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Many negative reactions to Catastrophe Theory have been triggered by overly simplistic
applications unintended and unsuited for statistical-econometric estimation, inference,
and testing. In this paper it is argued that stochastic catastrophe models constructed
using the Expansion Method hold the most promise to widen the acceptance of Catas-
trophe Theory by analytically oriented scholars in the social sciences and elsewhere. The
paper presents a typology of catastrophe models, and demonstrates the construction and
estimation of an econometric expanded cusp catastrophe model of economic growth.
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INTRODUCTION

Catastrophe Theory (CT), that originated with
Thom’s (1975) ’Structural Stability and Morpho-
genesis’, aroused an initial intense interest that
was later followed by a spate of criticisms. Today
CT is very much alive, but perhaps is not having
the impact it could and should. The major factors
hampering its progress are (a) that many applica-
tions of CT are regarded as much too abstract
and simplistic by substantive scholars, and
(b) that CT has not entered yet to a sufficient
extent into the modeling phase centered upon
statistical econometric estimation and inference.
The focus of this paper is upon the application

of CT. The paper discusses and implements a

’Modeling Perspective’ intimating that the mathe-
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matical models of any aspect of reality are the
central point of any application of mathematics.
This perspective calls for defining what mathe-
matical models are and how they are constructed.
One of the two fundamental modes of model
construction is by ’expansions’, namely, by mod-
eling the parameters of a preexisting model. The
Expansion Method articulates the rationales and
the operational specifics for constructing by ex-

pansions more complex and realistic models from
simpler ones.

In the sections that follow, first the salient
traits of CT are briefly reviewed. Then the Mod-
eling Perspective and the Expansion Methodology
are outlined and applied to catastrophe model-
ing, and in the process the scope and variety of
catastrophe models is discussed and a typology
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of these models is proposed. Finally, to demon-
strate the leitmotifs of the paper an expanded
econometric cusp catastrophe model of modern
economic growth is constructed and estimated.

CATASTROPHE THEORY

Let us begin from some generalities on the nature
and significance of catastrophe theory. Over the
years, the various components and themes of CT
have been emphasized to different degrees. For
instance, Thom’s classification theorem had a

prominent role early on, a lesser one in later
years, and virtually disappears from considera-
tion in the work of scholars such as Arnol’d.
According to Arnol’d (1992, p. 2) "the origins of
catastrophe theory lie in Whitney’s theory of sin-
gularities of smooth mappings and Poicare and
Andronov’s theory of bifurcations of dynamical
systems". It seems fair to say that together with
Bifurcation Theory, Catastrophe Theory is today
regarded as a branch of the modern Non-Linear
Dynamics (Drazin, 1992; Tu, 1992; Glendinning,
1994).

It is to some extent a matter of interpretation
what exactly CT is because of its evolution after
its original statement by Thorn. The literature on

CT has been substantially influenced by early
supporters such as Zeeman (1977) and Poston
and Stewart (1978), by its critics (Zahler and
Sussmann, 1977; Sussmann and Zahler, 1978;
Arnol’d, 1992, p. 102 if), and by the many schol-
ars who used it and applied it in substantive
fields. The reviews of CT applications such as the
ones by Gilmore (1981), Wilson (1981), Lung
(1988), Rosser (1991) and Guastello (1995), attest
to the impact that CT has had.
A key point of CT since its very beginning is

that ’systems’ are found in ’stable equilibrium
states’. Under conditions of ’structural stability’
small changes in systemic ’control parameters’
bring about small changes in these stable states.
However, small changes in control parameters
across ’critical’ thresholds will cause stable equi-

libria either to disappear, or to ’bifurcate’ into

multiple equilibria, some of which are stable. The
appearance of multiple stable equilibria at critical
points in control space is a special case of the
bifurcations dealt with greater generality by Bi-
furcation Theory (Hale and Kocak, 1991).

In most early articulations of CT the stable
equilibrium states are viewed as the optima of a
function of the state variable(s), specifically, as

the minima of a ’potential function’. The latter
terminology follows from applications of CT in
physics. However, CT has also a dynamic dimen-
sion the early development of which gained sub-
stantially from the work of Zeeman. ’Gradient’
dynamic formulations corresponding to the ones

based on the minimization of a potential function
can be easily obtained by setting the time deriva-

tive(s) of the state variable(s) equal to minus the
gradient of the potential function. This is equiva-
lent to assuming that the state variable(s) will
move downward on the potential manifold, fol-
lowing the direction of steepest descent and seek-
ing the local minimum in the domain of
attraction of which they are located. These ’gra-
dient’ equations link CT to the theory of non-

linear dynamics at large.
The minima of the potential function corre-

spond to stable equilibria of ’gradient differential
equation(s)’. At the critical point(s) in control
space in correspondence to which local minima
of the potential function disappear or multiply,
in the phase diagrams of gradient systems stable
equilibria disappear or multiply. This links CT to
the qualitative analysis of non-linear differential
equations that predates it by several decades.

Thorn’s mathematical contribution that moti-
vated and started CT is the ’classification theo-
rem’. Essentially, Thorn proved for ’seven
elementary catastrophes’ that for a wide class of
functions, in the neighborhood of their ’degener-
ate singularities’, the types of catastrophes that
can occur are the same that characterize the cor-

responding canonical catastrophe equations. For
example, a broad class of functions involving one
state variable and two control parameters will
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have near a degenerate singularity either a fold multiple stable equilibria, as well as the possibil-
or a cusp catastrophe, same as the canonical catas- ity for a system to switch across topologies char-
trophe equation with one state variable and two acterized by different constellations of such
control parameters, equilibria as a result of changes in systemic pa-

This brief articulation of the major points of rameters, fall within the scope of non-linear
CT begs the question of whether there are dis- dynamics, as a subset of the state variables’
tinctive contributions that should be credited to behaviors considered within it. It could be also
CT, and on which, ultimately, the applications of argued that in the literature there are applications
CT can rest. along these and similar lines that predate CT or

