
Discrete Dynamics in Nature and Society, Vol. 1, pp. 179-184
Reprints available directly from the publisher
Photocopying permitted by license only

(:) 1997 OPA (Overseas Publishers Association)
Amsterdam B.V. Published in The Netherlands

under license by Gordon and Breach Science Publishers
Printed in India

Synchronization of Spatiotemporal Chaos Using
Nonlinear Feedback Functions

M.K. ALI’* and JIN-QING FANGb

Department of Physics, The University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada," China Institute of Atomic Energy,
P. O. Box 275-27, Bejing 102413, P.R. China

(Received 20 February 1997)

Synchronization of spatiotemporal chaos is studied using the method of variable feed-
back with coupled map lattices as model systems. A variety of feedback functions are
introduced and the diversity in their choices for synchronizing., any given system is ex-
emplified. Synchronization in the presence of noise and with sporadic feedback is also
presented.
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Recently, there has been considerable progress [1]
in controlling and synchronizing chaos in low
dimensional systems. However, our current under-
standing of such issues in spatially extended
systems with many competing degrees of freedom
is very rudimentary. Spatially extended dissipa-
tive systems can manifest, under suitable condi-
tions, behaviors that are (1) predictable, (2)
chaotic in spatial and temporal (spatiotemporal)
dimensions, or (3) fully random (turbulent). Spa-
tiotemporal chaos appears in such diverse phe-
nomena as plasma fusion, hydrodynamics, optics,
chemical reactions, storage of memory in the
brain, pattern formations and Raleigh-Bnard

convection. For theoretical investigations, spa-
tially extended systems are often modeled by
partial differential equations, coupled ordinary
differential equations, coupled map lattices

(CMLs) and cellular automata. Of all these mod-
els, the CMLs are the simplest and have been
found valuable in revealing many important fea-
tures of spatiotemporal chaos. We will use the
CMLs for our models here. Because of great po-
tentials for practical applications, this area of re-

search has been very active and several methods
have been developed in this direction. For exam-
ple, we have learnt about the OGY strategy [2],
the Pecora-Carroll scheme with variable feedback
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[3], small perturbation feedback control [4], the
pinning feedback [5], the video-feedback control
[6], the resonant technique [7], the modified
Pecora-Carroll scheme with discrete time coupling
[8]. These approaches have their strengths and
weaknesses. For example, the pinning approach
[5] has the limitation that it is effective only for
certain ranges of values of the coupling strength
e and it has the undesirable feature that it gives
rise to ambiguous expressions for the response
state vectors when the pinning is applied to every
or every other site. Although sporadic feedback
may be desirable in some situations, we need to
have methods to deal with cases where the feed-
back is also applied to every site or every other
site. In this work, we present nonlinear feedback
functions for model CMLs that work well and
do not suffer from such limitation or ambiguity.
The CML can be defined as

jC

eih(Xn(mij)),Xn+l (i) i F(Xn(i)) + --j=

erating feedback functions (see below) work
equally well for these lattices. For the CMLR and
CMLRR, the m0. were found by a random num-
ber generator and we set h(Xn(mo.))=F(Xn(mi)
with/3i--1- e, i--1,2,..., L. The goal here is to
synchronize the driver system of Eq. (1) with the
response system

Yn+l (i) /iF( Yn(i))

jc

eijh( Yn(rnij)) + Gn(i), (2)

where Gn(i) is the feedback function at the ith
site. Starting from different random initial values
of the state vectors X0 and 0 (X0-0), one

iterates Eqs. (1) and (2) simultaneously. When
synchronization between the driver and response
systems is achieved, Xn =Yn and the feedback
function G(i)=0. The feedback functions are
not unique. Different feedback functions that
synchronize a given CML are obtained by replac-
ing [11] X(i)(1- X(i)) in Eq. (1) with suitable
functions g(i). Some examples of suitable gn(i)
are given below:

where F(Xn(i)) describes the internal dynamics of
the ith site when couplings with other sites are
absent. In this work, F(X)=4X(1-X) is the
one-dimensional logistic map. In Eq. (1), and n

denote discrete space and time variables and L is
the total number of sites each of which is con-

nected to # neighbors, Ji is the ith system para-
meter, mij is the index of the jth neighbor of the
ith site, eij is the coupling (connection) strength
of the jth neighbor of the ith site and h(X(mo.))
is a function of the state variables Xn(mo.). The
dynamical behavior of a CML depends on the
parameters /3i, the nature of coupling (type of h
and values of mo.), the coupling strengths ei# and
boundary conditions. We present results for (i)
lattices with random neighbors and fixed cou-

