
Discrete Dynamics in Nature and Society, Vol. 1, pp. 161-167
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1997 OPA (Overseas Publishers Association)
Amsterdam B.V. Published in The Netherlands

under license by Gordon and Breach Science Publishers
Printed in India

Spatio-Temporal Patterns with Hyperchaotic Dynamics in
Diffusively Coupled Biochemical Oscillators

GEROLD BAIER* and SVEN SAHLE

Institute for Plant Biochemistry, University of Tfibingen, D-72076 Tfibingen, Germany

(Received 9 October 1996)

We present three examples how complex spatio-temporal patterns can be linked to
hyperchaotic attractors in dynamical systems consisting of nonlinear biochemical oscilla-
tors coupled linearly with diffusion terms. The systems involved are: (a) a two-variable
oscillator with two consecutive autocatalytic reactions derived from the Lotka-Volterrh
scheme; (b) a minimal two-variable oscillator with one first-order autocatalytic reaction;
(c) a three-variable oscillator with first-order feedback lacking autocatalysis. The dy-
namics of a finite number of coupled biochemical oscillators may account for complex
patterns in compartmentalized living systems like cells or tissue, and may be tested
experimentally in coupled microreactors.
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1 INTRODUCTION

Complex biochemical spatio-temporal self-orga-
nization with high-dimensional chaotic attractors
cannot only occur in continuous reaction-diffu-
sion systems with infinitely many degrees of free-
dom in phase space. The discovery that linear
diffusive coupling of only two oscillatory reaction
schemes can produce chaos [1] nurtures the idea
that finitely many coupled oscillators can be em-

ployed to generate spatio-temporal patterns with
underlying attractors of arbitrarily high (finite)
dimension in phase space [2]. Here we investigate

the concept of attractor dimension increase asso-
ciated with an increasing number of positive
Lyapunov characteristic exponents (LCEs), i.e.
hyperchaos, in three examples of coupled bio-
chemical oscillators.

Following the introduction of the prototypic
flow with a hyperchaotic attractor we first de-
monstrate hyperchaos of coupled oscillators in
one spatial dimension where the two coupled spe-
cies have equal diffusion coefficients. The second
example illustrates the transition from a stable
Turing structure to spatio-temporal hyperchaos,
both spatially trapped between two oscillatory
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regimes of differing amplitude and frequency in a in two directions in phase space together with
parameter gradient. The third example shows the the flow being folded back in two orthogonal
transition from low to high-dimensional hyper- directions. The numerical calculation of the spec-
chaos in a two-dimensional grid of biochemical trum of Lyapunov exponents yields two positive
oscillators. LCEs. A Poincar6 cross section of a numerically

simulated hyperchaotic attractor of Eq. (1) is
shown in Fig.

2 ABSTRACT HYPERCHAOS Equation (1) solves the mystery of R6ssler’s
first equation for hyperchaos [4]. That pioneer-

To introduce hyperchaos we present a four-vari- ing system possessed a hyperchaotic attractor

able ordinary differential equation composed of for special choices of parameters and initial con-

two well-known subsystems. The equation is: ditions, most. choices in the neighborhood, how-
ever, lead to an escape of the trajectory to

(’1 =--X2--aX, either fixed point or infinity. Comparing the two
equations it turns out that only the coupling ofJ2- J(l- Z,

(1) expanding variable Y to the chaotic subsystem
I;" Z + ae Y, is different. Coupling the two linear subsystems
2=0.1 + 3Z(blX2 +bzY)-SZ equivalently to Z (as in Eq. (1)) yields a hy-

perchaotic flow that is prototypic in the same
with al,az, bl,b2 > 0. sense as the subsystem (X|,Xe, Z) is prototypic

