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Introducing the producer’s intertemporal optimizing behavior, we extend the Eckalbar
Disequilibrium Macro-Model (1985) and reconsider the dynamic features of the modified
model. We concern ourselves with the existence of inventory cycles when the expecta-
tions are formed adaptively. The endogenous inventory cycle is detected using the Hopf
bifurcation theorem in which a bifurcation parameter is an adaptive coefficient. It is also
demonstrated that the generated cycle is subcritical.
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1 INTRODUCTION

This study analyzes non-linear dynamics of a
simple disequilibrium macro-model with inven-
tories. The main purpose is to investigate what
role the profit-maximizing firm plays to generate
cyclic inventory dynamics. The model has linear
demand and non-linear supply, the latter of
which is an outcome of intertemporal profit max-
imization by the firm. The Hopf bifurcation the-
orem is used to demonstrate the existence of
endogenous inventory cycles. Further, an exam-
ple is presented to show that the generated cycles
are subcritical when the production cost function
is linear.

Inventory-theoretic macro-models are devel-
oped in the framework of disequilibrium econom-
ics. Several stability or unstability results have
been established. This study extends Eckalbar
(1985) by introducing the optimal behavior of
the profit maximizing firm. Eckalbar constructs a
continuous-time macro-model in which expecta-
tions on sales are adaptively adjusted and estab-
lishes the existence of limit cycles, applying the
Poincar6-Bendixson theorem. The dynamic sys-
tem employed is non-linear, but sources of non-

linearity are exogenously determined. That is,
lower and upper bounds of variables such as full-
employment output and non-negative employ-
ment are exogenously introduced and work to

Tel.: + 81/(0)25-262-6551. Fax: + 81/(0) 25-263-3262. E-mail: eakio@hle.niigata-u.ac.jp.
See Honkapohja and Ito (1980), Simonovits (1982), Eckalbar (1985) and Franke and Lux (1993).
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prevent the unstable behavior from expanding dynamics. Little is known about a source of such
globally. In particular, these exogenous variables non-linearity. To go one step further, we con-
define switching lines to divide the phase space struct a micro-foundation of the Eckalbar
into subregions and make the system a sort of macro-model and shed light on its non-linear
dynamical hybrid. Thus, in one region divided by structure in which the optimal behavior of the
the switching lines, one unstable subsystem gov- profit maximizing firm plays an important role
erns the dynamic variables and drives these away for generations of cyclic dynamics.
from the equilibrium point. In another region, The fundamental characteristics of our model
another stable subsystem governs the same vari- are similar to those of the Zhang model as well
ables and drives these back to the region in as the Poston model and thus those of the
which the equilibrium point exists. The dynamic Eckalbar model. But there are many deviations
variables oscillate back and forth in these re- from these models. First, our model is cast in
gions. When the stabilizing force is balanced discrete time, whereas their models are in contin-
against the unstabilizing force, the cyclic dy- uous time. It is worthwhile to consider a discrete
namics can emerge in such models. Coexistence version of the Eckalbar model because the dy-
of opposite-directed dynamic forces is due to the namics generated by a discrete-time system is
exogenous factors, significantly different from the dynamics by a

There are some directions in which the Eckalbar continuous-time system.2 Second, we derive
linear model is extended. In the first half of their choice-theoretically the producer’s behavioral
study, Poston et al. (1992) refine on the Eckalbar functions based on the intertemporal profit max-
model and clarify the conditions for sustained imization. This provides a microeconomic foun-
oscillation. Zhang (1989) and Poston et al. (1992) dation of the supply side of the model. In the
(in the latter half) generalize the Eckalbar’s piece- models of Zhang and Poston et al., the non-lin-
wise linear model with the purpose of elucidating earity of the desired stock adjustment function or
endogenous oscillations independent of the exo- the inventory investment function is, as men-
genous factors. Zhang introduces a non-linear tioned above, assumed directly on the producer’s
adjustment function of the desired inventory behavior. Third, although we also apply a dis-
while Poston et al. introduce a non-linear inven- crete-time Hopf bifurcation theorem to show en-
tory investment function. In doing so, they re- dogenous oscillations, a bifurcation parameter in
place the exogenously determined switching our model is a coefficient of the adaptive expec-
dynamic system of the Eckalbar model with the tations on sales, whereas it is the marginal pro-
endogenously determined non-linear dynamic pensity to consume in the Zhang model. In this
systems and demonstrate the existences of endo- study, it is demonstrated that the endogenous
genous inventory cycles, the existences of which a inventory cycle can emerge when a set of adap-
Hopf bifurcation theorem is applied to establish, tive coefficient and inventory-expectation ratio
In those studies, however, non-linearity, which is crosses critical values for which the characteristic
sufficiently strong to bring out cyclic dynamics, roots of the dynamical system become complex.
has been assumed more or less directly on the The paper is organized as follows. Section 2
dynamical system or on the economic behavior constructs a basic model based on individual’s
of a particular body of agents. It has been optimizing behavior. Section 3 considers inventory
known that the dynamic model endowed with a dynamics with adaptive expectations. Section 4
sufficient non-linearity can generate complex makes concluding remarks.

