; ,/3, n) which by definition repre-
sent those locations in state space where

OYm
--0. (39)

Geometrically speaking, the contours become
visible by viewing (i.e., by projecting) the surface
AM(Ym;,/3, n) along the ym-axis from the sub-
space of control parameters A, ,/3, n.

The geometry of the state surface A(ym; ,/3, n)
may be investigated also by employing the above
concepts: its bifurcation set, therefore, designates
those locations in state space where

OA
0. (40)

On account of Eq. (40), the bifurcation set of the
state surface comprises those combinations of the
control parameters A, (, fl, n, for which Eq. (1)
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possesses singular stationary solutions. In the set
of all stationary solutions of Eq. (1), the singular
solutions represent the branching points which
separate adjoining sheets of regular stationary
solutions. Due to the quasi-regularity of Eq. (1)
at the singularities characterized by Eq. (40), the
contours represent smooth curves in the state
surface.
According to Eq. (8), the stationary solutions

of Eq. (1) may be represented by a state surface
in a finite-dimensional state space. Therefore, the
concepts of singularity theory [12] apply due to
which there is a hierarchical order in the set of
all singularities. Accordingly, a singular station-
ary solution of Eq. (1) is said to be of order k, if."

OA oq2A okA ok+lA
Oym -y--m Oy--=O, Oym+ 7 0 (41)

Geometrically speaking, the order of singularity
is equivalent to the order of tangency of the pro-
jection (the line of sighting, so to speak) of the
state surface /k(ym;,fl, n) into the subspace of
control parameters A, , fl, n. Consequently, a giv-
en order of singularity corresponds to a certain
type of singularity in the bifurcation set. Accord-
ing to singularity theory (Whitney’s thoerem, cf.
discussion in [13]), there is only one generic sin-
gularity in the bifurcation set associated with the
state surface given by Eq. (8), and, similarly, in
the bifurcation set associated with the surface of
lower bounds given by Eq. (17). This is in the
form of a cusp which corresponds to a singular
stationary solution of Eq. (1) of second order
(i.e., k 2). For k 1, the singularity of Eq. (1)
is of the fold-type, which corresponds to a regu-
lar point of a smooth arc of the bifurcation set,
while singularities of order k > 2 are of cuspoid
type, which is to say that they correspond to
nongeneric singularities of the bifurcation set
(i.e., nongeneric folds, nongeneric cusps) resulting
from a superposition of cusps and smooth arcs.
For the construction of the state surface and,

similarly, the surface of lower bounds, only a

single state variable Ym is employed, whereas the

remaining variables A, G fl, n are of the control
parameter type. Therefore, only singularities of
co-rank occur which is the mathematical reason
for their cuspoid character [12].

In order to give an example of nongeneric sin-
gularities, singularity order k=3 and k-4 are
discussed, with k--3 designating a swallow-tail-
type singularity, k--4 a butterfly (for the termi-
nology, cf. [12]).
A swallow-tail corresponds to a singularity P+

of the bifurcation set representing a nongeneric
fold. Therefore, P+ is found to be a regular point
of a smooth arc of the bifurcation set, such that
at P+ a cusp doublet is generated (cf. Fig. 4).
A butterfly corresponds to a singularity Q+ of

the bifurcation set representing a nongeneric
cusp. At Q+, a cusp triplet is generated (cf.Fig.
5). It thus appears that the singularities of higher
order may be classified as to whether they are
associated with a nongeneric fold or a nongeneric
cusp. This corresponds to the observation that
for the bifurcation diagram A(ym) associated
with a singular stationary solution of Eq. (1),
only two cases arise: either the singularity is of
the turning point type (generic or nongeneric
fold, cf. point P in Fig. 6) or of the inflection
point type (generic or nongeneric cusp in the
bifurcation set, cf. point Q in Fig. 7). The order

FIGURE 4 A swallow tail singularity P+ with a selection of
contours of the state surface for varied values of/3 displaying
the creation of a cusp doublet (dashed lines).
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FIGURE 5 A butterfly singularity Q+ with a selection of
contours displaying the creation of a cusp triplet (dashed
lines).