Its critics deny that CT represents a distinctive were developed independently from it. For in-
contribution, or at least a substantial one. They stance the critical minimum effort thesis (Oshima,
contend that the classification theorem is only 1959; Leibenstein, 1957), and Nelson’s (1960,
valid ’locally’, in the neighborhood of degenerate 1965) contribution to the modeling of the escape
singularities, and consequently does not justify from the Malthusian trap were related to the
attributing a generality of scope to the elemen- qualitative analysis of differential equations but
tary catastrophes. Also, they would argue that can be easily viewed in terms of CT.
the discontinuities in the elementary catastrophes These and similar examples notwithstanding, it
are not unique to CT, but can be produced within is to the credit of CT’s originator and of the
Bifurcation and Non-Linear Dynamics theories many scholars who have contributed to CT over
as special cases. Furthermore, they have con- the years, to have generated a collective con-

tended that the examples of applications of CT sciuousnes of catastrophes and catastrophe mod-
are contrived, and better models with same ef- eling. The notion that qualitative jumps across
fects can be put together outside CT. topologies may result from the continuous change

However, it can be argued that CT has been of control parameters across critical thresholds
having an important role along at least three may very well have been implicit in other schol-
dimensions. Namely, (a) it has etched into the arly traditions. Yet it is primarily due to CT if
collective consciousness of the scholars interested today, in the investigation of social biological
in modeling dynamic phenomena that systemic and physical phenomena, continuous change as

equilibria may appear disappear or multiply well as discontinuous qualitative change represent
when control parameters move across critical alternatives to be both considered and modeled.
thresholds; (b) it has identified ’types’ of catas-
trophes, some of which have been found very
useful in many applications; and (c) it has linked MATHEMATICAL MODELING
the appearance, disappearance, and bifurcation
of equilibrium states simultaneously to dynamic All applications of mathematics, including those
formalizations and to formalizations in terms of of catastrophe theory, start from, and/or are
systemic optima. Such twin formalizations are based upon, mathematical models of realities.
synergistic in their potential to inspire substantive The mathematical models of some phase of real-
theory and empirical analyses, ity are not just a particular type of models (a

Let us comment briefly only on the first of ’species’ within a ’genus’ encompassing all types
these three points. Before CT, a widespread col- of models). Rather, they are conceptual artifacts
lective awareness that discontinuities can follow qualitatively distinct from anything else called
the smooth change of systemic parameters across ’models’. A recognition of this distinctiveness,
critical thresholds did not exist; after CT it did. and of the fact that any application of mathe-
It can be argued that the possibility of having matics is via mathematical models, are necessary
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prerequisites for understanding the roles of math- involves extracting a new mathematical model
ematical models, and the nature of the boundary from preexisting one(s) by a variety of mathemat-
that separates and links mathematics to its ap- ical manipulations. As example of type A model
plications. Here, this ’Modeling Perspective’ is construction suppose that a substantive discipline
briefly articulated in generalities, and subsequently has defined variables and important relations
is applied to catastrophe modeling. In this sec- among these variables. A scholar from this disci-
tion we focus upon the definition of mathemati- pline who has in his/her mind an inventory of
cal models and of the major approaches to their analytical structures, selects one of these struc-
construction, tures and links it to one such important relation.

Definition

The mathematical modeling of some phase of
reality (’mathematical modeling’ for short), in-
volves the linking of a substantive conceptual
frame of reference to analytical mathematical
structures. Mathematics defines analytical struc-
tures such as equations, inequalities, probability
distributions, stochastic processes and so on, in
which variables, random variables, and param-
eters appear. The substantive scientific disciplines
concerned with the study of any aspects of rea-
lity, in the social sciences and elsewhere, define
entities (’objects’) with which they are concerned,
variables that take specific values for these ob-
jects, and relations among these variables. The
mathematical models of any realities consist of
analytical structures with some or all of the vari-
ables, variates, and parameters in them linked to
a substantive conceptual frame of reference,
namely, to substantive variables and variates.
The mathematical models can be deterministic,
stochastic, or mixed. There are two major ap-
proaches to the construction of mathematical
models: the conventional modeling and the ex-
pansion modeling.

Conventional Modeling

When this link is established, a mathematical
model of some aspect of reality is born.
The conventional model building of type B

consists in extracting models from other models
by mathematical manipulations such as ’solving’
or ’optimizing’. Suppose for example that we ob-
tain a demand function by maximizing a utility
function subject to a budget constraint. The de-
mand function is a mathematical model, but so
are also the utility function and the budget con-
straint. Another example is solving a differential
equation that relates the rate of change of a
country’s population to its population size. The
solution of the differential equation and the dif-
ferential equation itself are both mathematical
models.

It is important to note that the type B conven-
tional modeling can be viewed in distinct but
equivalent ways, depending upon whether the
mathematical manipulation(s) it involves are car-
ried out on a mathematical structure or upon a
model. Consider the differential equation relating
rates of change and levels of population. Here
the mathematical manipulation involved consists
in solving a differential equation. If the differen-
tial equation is a model because a substantive
(demographic) frame of reference has been linked
to it, then solving the differential equation yields
a second model that, we can say, has been cre-
ated by a type B conventional modeling. If in-
stead the differential equation, taken as a

We can recognize at least two types of conven- mathematical structure, is solved to produce a
tional model construction, which will be referred second mathematical structure that is then linked
to as A and B. The type A consists in the to a demographic frame of reference, the result-
straightforward linking of an analytical structure ing model is produced by a conventional model-
to a substantive frame of reference. The type B ing of type A.
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Expansion Modeling

The expansion modeling (Casetti, 1972, 1986,
1997) consists in the conventional modeling of a

preexisting (’initial’) model’s parameters, and
usually involves the following:

equations (DEs) dc/dt:f(z) and d/dt=g(z).
Both these DEs and their solutions qualify as

expansion equations. However, if the solutions of
the DEs are selected as expansion equations,
clearly they are arrived at by an intermediate
manipulation that in this case consists in a ’solv-

(a) An ’initial model’ is specified. This model ing’. In passing, let us note that in this particular

may involve variables and/or variates, and at example the parameters appearing in the initial

least some of its parameters are in letter conditions from solving the DE can be also ex-

form. panded.