For bt 1,b2--0, the subsystem (X|,Xe, Z) for chaotic flows. Incidentally, the system of
is R6ssler’s equation for continuous chaos. Eq. (1) can be transformed into the simplest
Parameter al can be tuned to change the sys- hyperchaotic flow [5] (containing only one non-
tem’s stable attractor from a single-loop limit linearity) by means of a mode transformation of
cycle via a period-doubling sequence to a chao- the linear variables [6]. Thus, the extensions to
tic attractor. The stretching and folding of the chaos with even more than two directions of
flow is realized with the switching nonlinearity mean divergence work naturally as in [5].
in the equation for Z [3]. For b 0, be 1, the
subsystem (Y,Z) forms an attracting limit cycle
when a2 exceeds the value of the Hopf bifurca-
tion. As this limit cycle works with the same

nonlinearity as the first subsystem, one can view
such a structure as the oscillatory source of the
chaotic attractor. Combining the two subsystems
(b--1,b2 1), as in Eq. (1), yields a hyper-
chaotic flow: the harmonic oscillator of the chao-
tic subsystem oscillates in the (X’I,X’2) plane, v

Both subsystems keep expanding for small values
of variable Z due to nonzero expansion para-
meters a and a2, respectively. The two switching
nonlinearities in dZ/dt then increase the values
of variables X2 and Y, and return the value of

0

Z sharply close to zero whenever the threshold -0,3 x, 3,1

is passed. We thus have an explicit implementa- FIGURE Poincar6 cross-section of hyperchaotic flow in
tion of the principle of an oscillator expanding Eq. (I) taken at x2 0 with al 0.0, a2 --0.3, DI b2 1.
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SPATIO-TEMPORAL HYPERCHAOS
WITH TWO EQUAL DIFFUSION
COEFFICIENTS

We now describe the occurrence of spatio-tempor-
al hyperchaos in diffusively coupled (bio)chemical
oscillators. The first oscillator employed is a che-
mical realization of the (Y, Z) limit cycle subsys-
tem (b --0) of Eq. (1). The rate equations are:

" 0.01 + bX( Y- d),

= Y- bXY+ aY 2 (2)

with a,b,d > O.
The mechanism consists of two consecutive

autocatalytic steps in variables X and Y, a zero-

order input to X and a first-order decay of vari-
able X. This Lotka-Volterra scheme is extended
by the instability-inducing second-order autocata-
lysis governed by parameter a. Homogeneous os-
cillating units with the kinetics of Eq. (2) can
now be coupled linearly by diffusive terms for
both variables as follows:

J( fx + Dx(X2 X),

fy + Dy(Y2 Y1),
J(i fx + Dx(Xi+ 2Xi + Xi-1 ),

i f + Dy Yi+ 2 Yi + Yi-

kU --ix -- Dx(XN-1 Xu),

"N --.fy -!- Dy( YN-1- YN)

(3)

with i= 2, 3,..., (N- 1).fx and fy denote kinetic
terms, e.g. as in Eq. (2); Dx and Dy are the
respective diffusion coefficients of variables X
and Y; and N is the number of cells. The scheme
is written with zero-flux boundary conditions, i.e.
for an open chain of reaction cells. However, the
results presented can qualitatively be achieved
with periodic boundary conditions as well.

Previous results on hyperchaos with a finite
number of diffusively coupled cells were obtained
with a ratio of diffusion coefficients considerably
smaller or larger than one (see e.g. [2,7]). In con-

100

M= 80

FIGURE 2 Spatio-temporal evolution of 100 oscillators Eq.
(2) coupled in the form of Eq. (3) with a 1, b--3, d= 1,
Dx Dy 5. Logarithms of the concentrations of variables
Xi were grey coded from -4 (white) to 2 (black).