pling strength (CMLR) and (ii) lattices with ran-
dom neighbors and random coupling strengths
(CMLRR). We have also studied the lattices of
[5,9,10] and have found that our scheme of gen-

gn(i) (Yn(i) Xn(i))(2Xn(i) 1), (3)

gn(i) 1/2(Yn(i) Xn(i))(3Xn(i)2 1), (4)

gn(i) 1/2(Yn(i) Xn(i))(4Xn(i)2 1), (5)
g,(i) tanh[(Yn(i) Xn(i))(ZXn(i) 1)], (6)
gn(i) (Y(i)- Xn(i)) tanh[(ZX(i)- 1)], (7)
g,(i) (2X(i) 1) tanh(Yn(i) Xn(i)), (8)
gn(i) (2Xn(i) 1) * sin(Yn(i) Xn(i)), (9)
gn(i) sin[(Yn(i) Xn(i))(2Xn(i) 1)], (10)
gn(i) (Yn(i) Xn(i))sin[(ZXn(i) 1)], (11)

gn(i) (Yn(i) Xn(i))(ZXn(i) 1) 3, (12)
etc.

For a given g(i), the feedback functions for the
CMLR and CMLRR are, respectively, given by

#

Gn(i) 3’[(1 e)gn(i) +- Z gn(mij)] (13)
j=l,ji
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and

Gn(i) "),[(1 e)gn(i) +- Z ceijgn(mij)], (14)
j=l,j:i

where -y is an adjustable parameter. The cij. in Eq.
(14) for the CMLRR are random numbers with
0 _< cij < e and the symmetry condition oij- Olji is
not invoked. During the iterations if Yn+ 1(i) falls
outside the basin of attraction (here the interval

(0, 1)), then the contribution of the feedback term
is scaled so that Yn+ (i) belongs to this interval
or simply set Yn + (i) ]Yn + (i)l modulo 1. There
is a trivial feedback function that reduces Eq. (2)
to Eq. (1) identically. This happens when

Gn(i) -/iF(Xn(i)) if-- Z]Zj=l,ji
eo’h(Xn(mij))

iF(Yn(i)) - Z eijh( Yn (mij)). (15)
j--1,ji

For the logistic map this corresponds to

gn(i) (Yn(i) Xn(i))((2Xn(i) 1)
+p(Yn(i)-Xn(i))) (16)

with p- 1. Away from this trivial case, there is an
infinite set of values of p in the interval

Pmin - P <_ Pmax that will synchronize our CMLs

FIGURE A typical spatiotemporal chaos for a CMLR as a function of discrete space and time variables and n. Here
L 50, N 20 and =0.1. It can be synchronized by using any of the g,,(i) of in Eq. (13).
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with varied synchronization efficiencies. As for

Pmin and Pmax for the CMLRR with L 50, u 10,
we could synchronize with 1.2 < p < 2.8. The
feedback functions are applied to every site and at
every iteration. For all the cases mentioned above,
our feedback functions achieve synchronization
for all values of e in the interval 0 < e < and not
only for certain ranges of values as in [5]. The
number of neighbors # in Eqs. (13) and (14) varied
from to L 1. When L is large and # is small,
there is a chance to have disjoint groups of sites for
random mij. To avoid this, we chose the first
neighbor as the next neighbor and the remaining
#- neighbors were chosen at random. Figure
shows a typical spatiotemporal chaos in a CMLR
with L--50, #=2 and e=0.1. The feedback
functions with any g,(i) from Eqs. (3)-(12) are
found to synchronize spatiotemporal chaos in all
the CMLs mentioned above. The rate of synchro-

nization with different gn(i) are somewhat differ-
ent. The transition time for a given CML is
measured here by the number of iterations
required for the function

L

A(n) (Yn(i) Xn(i))2

i=1

to reduce to a preset small number. For the
CMLRR with L 50 and u =10, synchronization
to the precision A(n)< x 10-0 required 19, 18,
51, 15, 18, 18, 20, 12, 20,268 iterations for the feed-
back functions obtained from Eqs. (3)-(12)
respectively. Figure 2 shows the transition times
for sample feedback functions for the CMLRR.
From Fig. 2, it can be seen that among the five
feedback functions the one corresponding to
Eq. (10) is the fastest while the one corresponding

50 100

FIGURE 2 Transition time for sample feedback functions for CMLRR with L 50, u 10, 3’ 4, 0.1, 0 _< a;j < e. The
lines with styles and respectively, represent the feedback functions corresponding to Eqs. (4), (5), (6), (10)
and (12).
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to Eq. (12) is the slowest. Results with other values
of L and # for the CMLRR show similar trends in
transition times.