(b) Some or all of the letter parameters of the The redefinition of an initial model’s param-

initial model are modeled by redefining them eters into functions of expansion variables can be

into functions of expansion variables or vari- implemented in two equivalent ways, depending

ates by ’expansion equations’. The expansion upon whether an analytical mathematical struc-

variables identify substantively relevant di- ture or a model are expanded. We can start from

mensions in terms of which the initial model’s a mathematical structure, expand some or all the

drifts, and the expansion equations are a spe- parameters in it, thus generating an expanded

cification of this drift, structure, and then link a substantive frame of
reference to this expanded structure. Alterna-(c) The initial model and the expansion equa-

tions constitute a ’terminal’ model in struc- tively, we can start from a mathematical model

tural form. If the right-hand sides of the and expand some or all of its parameters into

expansion equations are substituted for the functions of expansion variables. Both of these

corresponding parameters in the initial model qualify as expansion modeling, and yield the

a reduced form ’terminal’ model is obtained, same terminal model. In both cases the terminal
model arrived at consists of an initial modelA terminal model in either structural or re-

duced form encompasses simultaneously the complemented by models relating some or all of
its parameters to expansion variables or variates.initial model and a specification of its para-

metric drift across the space spanned by the Most models and analytical mathematical

expansion variables, structures can be conceptualized as resulting

(d) This process can be iterated, with the term- from previous expansion(s), which in itself opens

inal model produced by a previous cycle vistas useful to interpret existing models, and to

becoming the initial model of the next. view them in terms of a unifying perspective.
However, any models or structures can be also

Since the expansion modeling involves the con- regarded as the potential building blocks of more
ventional modeling of an initial model’s param- complex ’expanded’ models and structures. This
eters that can be of types A or B, also the latter perspective proves especially useful when
.expansions can be of types A or B. In type A the models or structures so viewed possess a dis-
cases an expansion equation results from the tinctive identity in the literature and in the con-
linking of substantive variables (some of which sciousness of communities of scholars. In fact,
are the parameters of the initial models redefined this perspective provides one of the motivations
as variables) to a suitable analytical structure, for defining classes of ’initial’ catastrophe struc-
Instead, in a type B situation the expansion equa- tures or models and of more complex structures
tions are arrived at via multiple steps. To exem- or models generated from these by expansions.
plify, suppose that the parameters c and /3 of a Several rationales of the expansion modeling
model y c +/3x are expanded by the differential are discussed in Casetti (1997). Here let it suffice
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to mention the model context rationale, which
suggests that models can be related by expan-
sions to external environments or contexts de-
fined by contextual variables. If a model’s
parameters are expanded into these contextual
variables, the terminal model obtained encom-

passes both the initial model and a specification
of its drift across the context. There is a very
broad range of situations to which this model
context frame of reference can be applied.

CATASTROPHE MODELS

Mathematical models were defined as the resul-
tant of linking analytical mathematical structures
to substantive frames of reference. Let us now
consider which types of models have arisen or
can arise from linking catastrophe structures to
substantive theory. Typologies of catastrophe
models can be based on the analytical structures
involved, on the substantive frames of reference
attached to these structures, on the manner in
which these linkages are established, and finally
on the roles that these models have played or
can play in the conduct of enquiry and in model-
ing literatures.

Let us focus here on typologies based on ana-

lytical catastrophe structures, that apply also to
the models in which these structures appear. In
the process, we will touch upon the possible rela-
tion of supportive or critical reactions to CT that
can be traced to the comparative abundance or

scarcity in the catastrophe literature of certain
types of models/structures.
The following typologies will be discussed:

(a) the elementary catastrophe models and their
duals; (b) gradient and potential models; (c)ca-
nonical, generalized canonical, and non-canonical
models; (d) expanded and non-expanded models;
(e) deterministic and stochastic models.

These typologies are concurrent, so that a catas-
trophe model or structure can be classified in terms
of all the five dimensions outlined above. Thus,
for instance, we can have a dual-cusp canonical

unexpanded deterministic gradient catastrophe
model. It is useful to note that a large number of
different catastrophe models exist or can be con-
structed. It is not necessarily true that all catas-
trophe scholars are aware of all of them. The
scope and usefulness of applied catastrophe work
can benefit from a greater awareness of the many
options available. Let us now proceed with a dis-
cussion of these typologies taken in sequence.

Primal and Dual Catastrophe Models

In this paper we will confine ourselves to the
’elementary catastrophes’, which are the fold,
cusp, swallowtail, butterfly, plus the hyperbolic
elliptic and parabolic umbilics. The first four in-
volve one state variable, the umbilics, two. The
identification of specific types of catastrophes
and of their ’duals’ (Wilson, 1981, p. 28; Poston
and Stewart, 1978, p. 116 if) is a major contribu-
tion. It goes beyond the mere recognition that
’qualitative changes’ in dynamics, for instance in
differential equations, may be produced by the
continuous change of some parameters across cri-
tical thresholds. The elementary catastrophes re-

present specific types of qualitative change, some
of which have been found very useful to under-
stand many diverse social biological and physical
phenomena.
To clarify, consider the cusp catastrophe,

which in this paper is singled out for use in every
example and in the demonstration. The cusp catas-
trophe and its dual involve one state variable
and two control parameters, and corresponds to
a well-specified constellation of stable and unstable
equilibria. The cusp catastrophe includes a topol-
ogy with a single stable equilibrium, and a topol-
ogy wih a low and a high stable equilibria and
an intermediate unstable one. For suitable smooth
changes in parameters a cusp catastrophe struc-