trast, we now couple five cells of the oscillator in
Eq. (2) in the oscillatory parameter domain with
equal diffusion coefficients, i.e. a ratio Dx/Dy 1.
For a coupling strength of Dx D 0.05 we
observe a chaotic attractor with the four largest
LCEs (0.2, 0.1,0,- 0.3). The attractor is hyperch-
aotic with two positive LCEs. Under otherwise
identical parameters the hyperchaotic attractor
also exists for a ratio of diffusion coefficients
slightly smaller or slightly larger than one. In-
creasing the number of coupled cells leads to
hyperchaotic attractors with an increasing num-
ber of positive LCEs for a finite window of cou-

pling parameters Dx D. Figure 2 is a space-
time plot for 100 coupled cells in the hypercha-
otic regime. Again the hyperchaos exists for ratios

Dx/Dy slightly smaller and slightly larger than
one. Thus, in addition to the cases Dx > D, and

Dx < D, spatio-temporal hyperchaos has been
found to exist generically for the case

Dx/Dy 1.

TURING PATTERN AND HYPERCHAOS
TRAPPED BETWEEN TWO LIMIT
CYCLES

The simplest biochemical oscillator with two vari-
ables contains only one first-order autocatalysis:

fi(-- a + XY- c1X/(c2 -]- X),
--b-XY

(4)



164 G. BALER AND S. SAHLE

with a,b, cl,c2 > 0. This system has been found
to produce spatio-temporal hyperchaos for

Dx > D), [2] and for Dx < D), [8] in the arrange-
ment of Eq. (3). In the latter case, i.e. under
Turing conditions, the hyperchaos is a chaotic
mixing of unstable Hopf and Turing modes. We
have studied the dynamics of diffusively coupled
oscillators Eq. (4) in a gradient of parameter a:

with i= 2, 3,..., (N- 1).
The gradient in the input to variable X was

chosen such that the first cell of the decoupled
system oscillates in a small-amplitude sinusoidal
fashion and the last oscillator possesses a large-
amplitude relaxational limit cycle with lower fre-
quency (parameters are given in the caption of
Fig. 3). For strong coupling under Turing condi-
tions (Dx < Dy) the system Eq. (5) with kinetic
terms taken from Eq. (4) organizes itself into a

stable asymmetric Turing pattern, e.g. for N 100.
Decreasing the coupling strength leads to the ap-
pearance of oscillating behavior at both spatial
ends of the system. Figure 3(a) is a space-time
plot of this situation. A stationary Turing pattern
is located in the central area. It is hemmed in by
oscillatory cells. Interestingly, the oscillations are
related to those of the uncoupled system and
thus differ from each other in amplitude and fre-
quency. The Turing structure dynamically sepa-
rates the two oscillatory domains. This is a
remarkable situation as it seems impossible to
extract information about the distant oscillator
from a time series of one oscillator if only finite

precision is available, e.g. as provided by experi-
mental data. Thus, with a moderate parameter

lOO

lOO

500

FIGURE 3 Spatio-temporal evolution of 100 oscillators Eq.
(4) coupled in the form of Eq. (5) with a--0.057, b---0.12,
c 0.5, c2 0.1, 5 0.01. Logarithms of the concentrations
of variables Y) were grey coded. (a) D.,, 0.07, D), 0.4, (b)
Dx 0.055, D., 0.2.

gradient, diffusive coupling results in dynamic de-
coupling of otherwise identical oscillators.

For weaker coupling the Turing structure
breaks up and makes way for a ribbon of chaotic
behavior caught between the two oscillatory
hems (Fig. 3(b)). Again the situation is such that
if an attractor reconstruction would be tried from
a single time series the astonished researcher
could find three qualitatively different results (si-
nusoidal periodic, chaotic, relaxational periodic)
depending on which time series she or he would
use, even though the system has settled to a sin-

gle well-defined attractor. Figure 4 shows two
phase space projections of the trajectory. Vari-
ables X1 and X98 (left side) flu a rectangular
plane as if they were two independent periodic
oscillators, whereas variables X51 and X53 (right
side) form a familiar chaotic attractor as in the
case of hyperchaos in diffusively coupled cells
under Turing conditions [9]. Due to the close
relationship with the hyperchaos in [8] we suspect
that the chaotic region of Fig. 3(b) possesses
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X53

X
FIGURE 4 Phase space projection of two variables for the attractor in Fig. 3(b). Left: One variable from the high and low
frequency oscillation, respectively. Right: Two variables from the chaotic region.

more than one positive LCE but a reliable LCE
estimation of the two-hundred dimensional sys-
tem has yet to be performed.