So far we have considered synchronization of
the CMLs with feedback applied to every site.
This approach successfully synchronizes the
CMLs for all values of e in the interval (0, 1).
For certain ranges of values of e, 3’ and L, it is
not necessary to apply the feedback at every site
for realizing synchronization. To illustrate, we
consider the lattice used in [5] for which our

feedback function becomes

N

Gn(i) 3’[(1-))fn(i)+ --Z(fn(i +j)+fn(i--j)].
J=l

This CML, with L- 50, N-- 2, ,- 2.2, e- 0.8 and
periodic boundary conditions, can be synchro-
nized by applying the feedback only at the 35th
site. This CML could also be synchronized by
using any one of the (site, -y) pairs (25,2.4),
(19,2.5), (14,2.5), (13, 1.2), (10,2.5), and (4,0.5).
The same lattice with N- could be synchronized
by adding feedback at an interval of two sites with
0.4 < e< 1. The success of sporadic feedback
depends on the use of appropriate values of the
system parameters.

Synchronization of spatiotemporal chaos in
the presence of noise is of importance from ex-
perimental considerations. Our numerical results
show that quasi-synchronization is realized in the

’1

0 500 1000

FIGURE 3 Synchronization of a CMLRR using Eqs. (3) and (13) in the presence of noise. Here L 50, u 10, /= 4, 0.1,
0 <_ cij < and two feedback functions, fdl0 and fdl2, corresponding to Eqs. (10) and (12), respectively, are used. In the absence
of noise, fdl0 and fdl2 require 12 and 268 iterations, respectively, for synchronization to A(n) < x 10-10. Random numbers
Wrlxi and W%,i with < /xi < 1, < rlyi _< and W 0.05 were added to X,,(i) and Y,(i) at every iteration and every site.
For this map, values of > 0.1 quickly result in periodic solutions. Those Wrlxi and Wrlyi were used which resulted in bounded
solutions of the map. Curve A corresponds to synchronization with common noise Wrlxi or Wrlyi fed to the driver and response
systems. Curves B and C, respectively, correspond to synchronization with the faster fd 10 and slower fd12 when different random
numbers WTxi and Wrlyi are fed to the two systems. Curve D is generated without any feedback. A comparison of curves B and
C shows that a better synchronization is obtained by a more efficient feedback function when noise is present.
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presence of weak noise. For simulating noise, we
added uniformly distributed random numbers

Wrlxi and/or Wrb, to Xn(i) and Y,,(i) at every
iteration and every site with 1 _< i_< L. Here W
is the fixed strength of the noise while the ran-
dom numbers are _< r/xi _< and _< r/yi _< 1.
Those WTxi and Wrlyi are used which belong to
bounded solutions of the map. Figure 3 illus-
trates the effect of synchronization. When com-
mon noise Wrlxi or Wrlyi is fed to the driver and
response systems, synchronization is achieved to
all figures. However, when the two systems are
subjected to different Wrlxi and Wr/yi a degree of
synchronization is realized. As expected, the
figure shows that the feedback function with a
shorter transition time achieve better synchroni-
zation than the one with longer transition time.
The shortest transition time is 1. In this ideal
case, the dynamical chaos will be synchronized at
every iteration but the disagreement between the
driver and response systems will remain due to
the uncontrolled noise.

In summary, we have used one-dimensional
CMLs to simulate spatiotemporal chaos and the
method of variable feedback to synchronize this
chaos. We have presented a scheme for obtaining
feedback functions for model CMLs and have
shown that a CML can be synchronized by a
multitude of feedback functions with varied effi-
ciencies. We have simulated synchronization in
the presence of noise and have found that a de-
gree of synchronization can be achieved with
weak noise and fast synchronization schemes.
Our numerical results have shown that perfect
synchronization can still occur if the driver and
response systems are subjected to common noise.
We have also shown that sporadic feedback can
cause synchronization. It would be very interest-
ing to see how these findings can be put to use in
experiments. One area to which our findings may

be directly relevant is the storage and retrieval of
memory in neural networks.
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