ture/model can switch from a single low level
stable equilibrium condition, to a condition char-
acterized by two coexisting stable equilibria, one
low and one high, to a subsequent condition with
a single high level stable equilibrium, or vice versa.
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The dual cusp catastrophe (Gilmore, 1981,
p. 267-270) includes a topology with a single
unstable equilibrium, and a topology with a low
and a high unstable equilibria with an intermedi-
ate stable one. Smooth changes in parameters can
produce sequential transitions from a single low
level unstable equilibrium, to a condition charac-
terized by an intermediate stable equilibrium po-
sitioned between two unstable ones, to a
condition with a single unstable equilibrium, and
backward. In a dual cusp catastrophy (as in any
dual catastrophe) the equilibria occur at the same
values of the state variable that yield equilibria in
the primal, however what are stable equilibria in
the primal become unstable in the dual, and vice
versa. The primal cusp models (but not the dual
cusp models) proved very useful in a great many
fields and applications.

Potential and Gradient Models

Each primal and dual catastrophy can be formal-
ized by potential or gradient structures. To exem-
plify, the canonical potential structures of the
primal and dual cusps are

(1)

and

FD(X __(1/4X4 _1_ 1/2b/X 2 qt_ FX), (2)

In general, the relations between primal and
dual catastrophes are

(5)

and the relations between potential and gradient
formulations are

k -grad(F), (6)

F- fk dt. (7)

These analytical structures become mathematical
models when the variables and parameters in them
are linked to a substantive frame of reference.
Since these typologies differentiate types of analyt-
ical mathematical structures, they are also typol-
ogies of catastrophe models.
That a catastrophe can be formalized using

either potential or gradient structures is a strong
point of catastrophe modeling. Within the frame
of reference of CT the systemic equilibria corre-
spond to the optima of a potential function, that
are also the stable equilibria of the gradient dif-
ferential equations implied by the potential func-
tion. These twin formalizations open the way to
developing substantive theory in terms of both
systemic optima and their related dynamics
(Casetti, 1991). This possibility, however, does
not appear to have received as much attention as
it deserves.

where the subscripts P and D stand, respectively,
for primal and dual.
The canonical gradient cusp structures are

0 --(X at- btX q- 1:) (3)

for the primal cusp and

k x + ux + v (4)

for the dual cusp, where k denotes the derivative
of x with respect to time.

Canonical and Non-canonical Models

Examples of the canonical analytical catastrophe
structures are the cusp potential equation (1) and
the cusp gradient equation (3). All the canonical
equations of the elementary catastrophes (cf. for
instance Wilson, 1981, p. 29) are characterized
on their right-hand sides by polynomials with
some parameters set at numerical values and some
terms missing. In fact, the missing terms can be
regarded as having parameters set to a value of
zero. The letter parameters in the canonical equa-
tions are the ’control parameters’ that determine
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the topology of the equation. Let us call ’general-
ized canonical equations’ the equations obtained
by replacing the polynomials in the canonical
structures by polynomials of the same degree but
with all the parameters in letter form.
As an example, the generalized gradient canon-

ical equation for the cusp is

, OZ3Z3 -1
t. 02Z2 -- OZlZ nt- OZO. (8)

It should be noted that Eq. (8) encompasses the
primal and the dual cusp canonical equations as

special cases.
In order to link the c’s of the generalized ca-

nonical equation (8) to the control parameters u
and v of the canonical equation (3) let us procede
in two steps, as follows. First, let us partially
generalize the canonical equations so that it will
encompass the primal and dual cusps as special
cases. To this effect, write

2 h(x + ux + v). (9)

For h =-1, Eq. (9) specializes to the primal or
dual canonical gradient cusp equation. The sec-
ond step defines the shift transformation

z=x-w,

which leads to

h((z + w) + u(z + w) + v). (11)

Equation (11) defines a link between the c’s of
the generalized equation (8) and the control
parameters of the primal and dual cusp canonical
equations (3) and (4). This link will be revisited
and elaborated upon later in this paper. The c’s
can be regarded as reduced form parameters,
while the link parameters h and w plus the con-
trol parameters u and v will be referred to as
structural parameters of the generalized cusp cat-
astrophe equation. Alternative approaches to
generalizing canonical models are discussed for
instance in Brown (1995, p. 61) and in Cobb and
Zacks (1985, p. 798).

A difference between generalized canonical
and canonical models is in that the former influ-
ence through h the speed at which the state vari-
able(s) approach their stable equilibria. This is in
contrast with conventional CT, which presup-
poses that systems are in stable equilibrium
states.
The perfect delay and the Maxwell conventions

are rules for determining in which equilibrium
states the system is found when multiple equilib-
ria materialize. According to the first convention
the system remains in an equilibrium state until
its disappearance. In terms of the Maxwell con-
vention the system jumps from an existing equi-
librium state to a better one as soon as the better
equilibrium appears or becomes better. Both con-

ventions, however, presuppose that the system
instantly reaches an equilibrium and follows it as
it changes.

In the generalized canonical gradient models,
when the values of the control parameters and of
the shift parameter w are fixed, the speed at
which stable equilibria are approached is deter-
mined by the parameter h. Thus, h identifies a
measurable systemic attribute.
The non-canonical catastrophe models are any

’other’ models (namely, neither canonical nor

generalized canonical) possessing the topologies
that characterize any given catastrophe (cf. for
example Wilson and Kirby 1980 p. 344 if).