P

FIGURE 6 A bifurcation diagram with turning point P.

FIGURE 7
tion Q.

A bifurcation diagram with point of inflec-

k of singularity (cf. Eq. (41)) corresponds to the
order of tangency at P or Q, while a necessary
condition for the contours to appear consists in

the tangent being horizontal, i.e., parallel to the

ym-axis which is the direction of projection (cf.
Figs. 6, 7).

THE STATE SURFACE GEOMETRY
AND THE GEOMETRY OF THE
SURFACE OF LOWER BOUNDS

A function w(y) is termed "concave in the gener-
alized sense", if it is either concave in the usual
sense or only weakly convex. The condition for

generalized concavity is as follows:

w(y) yw’(y) >- O. (42)

It has been shown in [14] that no singular sta-

tionary solutions of Eq. (1) exist with 0 <-
<

Ym --Yc, if the function w(y) in Eq. (1) is concave

in the generalized sense for 0 y yc. For any
smooth function w(y) with w(0)>0 a value
yc>0 exists such that w(y) is concave in the

<
generalized sense for 0 <= y yc. The value of yc
therefore may serve as a convexity index, in that
it provides a necessary condition (in the form of
a lower bound for Ym) for the occurrence of sin-

gular stationary solutions. Recalling that the

shape of the function w(y) is influenced by the
control parameters ,/3,n (cf. the expression for

w(y) given by Eq. (2)), continuous changes of
the control parameters ,/3,n may be envisaged
which lead to a deformation of w(y) such that

the convexity index y changes to lower values in

a continuous or discontinuous fashion. A discon-

tinuous change of Yc to a lower value Yc. (cf.
Fig. 8) therefore constitutes a precondition for

the appearance of a newly formed pair of singu-
lar stationary solutions of Eq. (1)."Newly formed"
is to indicate a creation "out of the blue", as

opposed to the shifting of a previously existing

maximum/minimum pair in the bifurcation dia-

gram A(ym). Consequently, such a discontinuous
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Y-" Yr Y

FIGURE 8 A discontinuous change of the convexity index
from yc to Ycc due to a deformation (dashed) of w(y).

change of the convexity index due to a smooth
change in the control parameters is associated
with a deformation process in the corresponding
bifurcation diagram where the appearance of

Ycc corresponds to the appearance of a point of
inflection Q with a horizontal tangent (cf. Fig. 7)
at an interior point of a regular branch of )(Ym).
The singularity order of the stationary solution
of Eq. (1) associated with Q is k= 2q(q=
1,2,...), with the lowest order k 2 designating
a generic cusp in the bifurcation set which is
indicative of the creation of a single maximum/
minimum pair in the bifurcation diagram ,(Ym).
For higher order singularities k=2q>2, addi-
tional maximum/minimum pairs originate from
the point of inflection Q. In the example of k---4
(singularity of butterfly type), the counter image
Q+ of Q on the state surface ,(ym;,fl, n) is the
source of three contours which represent three
lines of cusps (cf. the dashed lines in Fig. 5).

Generally, functions w(y) of the set defined by
Eqs. (2)-(4) may be classified as to their asymp-
totic behaviour for y---,c (in case (<0) or

y---, 1/ (in case > 0). For functions w(y) which
are asymptotically strongly convex and increasing,
there exists a finite least upper limit X for the
values of the distinguished control parameter &:

/k(ym) -< - sup ,. (43)