HYPERCHAOTIC PATTERNS IN TWO
SPATIAL DIMENSIONS

In our final example we employ Thron’s oscilla-
tor [10] which lacks autocatalysis and instead cre-
ates the oscillatory instability of a fixed point by
feedback inhibition in a three-variable scheme:

f( a/ (km + Z) X,

f =x-r,
2 + Z)

(6)

with a, k, km > O.
We have recently found that diffusive coupling

of three such cells creates a hyperchaotic attrac-
tor [11]. Now we go further and couple three
times three cells on a square grid with next-
neighbor couplings of each cell. For simplicity,
periodic boundary conditions (toroidal topology)
is chosen but, as in Section 3, the qualitative

result can also be obtained with zero-flux bound-
aries. Calculating the spectrum of Lyapunov ex-
ponents for the set of parameters: a--0.1,
k 0.48, km --0.001 with coupling in variable Z
(Dz 0.005, and Dx Dy 0) we find four posi-
tive LCEs. For the same set of parameters we
also observe hyperchaos on a toroidal grid com-
posed of 10 10 oscillators Eq. (6). Figure 5(a)
is a simulation of this system. The decay of cor-
relation between neighboring cells due to the hy-
perchaos is reflected in the noncoherent irregular
pattern of grey values.

In order to visualize the spatio-temporal pattern
associated with a hyperchaotic attractor in more
detail we keep the length of the system in Fig. 5(a)
constant but cover the area with a grid of
100 100 oscillators with properly adjusted diffu-
sion coefficient Dz. Figure 5(b) shows an aperiodic
patterns at one instant during the simulation. The
pattern is nonstationary and modulated by chao-
tic oscillations in space and time. A full account
of its structural richness necessarily has to include
the temporal dimension. However, the strategy to
find the 2D spatio-temporally hyperchaotic pat-
tern starting from the dynamics of only a few
coupled cells worked reliably as in the 1D cases.
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a)

b)

FIGURE 5 Two-dimensional grid of oscillators Eq. (6) with
a 0.1, k4 0.001, kl 0.48. Each cell is diffusively coupled
to its four next neighbors and the grid has periodic boundary
conditions. Concentrations of variables Z!i were grey coded.
(a) 10 x10 cells, Dx=D,=O, D=0.005, (b) 100 xl00
cells; Dx Dy 0, Dz 0.5.

6 DISCUSSION

Spatio-temporally hyperchaotic patterns are a

generic feature of diffusively coupled biochemical
oscillators. In particular, the case where two
coupled oscillators possess a chaotic attractor
can be exploited to generate hyperchaos in a linear
chain or in a closed ring of oscillators. Just as
hyperchaos can be created out of ordinary chaos

by adding new variables with proper coupling as
in Eq. (1), the dimension and the number of
positive LCEs can be increased stepwise if the
number of spatially coupled oscillatory cells is
increased. In addition to the case where the diffu-
sion coefficients of two oscillator variables differ
by one magnitude, an explicit example could be
found to demonstrate spatio.-temporal hyper-
chaos in a system with two equal diffusion coeffi-
cients. Thus no principal requirements are
imposed beforehand on the ratios of diffusion
coefficients in experimental systems.