Expanded and Non-Expanded Models

In order to clarify the significance and impor-
tance of this typology let us start by applying it
to ’canonical’ models. For each n-tuplets of con-
trol parameter values, a canonical catastrophe
structure or model corresponds to a specific to-
pology characterized by a constellation of one or
more stable equilibria with an appropriate com-

plement of unstable equilibria. It does not matter
whether these models are of the gradient or po-
tential type, and to which elementary catastrophe
they correspond: for one set of parameters they
will all correspond to one specific constellation of
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stable and unstable equilibria. In order to be able
to express the transition across topologies and/or
the change of their equilibrium values across ’con-
texts’ these parameters have to change. In keep-
ing with the ’modeling’ section of this paper, we
can formalize this change by expanding the con-
trol parameters into functions of other variables.
A large number of expansions are possible.

Here, let us focus upon expansions with respect
to time, and with respect to one or more vari-
ables indexing some appropriate context of the
model other than time. To clarify the rationale
and usefulness of the expanded catastrophe mod-
els, consider a model that for different values of
its parameters is characterized by one of the
topologies typical of a particular catastrophe. In
itself this model is suited for ’comparative statics’
analyses, but unsuited to model a switch in
topologies over time, or across a ’context’. How-
ever, if this model’s parameters are expanded
with respect to time or with respect to substan-
tive contextual variables, the resulting terminal
model can portray and resolve a switch in topol-
ogies over time or across the substantive context.

In the case of the gradient cusp catastrophe
model (3) a duplet of numerical values of u and v

corresponds to a specific cusp topology. Conse-
quently, if u and v are estimated from empirical
data we can determine the topology implied by
the data. A comparative statics analysis involves
comparing the topologies corresponding to alter-
native data sets. However, a transition across
topologies is outside the scope of this model. In-
stead, if u and v are redefined into functions of
time t,

u cuo + cut + cu2 t2 +-.., (12)

P CV0 -+- CV1 nt- Cv2t 2 +’’’,

the terminal model obtained by replacing the u and
v in (3) with the right-hand sides of (12) and (13),
for appropriate values of the ctj and Cv parameters,
can produce a switch across the cusp catastrophe
topologies over time.

The catastrophe literature on the fast and slow
dynamics deals with an interesting class of expan-
sions of canonical catastrophe models. This lit-
erature differentiates between the dynamics of
the fast variables (the state variables), and the
dynamics of the slow variables that span the con-
trol space. The slow dynamics is formalized by
differential equations which specify the rate of
change over time of control parameters such as u

and v in the example above, as a function of
time, of control parameter ’levels’, or of slow
variables. The fast variables adjust rapidly to
their stable equilibrium levels, so that a system
characterized by a fast and slow dynamics will
reflect the changes in the stable equilibria of the
fast variables resulting from the changes in con-
trol parameters produced by the slow dynamics.
An early example is given in Zeeman (1972,
1973). In the fast/slow dynamics formalisms, the
slow-dynamics equations are expansion equations
of the initial model’s (control) parameters, while
the initial model is represented by the fast vari-
ables’ equations.
The differential handling of the fast and slow

variables constitutes an important methodologi-
cal contribution implicit in Thorn’s initial formu-
lation of the catastrophe theory (Thorn, 1975),
but made explicit and placed into focus by
Zeeman (1977, p. 65 if). Its use in connection
with the application of non-linear dynamics in
the spatial sciences has been advocated and theo-
rized by Dendrinos and Mullally (1981, 1985)
and Dendrinos and Sonis (1990). A related frame
of reference in which fast and slow dynamics
concepts appear is Haken’s ’synergetics’. Haken
(1983) views dynamic systems in terms of slowly
moving ’order parameters’ and fast moving
’slave’ variables or subsystems.

In the catastrophe and non-linear dynamics lit-
eratures, we encounter variables that are fast,
variables that are slow, and constants. Also, the
fast-slow dychotomy itself may be replaced by
multiple ’relative speeds of change’ (Wilson,
1981; Dendrinos, 1989). A number of studies
modeling multilevel time scales are reviewed in
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Rosser (1991, p. 212). These multilevel time scales
can be conceptualized as involving iterated
expansions.

In the expanded canonical catastrophe models
discussed in the previous paragraphs it is one or
more control parameters that are expanded. If we
expand the generalized canonical models, expan-
sions can be carried out on the control parameters
and/or on the link parameters such as h and w in
the case of the cusp catastrophe (Eq. (11)). Sup-
pose that only h and w in (11) are expanded, say,
with respect to time. The resulting terminal mod-
el cannot display a catastrophic switch in topol-
ogy, but is instead capable of accomodating
temporal shifts in the values of the state variable
corresponding to stable or unstable equilibria via
changes in w, and a transition from a catastrophe
to its dual via shifts in h carrying this parameter
through a change in sign. If also u and v are
expanded, the resulting terminal model can also
accomodate catastrophic changes in topology.
The expansion of a generalized canonical mod-

el can be carried out with respect to structural
parameters such as h, w, u, and v for the cusp,
but also with respect to the reduced form param-
eters such as the c’s in (8). If the latter are ex-
panded, at each point in expansion space a set of
c’s becomes defined from which the values of the
structural parameters for that point can be com-

puted. This is the approach applied in the de-
monstration presented later in this paper. The
implications of expanding some or all the param-
eters of a non-canonical catastrophe model are

likely to be model specific and no attempt is
made here to address them in generalities.

Deterministic and Stochastic Models

With some notable exceptions such as for in-
stance Guastello (1982, 1987, 1988), CT has not
entered yet to a sufficient degree into the inferen-
tial stage, and tends to be identified with abstract
deterministic models by scholars from fields in
which preferences for models intended for infer-
ence are firmly established.