If for some value m of Ym, ,(Ym) reaches the

supremum & (i.e., - &(Ym)), then of necessity

corresponds to a maximum of the bifurcation
diagram ,(Ym) (e.g., Fig. 9(a)). For all other
functions w(y) which thus fail to be strongly
enough convex and increasing, there either is no

finite supremum or there is no maximum , of

/(Ym) (cf. Fig. 9(b)). This classification may be
derived with the help of monotonous iteration
based on upper and lower solutions, with the
upper solutions resulting from appropriate linear

majorants. A maximum X which constitutes the
supremum of/(Ym) represents a fold-type singu-
lar stationary solution of Eq. (1) which thus is

of singularity order k 2q + 1, (q 0, 1,2, ...).
For a generic fold singularity: k-1, whereas
for nongeneric folds k > 1. In the example of

FIGURE 9(a) The bifurcation diagram for entirely convex
functions w(y), with the stable branch of A(Ym) bounded by
a supremum-maximum X.

FIGURE 9(b) The bifurcation diagram for functions w(y)
which are entirely concave in the generalized sense.
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k-3 (swallow tail), the nongeneric fold singular-
ity is associated with an interior point P+ of a

regular arc of the bifurcation set such that P+ is
the source of two curves, the points of which
designate cusp singularities (cf. the dashed lines
in Fig. 4).
For certain critical stationary solutions of

Eq. (1), it is possible to establish a relationship
between the structure of the state surface and that
of the surface of lower bounds. Here, a particular
singular stationary solution of Eq. (1), is "critical"
[14], if it separates a sheet of regular stable sta-
tionary solutions of Eq. (1) from a sheet of un-
stable ones. Thus, critical solutions are associated
by means of Eq. (40) with some parts of the
contours, i.e., with some part of the bifurcation
set. From the point of view of physics, the criti-
cal solutions are obviously of foremost interest
because they bound stable, i.e., physically attain-
able, stationary states of the system. Singular sta-
tionary solutions which are noncritical separate
sheets of regular unstable stationary solutions
which cannot be established for a physical system.

For a function w(y) which is entirely convex,
only a single critical solution of Eq. (1) can occur
which of necessity corresponds to a supremum-
maximum -A(.Pm) [14]. Thus, there is a
branch of )(Ym) issuing from the origin and ter-
minating in (,Pm)" This branch represents the
regular stable stationary solutions of Eq. (1) (cf.
Fig. 9(a)), whereas for Ym > )Tm only unstable sta-
tionary solutions exist. Consequently, no critical
minima and no further critical maxima beyond
the first one exist. Therefore

A sup A(ym). (44)

According to Eq. (16), a lower bound
/M(Ym)<--/(ym) exists. If a supremum of
A(ym) occurs, then there exists a supremum AM
of AM(Ym) also, for which of necessity.

X --< X. (45)

Projecting the state surface into the subspace of
control parameters A, ,/3, n, the supremum A re-

sults as part of the contours. Because the direc-
tion of projection is along the ym-axis, Eq. (45)
holds for the bifurcation set also. Consequently,
the contours corresponding to A are bounded
from below by the contours corresponding to At.
For smooth changes of the shape-relevant con-

trol parameters ,/3, n, two bifurcation phenom-
ena may occur:

(a)

(b)

An interior point of a sheet of regular stable
stationary solutions turns into a critical solu-
tion. This corresponds to the appearance of
a point of inflection with horizontal tangent
for A(ym) (e.g., in Fig. 9(a) for Ym with
0 < Ym < m)" According to the above discus-
sion, such a critical solution is of singularity
order k-2q (q-1,2, ...), with the lowest
possible order k-2 representing a generic
cusp and any higher order k-2q > 2 a

nongeneric one.
The supremum A of A(ym) changes from re-

presenting a generic fold into representing a
nongeneric one (cf. at 37m in Fig. 9(a)).
According to the above discussion, a fold cor-

responds to a singularity order k-2q +
(q-0,1,2, ...), with the lowest possible
order k-1 representing the generic fold and
the higher order k- 2q + > the nongene-
ric ones.