In systems with one spatial dimension hyper-
chaotic patterns have now been observed in bio-
chemical models of kinetic oscillations with
second-order autocatalysis, as in Eq. (2), first-
order autocatalysis, as in Eq. (4), or in a model
with no autocatalysis at all, Eq. (6). The impor-
tant feature of the oscillators is not necessarily
their kinetic structure. For instance, equivalent
hyperchaotic dynamics were described for two
different autocatalytic models, one an activator-
inhibitor system, the other a substrate-depletion
system [8]. The trick is to find a set of kinetic
parameters which lead to at least two positive
LCEs under diffusive coupling of a small number
of cells (Eq. (3)). These parameters can then be
used for the higher-dimensional cases with the
coupling strength (diffusion coefficients) as bifur-
cation parameter.
A new direction of investigation will now be to

study the dynamics of nonidentical coupled cells.
The obvious motivation for this is that biological
or biochemical systems in general comprise a vari-
ety of cells with a distribution of kinetic para-
meters or coupling constants. A first step in that
direction was the study of a one-dimensional chain
of oscillators with a gradient of one parameter. In
addition to the fact that hyperchaos can survive
nonidentical parameters in coupled cells the possi-
bility arises to combine different dynamic sub-
structures in one composite pattern. In one case a
nonhomogeneous fixed point (Turing) structure
separated two oscillatory events of differing ampli-
tude and frequency ("dynamic wall"), and in
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another case an aperiodic spatio-temporal pattern
could be confined to a subset of the system by
periodic neighbors (Figs. 2 and 3). Such composite
structures may for example occur in experimental
systems where the presence of frequency gradients
has been established (see e.g. [12]).

Aperiodic patterns on two-dimensional grids
indicate that the connection between low-dimen-
sional hyperchaotic attractors and high-dimen-
sional hyperchaotic spatio-temporal patterns can
be expected in experimental systems with two spa-
tial extensions, e.g. in thin liquid layers or in
a single layer of biological cells. We expect that
spatio-temporal patterns with low spatial correla-
tion and rich structure can naturally arise in tissue
of living cells with oscillatory characteristics. Re-
cently we have observed spatio-temporal hyper-
chaos in diffusively coupled kinetic systems
proposed for the explanation of cytosolic calcium
oscillations by Goldbeter, Dupont and Berridge
[131.
An important property of all systems presented

is the fact that the high-dimensional patterns
were generated in finite-dimensional systems. Di-
rectly interpreted the equations model a finite
number of (bio)chemical reactors with continu-
ous supply of at least one (bio)chemical species.
They can thus easily be extended to describe a
set of coupled continuous flow well-stirred tank
reactors. To build and run such a set on a
macroscopic scale appears tiresome. Yet in the
case of enzymatic reactions one could think of a
realization as a set of microreactors. In that case
the assumption that all cells are identical and
that a component is pumped at equal rate
through all reactors is just. The technology of
microreactors will allow the detailed investigation
of high-dimensional chaotic attractors in finite-
dimensional systems with an accuracy which can
never be expected in living systems.
The idea of coupled microreactors with full

control of flows and coupling strengths leads us to

speculate whether such a system could undergo
structure-formation on an even higher level. Sup-
pose the concentrations in each cell could be mea-

sured by a sensor and the couplings between cells
were adjustable. Then the coupling strength be-
tween cells could easily be made a function of the
exchange of (bio)chemicals (i.e. information)
between cells. The coupling strengths could then
be made functions of the dynamics similar to the
weights in artificial neural networks. The result
would be a chemical network capable of learning
to interpret external patterns (provided e.g. in the
form of flow rates) in terms of a set of adjusted
coupling parameters. At present there seems to be
no clue as to whether living systems use this prin-
ciple of adjusted couplings of compartments to
handle information processing in enymatic reac-

tion networks. However, Bray has elaborated how
the kinetics of metabolic reactions may relate to

"learning" in neural networks [14]. A proper set
of coupled microreactors would be an ideal model
experiment to test both the complex self-organiza-
tion and the information processing capabilities
of diffusively coupled biochemical reactors.
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