Yet, though, catastrophe models and structures
can be deterministic or stochastic. The determin-
istic models are useful to formalize theory and to
identify modalities of phenomena, but cannot be
used for validation based on estimation and in-
ference. For these, the deterministic models have
to be converted into stochastic models by refor-
mulating them as stochastic processes and/or by
adding error terms to them.
The stochastic models can be differentiated

into statistical and econometric, although the dif-
ference between these is not clear cut. The sta-
tistical models tend to be constructed by
reformulating a deterministic catastrophe struc-
ture as a stochastic non-linear difference or
differential equation. These equations can be in-
vestigated analytically, numerically, or by simula-
tions, to obtain the probability density functions
of the state variables that they imply, and in
order to determine appropriate estimation ap-
proaches (Cobb, 1978; 1992; Cobb et al., 1983;
Cobb and Zacks, 1985).
The econometric catastrophe models can be

constructed by adding error terms to determinis-
tic models while at the same time redefining some
or all of their variables into random variables.
Econometric modeling is employed in the exam-

ple discussed later in this paper. First, though, let
us touch upon some aspects and themes of
econometrics that are relevant to catastrophe
modeling.
A major portion of econometrics centers on

the estimation based on empirical data of deter-
ministic relationships that originated in mathe-
matical economics. In fact, some authors have
identified econometrics with this tradition. For
example Johnston (1963, p. 3) writes "Economic
theory consists of the study of various groups or
sets of relations which are supposed to describe
the functioning of a part or the whole of an

economic system. The task of econometric work
is to estimate these relationships statistically...".
At p. 4 he adds "...for measurement and testing
purposes, [deterministic] formulations are

inadequate. The extension employed is the
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introduction of a stochastic term into economic discussed here can be converted into stochastic
relationships." While econometrics had its origin models. Specifically, models and mathematical
with the conversion of the deterministic models structures of the gradient or potential types,
from mathematical economics into stochastic canonical or non-canonical, expanded or non-

models suited for estimation and inference, over expanded, ofcatastropheselementary or otherwise,
time its scope has become much wider. Any de- can be converted into statistical or econometric
terministic relation with theoretical foundations models.
not from economics, or without substantive theo-
retical foundations, can be converted into econo-

metric models by the addition of error terms. A DEMONSTRATION
Consequently, also deterministic catastrophe
models can be transformed into econometric for- The catastrophe models prevalent in the earlier
mulations, catastrophe literature are deterministic, unex-

In the earlier econometrics the error terms panded, and are often based on canonical struc-
were assumed to be well behaved RVs, normally tures. These types of models tended to be
and independently distributed and with expecta- associated with an abstract and oversimplified
tion zero and identical variances. Today, how- substantive modeling, based on variables unre-

ever, the assumptions of independence (temporal lated to empirical referents and on relationships
and spatial) and of homoschedasticity are rou- inadequately anchored to the causative presuppo-
tinely tested, and when the null hypotheses of sitions and mechanisms that are so prominent in
independence and homoschedasticity are rejected substantive literatures. Possibly, the future pros-
the conversion of the deterministic model into an pects of CT’s applications rest on the types of
econometric one may involve not only suitably models that are better suited to fit within estab-
specified error terms, but also temporally or spa- lished substantive analytical literatures. These
tially lagged dependent and or independent vari- models are more likely to be based on general-
ables. The ’spatial’ econometric developments in ized canonical or non-canonical catastrophe
this general area represent a research frontier, structures, and to be expanded and stochastic.
and have been extensively reviewed and devel- The demonstration that follows centers on the
oped in Anselin (1988, 1992a, b). construction and estimation of an expanded eco-

Finally, let us note that in the more recent nometric cusp catastrophe model of modern eco-

econometrics, the concept of ’data generating nomic growth. It involves the modeling ofeconomic
process’ (Spanos, 1986; Darnell and Evans, 1990; growth over the 1700-1910 time span. The ear-

Davidson and MacKinnon, 1993) has been used lier portion of this time horizon was still charac-
to justify including ’additional variables’ at the terized by a premodern dynamic. In premodern
stage when an econometric model is constructed times the product per capita grew very slowly.
from a deterministic one. Such additional vari- With the industrial revolution, in the countries
ables are not part of the theoretical deterministic that experienced it, the product per capita went
model, but are required by the data generating through a phase of accelerated ’explosive’ growth,
process which produced the data in which the later followed by retardation. The question is:
theoretical relationship under consideration is how, and on the basis of which reasoning, can

embedded. All the developments touched upon we formulate a single mathematical model cap-
here are .potentially relevant to the construction able of representing these behaviors?
of econometric catastrophe models. In the sections that follow, first the aspects of

It is important to point out that every one of the cusp catastrophe that are relevant to the
the types of catastrophe models and structures modeling of modern economic growth are brought
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into focus. Then an econometric expanded cusp
catastrophe model of modern economic growth is
constructed, estimated, and evaluated.

condition

3x 2 4- u 0. (15)

The Cusp Catastrophe

The canonical cusp catastrophe equations involve
one state variable and two control parameters.
Depending upon the values of the control param-
eters, the ’topology’ of the system defined by
these equations is characterized by one or two
stable equilibria. The smooth change of the con-
trol parameters across critical thresholds can
bring about the transition of the system from a
’low’ stable equilibrium, to two stable equilibria,
and again to a single ’high’ stable equilibrium. As
noted earlier, there are two equivalent canonical
equations of the cusp catastrophe (and in general
of all ’elementary’ catastrophes), one in terms of
a ’potential’ function, and the second in the form
of a gradient differential equation. The gradient
equation is the one dealt with here.