Therefore, smooth changes in the shape rele-
vant control parameters lead to the appearance
of maximum/minimum pairs in the bifurcation
diagram, with these pairs either emerging from
an interior point of a stable branch of A(ym) (at
Ym with 0 < Ym < )Tm, cf. Fig. 9(a)) or from the
supremum A at Pm where Pm designates the
boundary of the branch. It has been shown in
[11], that for a maximum/minimum pair A*/A**
appearing at an interior point or at the boundary
point of that particular stable branch of A(ym)
which emerges from the origin (A- 0,ym 0), a

corresponding maximum/minimum pair x* /x**

exists for AM(Ym), SO that:

A -< A*, At** <- A**. (46)
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Maxima, minima, and points of inflection with
horizontal tangents give rise to visible contours
according to Eq. (40). Due to the projection
being in the direction of the ym-axis, Eq. (46)
holds for the corresponding points of the bifurca-
tion sets also. This can be illustrated for the case
of a swallow tail singularity, for which two max-

imum/minimum pairs emerge from a supremum-
maximum A. Thus, A represents the boundary
point of the stable branch of the bifurcation dia-
gram )(Ym), which issues from the origin
(,- 0,ym--0). For a fixed value of n--2.0 and
parametrically varied values of/, with region D
in the shape of a unit sphere (radius R--1),
Fig. 10 displays the contours (i.e., the bifurcation
set) of the surface of lower bounds

which are found to comprise two lines of cusps.
Each cusp corresponds to the creation of a max-

imum/minimum pair of /M(Ym) for appropriate
changes of the control parameter (. AM(Ym) is
given in terms of the parametric representation
of Eq. (38), with the location of the swallow tail
derived from the condition for a singularity order
k=3:

OhM 02/M 03/M
Oy--- O, OYZm O,

Oy3m
0. (47)

For the unit sphere

F
sin

(48)

5.0

FIGURE 10 The bifurcation set for D in the shape of a unit sphere: swallow tail singularity P+ in terms of lower bounds
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with 0 < ff < 7i"2. F is derived according to Eq.
(32) and the parameter . defined according to
Eq. (36).
The solid curves (Fig. (10)) represent the loca-

tion of the generic and nongeneric folds. For
n 2.0, they are thus the solution of the follow-
ing system of equations:

W(ym) (1 {ym)2 exp(ym/(1 + flYm)),
W(ym)- -k-F(ff),

AM ym/(W(ym) 1),
0/

--0.

(49)

From Eq. (49), an individual solid curve of
Fig. 10 results for a fixed setting of the parameter
/3 in the following paranaetic representation"

appropriate bifurcation set. In the case of critical
singularities, corresponding singularities exist for
a surface of lower bounds which is dervied by
linear methods and which is everywhere below
the state surface of the system. It has been thus
demonstrated that linear methods provide infor-
mation on properties of the system which are
essentially caused by its nonlinearity. In particu-
lar, the value of the distinguished parameter At
at a singularity in the bifurcation set of the sur-
face of lower bounds provides by itself a lower
bound for the value of A at the corresponding
singularity of the state surface. In the case of slab
geometry, this correspondence is illustrated by
Figs. 4 and 7 in [4]. In the present paper, lower
bounds are derived for the example of a spherical
region D, with a swallow tail singularity appear-
ing in the bifurcation set for n= 2.0 at/3=0.275
(cf. Fig. 10).

Along such a curve of the bifurcation set, Ym
increases monotonically because Ym(ff) is impli-
citly given by

W(ym)- + ffF(ff). (51)

Investigations are restricted to those ranges of
the control parameters ,/3 where the function
w(y;,,n) is strictly increasing, so that the in-
verse function exists and is strictly increasing
also.

9 CONCLUSION

It has been shown that for a reaction-diffusion
system modelled by Eq. (1), the singularities in
the set of stationary solutions are of the cuspoid
type and thus are associated with generic or non-
generic cusp- or fold-type singularities in the
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