In the gradient canonical equation of the cusp
catastrophe (3) x is the state variable, and u, v
are control parameters. In Zeeman’s terminology
u is a ’splitting factor’ and v is a ’normal factor’.
The parameter u determines whether the system
has one or can have two stable equilibria. When
u > 0 only one stable equilibrium can exist what-
ever the value of v. When u < 0 it depends upon
the values of v whether the system has a single
low level stable equilibrium, or a low level and a

high level stable equilibria, or a single high level
equilibrium. Suppose that v=0 and that u

changes from a positive value to a negative one.
At u=0 the stable equilibrium that exists for
u >0 bifurcates into a low and an high stable
equilibria.
The equilibria of (3) are the values of x for

which 2--0, namely for which

x + ux + v O. (14)

The set of values of x that satisfy simultaneously
(14) and (15) denote those equilibrium x’s at
which the extrema of 2(x) touch the zero axis.
Eliminating x from (14) and (15) yields the cusp
curve

4u 27v 2. (16)

A switch in topology takes place at the values of
u and v satisfying (16), that constitute the ’catas-
trophe set’.
The canonical cusp equation (3) can be, and

has been used for modeling substantive phenom-
ena, but in many circumstances it is preferable to
employ the more flexible generalized canonical
cusp structure (8) that adjusts better to substan-
tive variables and data.
By ’comparing’ Eq. (8) and (11) the c’s in (8)

can be related to the structural parameters u, v,
h, and w, as follows:

c3-h, (17)

OZ2 3hw, (18)

OZl h(W2 4- U), (19)

Oz0 h(w 4- glw 4- 1). (20)

If the c’s are given, from (17) through (20), we can

easily obtain the linkage parameters h and w and
the control parameters u and v. Namely

h- o23, (21)

w- c2/3c3, (22)

U- (OZl/OZ3)- 3(c2/3c3)2, (23)

V- (Oo/OZ3) (2/33)((1/3) 2(2/33)2).
(24)

The values of x in correspondence to which
attains a local maximum or minimum satisfy the

Thus, if the structural parameters h, w,u, v are

given the c’s can be obtained; and if the c’s are
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given the structural catastrophe parameters can be
obtained.

Suppose that (8) is converted into an econo-
metric model by adding to its right-hand side an
error term e:

Oz3 z3 -+- Oz2Z2 nt- CtlZ q- OZ0 q- 6. (25)

We can then estimate the c’s using empirical
data, and then using (21)-(24) obtain estimates
of the structural catastrophe parameters.
The unexpanded econometric model (25) is

useful, but limited in scope. It can only establish
whether for given empirical data one or two
stable equilibria occur, and thus it opens the way
to ’comparative statics’ types of analyses.

If some or all of the c’s in (25) are expanded
into variables indexing some suitable substantive
context, the terminal model obtained can be used
to implement comparative statics analyses. Upon
estimation, one such terminal model will yield
estimates of the c’s at each point in expansion
space, and consequently it allows also estimating
the structural catastrophe parameters at each
point in expansion space.

If we wish instead to establish whether a catas-
trophic switch across dynamics has occurred the
cgs of (25) should be expanded into deterministic
or stochastic functions of time. To exemplify, let
us expand the parameters of (25) into linear sto-
chastic functions of time t:

O AiO --]-- Ail + 7i, (26)

where T]i is a RV associated with the ith expan-
sion equation.
The terminal model obtained by replacing the

right-hand sides of (26) into (25) is- (A30 + A3 t)z + (/20 q- /21 t)z 2

+(A10 + Allt)z + (AO0 + Aolt) + m, (27)

where m ?-]3Z3 _qt_ 2Z2 _/]lZ q_ 7-]0 @ 6.

Upon estimation (27) can establish whether
over time the systemic equilibria changed in value,

and whether a switch across topologies occurred
when.

In closing on this point let us note that the
parameters of (27) could be also expanded into
variables indexing a substantive context to pro-
duce a terminal model suited for a ’comparative
dynamics’ analysis. Such model could establish,
for instance, whether changes in dynamics occur-
red when and where across the substantive con-
text considered.

Let us now consider why and how these concepts
and related mathematical structures can be applied
to the modeling of modern economic growth. Spe-
cifically, let us discuss briefly ’modern economic
growth’, then bring into focus why the cusp catas-
trophe notions can give a useful insight into its dy-
namic, and articulate how a cusp catastrophe
model ofmoderneconomic growthcan be arrived at.

A Cusp Model of Modern Economic Growth

The dynamics of the product per capita, y, for
the countries of North-West Europe over the
1700-1910 time horizon was characterized by the
following. Before the industrial revolution, that
started circa in 1750 in the UK, the product per
capita was stagnant at premodern low values. It
has been noted that in premodern times the rate
of growth of y was so small to be negligible over

any short to medium time interval. Instead, the
industrial revolution brought about a phase of
accelerated growth of product per capita, that
was eventually followed by a phase of retardation
(Kuznets, 1966; 1967; 1971). Economic growth
theory has been a leading theme in modern eco-
nomics (Hamberg, 1971; Burmeister and Dobell,
1970; Wan, 1971; Barro and Sala-I-Martin, 1995).
The premodern stagnation in product per capita

has been theorized as the results of a Malthusian
trap (Boulding, 1955). The explosive growth of y
at the onset of the industrial revolution has been
the focus of extensive theoretical and histor-
ical literatures (Nelson, 1965; Leibenstein, 1957;
Rostow, 1960; Kuznets, 1971). The subsequent
retardation in the growth rates of product per
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capita has also been the object of theories and
data analyses reviewed in Casetti (1986) and of
the more recent literatures on the so-called ’con-
vergence’ (Baumol et al., 1994).

Here we are concerned with the more formal
aspects of the dynamics of the product per
capita, rather than on the economic and social
mechanisms suggested to explain it. Within this
perspective, the premodern stagnation of y can
be conceptualized as the result of a slowly mov-

ing low level ’point attractor’. A country’s subse-
quent explosive economic growth can be then
construed as the initial effect of its capture by a

high level point attractor possibly resulting from
the disappearance of its low level counterpart.
And finally the retardation in economic growth
can be also explained by an increasing closeness
to the high level attractor, that is also in the
process of increasing slowly.
The empirical analyses to follow are based on

(27), which is an econometric gradient general-
ized-canonical cusp equation with all its param-
eters expanded with respect to time. This
equation, for and z denoting, respectively, per-
centage rate of change and logarithm of GNP
per capita, is well suited to test whether the
hypothesized switch in topology and temporal
changes in stable equilibria did occur for the
countries and over the time horizon considered.
The analyses are based on the GNPs per capita

for the UK, Denmark, Sweden, and Norway, for
the years 1830, 1840,..., 1910, published in
Bairoch (1976, Table 6, p. 286). These data are
in 1960 US dollars and are based on three year
averages. Annual percentage growth rates of
GNP per capita for the decades 1830-1840 to
1900-1910, and GNP per capita at the midpoints
of these decades were calculated using these data.
The countries included in the sample were selected
because they are close enough to each other geo-
graphically and otherwise. Time is in deviation
from the year 1800.
The time interval 1700-1910, addressed in the

analysis, however, is wider than the data cover-

age. The available data extend over the explosive

growth phase and over a portion of the growth
retardation phase, and ends before the period of
convulsions and dislocations from World War
to the early 1950s. However, the data available
begin with 1830. Thus the data leave the crucial
premodern stagnation uncovered.

In order to remedy this substantial shortcom-
ing of the data ’prior information’ has to be en-

tered into the analysis. This could be accomplished
by Mixed Estimation, or by Bayesian regression.
The approach followed here was based on a

’quick and dirty’ constrained regression, that re-

presents a limiting case of Mixed Estimation and
can be justified by a sufficiently strong confi-
dence in the prior information. Specifically, the
estimation of (27) was carried out subject to the
condition that in the year 1700 the product per
capita of the countries in the sample was 100 US
19605 per capita, and its rate of growth was zero.
A description of the specification search car-

ried out to parametrize Eq. (27) is of no interest
here. It will suffice to say that it produced the
following estimated equation:

246.328 -133.54z +0.002199zt
(3.38) (-3.47) (2.54)

+ 24.0247z 2 -1.43191z

(3.55) (-3.62)
(28)

The values are shown in parentheses under their
respective regression coefficients. The equation is
associated with an R-square of 0.472 and an ad-
justed R-square of 0.415.

The evaluation of this estimated equation cen-
ters on determining whether it is consistent with
the notion that the dynamics of product per capita
for the countries and time horizon selected in-
volved a cusp catastrophe. The first step con-
sisted in plotting the (y) relationship it implies
at a sequence of points in time, and specifically,
for the years 1725, 1750, 1775, and 1800. For the
sake of clarity, let us be reminded that the (y)
relationship, is between the percentage rate of
change of product per capita, , and the product
per capita, y. The plots are given in Fig. 1.
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FIGURE Estimated (y) plot.

Figure shows that between 1725 and 1800 a

change in topology did occur. The 1725 curve
intersects the zero axis in one point only, thus
indicating that before the industrial revolution
only a low level ’Malthusian’ stable equilibrium
existed. The 1750 and 1775 curves show three
equilibria: a low level stable equilibrium, a high
level stable equilibrium, and an unstable equi-
librium between them. Finally, the 1800 curve
is characterized by a single stable high level
equilibrium.
The second evaluation of the estimated equa-

tions is in terms of estimated structural param-
eters. The regressions are based on substantive
variables and parameters. The structural coeffi-
cients and variables are the control parameters
and state variable that appear in CT, plus the h
and w parameters that link the CT to the substan-
tive variables. There is a substantial advantage to
be gained by obtaining estimated structural param-
eters: in this manner we can relate different esti-
mates within the same substantive problem, as well
as estimates from altogether different analyses in

the same and in other substantive areas to the
common yardsticks represented by the control
parameters u and v.
The approach to obtaining estimated u,v,h,

and w, that is employed here is fully general. As
soon as we have estimates of the c’s appearing in
Eq. (26), we can calculate from them the struc-
tural parameters using Eq. (21)-(24). These esti-
mated c’s are obtained directly when we are
dealing with unexpanded catastrophe models.
Whenever instead we .are dealing with expanded
models, the estimated expansion equations can
be used to evaluate estimated c’s at any point in
expansion space. Then, from these we can again
obtain the estimated structural parameters for that
point in expansion space using Eq. (21)-(24).

In this demonstration, the expansion space is
time. The estimated c’s were computed for the
years 1700, 1710,... through 1850, and then esti-
mated structural parameters were obtained from
them. The trajectory in control space correspond-
ing to the estimated u and v is shown in Fig. 2.
This trajectory shows that the cusp lines are
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FIGURE 2 Plot of estimated u, v trajectory.

crossed twice. Trajectories crossing the catas-
trophe set twice are the ones that produce the
succession of topologies with one, then two, and
then again one stable equilibria typical of the
cusp catastrophe.

CONCLUSION

The themes discussed in this paper are all con-
cerned with the application of catastrophe theory.
Specifically, the paper touched upon these ques-
tions: what did CT add to our ability to con-
struct mathematical models of realities? Why CT
was received early on with an enthusiasm later
followed by a wave of sharp criticisms? What are
the prospects for CT’s future?
The applications of mathematics in general,

and in this case of CT, center on the mathemati-
cal modeling of realities. The mathematical models
come into existence when analytical mathematical
structures such as equations are linked to a sub-
stantive frame of reference by interpreting sub-
stantively the variables and parameters in the

structures. The application of CT involves linking
analytical catastrophe structures to the substan-
tive frames of reference of substantive disciplines.
The positive response that followed the intro-

duction of CT was due to its having generated
a widespread awareness of the discontinuities
brought about by the smooth change of control
parameters across critical threshold, and by hav-
ing pinpointed well-defined catastrophe types,
some of which proved very useful. However, the
catastrophy models based on canonical formula-
tions prevalent in earlier applications were often
imperfectly suited to the practices of the substan-
tive scholars, especially in the social sciences.
This mismatch contributed to the critical ap-
praisals of CT. In this paper it is argued that
non-canonical, expanded, stochastic catastrophe
models and structures hold considerable promise
with respect to the application of CT. The themes
of this paper were demonstrated by constructing
an econometric expanded gradient generalized-
canonical cusp model of modern economic
growth, and then by estimating it and evaluating
its performance.
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