2Dana-Malgrange (1984) simulates the Kaldor continuous growth model with a discrete-time basis and shows different
qualitative properties.
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2 THE BASIC MODEL

This section recapitulates the fundamental struc-
ture of Eckalbar’s model and introduces the pro-
ducer’s dynamic optimizing behavior. A model
has two traders and three commodities. Three
commodities are aggregate consumption goods,
labor, and money. The goods are assumed to be
storable. Two trades are a consumer and a pro-
ducer.3 Exchange takes place through money so
that there are two markets: the consumption
goods market and the labor market. The price of
the consumption goods, p, and the wage rate, w,
are exogenously fixed. These prices not being
equilibrium one, demand is not necessarily equal
to supply in each market.
For the sake of simplicity, we make two

assumptions to determine the actual quantity
traded in each market. First, the markets are
assumed to operate sequentially so that the tra-
ders enter the labor market and then the goods
market. Second, actual transaction in a disequili-
brium market is assumed to be determined by
the minimum of supply and demand (i.e., the
"min-rule" or "short-side" rule of disequilibrium
theory). Accordingly, the traders find a difference
between what they expect to trade at the start of
a period and what they actually realize at the
end. The difference not only determines the ini-
tial level of buffer stocks in the following period
but also affects the revision of expectations of
the market state on which the traders base their
economic decisions. Consequently, the macro-
dynamics evolves.
We divide the remaining part of this section

into three parts. In the first part, we describe the
consumer’s behavior. Since our emphasis of this
study is placed on how the producer’s optimal
behavior affects the macro-dynamics, we specify
the consumer’s behavior as simple as possible. In
the second, we describe the intertemporal optimal

behavior of the firm. In the third, we examine
determination of output, employment and inven-
tory accumulation.

2.1 Consumer

We make a behavioral specification on the repre-
sentative consumer in this subsection. For the
sake of brevity, we do not formulate the utility
maximization problem of the consumer but as-
sume the inelastic supply of labor, N,4 and the
linear Keynesian-type expenditure function.
Since the labor market operates first, the consu-
mer knows if he is fully employed or not when
he enters the goods market. Having the actual
quantity traded in the labor market, L, the con-
sumer makes a choice of consumption demand,
S, by

S(L) co + cL, (1)

where Co > 0 is the demand for the goods in the
case of unemployment and c is the marginal pro-
pensity to demand with respect to employment.

2.2 Firm

We describe the producer’s intertemporal profit
maximization behavior in this subsection, y is the
quantity of the consumption goods produced by
using employed labor, L, with the conventional
production function, y=F(L), h is an initial
stock of inventory at the start of a decision
period and h +1 the inventory carried-over to the
following period. Hence the inventory accumula-
tion equation is

h+l =hd-y-S. (2)

s is an expectation on sales that the producer forms
before entering the goods market. We assume that

We suppose that our economy is composed of a fixed number of identical producers and of identical consumers. Hence, the
analysis focuses on the behavior of the representative producer and the representative consumer, each of whom is taken to reflect
the corresponding aggregate behavior.
4The same assumption is made in Honkapohja and Ito (1980), Simonovits (1982), and Eckalbar (1985).
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the producer has the desired level of inventory,
denoted by/, to be a fixed ratio of expected sales
to stock:

/- 3s, where fl > 0. (3)

We make the fixed ratio assumption in order to

clarify the firm’s contributions to persistent
cyclical behavior of inventory. 5 As is seen later in
the dynamic analysis, the firm’s profit maximizing
behavior leads to a non-linear dynamic system
even under the fixed-ratio assumption.
The producer incurs two types of cost" the cost

of producing output and the cost of holding
inventory. We denote by C(y) the cost associated
with producing y. Labor being the only input for
the production function, it is the labor cost. That
is, C(y) wF-l(y), where F-(y) is an inverse of
the production function and denotes the quantity
of labor necessary to produce output, y. We
assume that the cost of holding inventory is asso-
ciated with a deviation of an actual level of in-
ventory from the desired level of inventory, and
denote it by H(h- [0. V(h + 1) is the maximum of
the expected profit that the producer achieves by
employing the best policy from the next period
and onwards.6 It accounts for the discount fac-
tor. We make the following assumptions on these
functions:

ASSUMPTION

(1) F’ (L) > 0 and F"(L) < 0,
<0 forh </,lim H’(h+-(2) H’(h+l /) - h 0

/ oc, limh H’(h+ -/ ec, and H"
(h+l h > 0,

(3) V’(h)> 0 and V"(h) < O.

Assumption 1(1) states that the marginal pro-
ductivity of labor is positive and further employ-

ment brings about further but smaller production
increases. As a result of this assumption, the
marginal cost of production is positive and in-
creasing. Assumption 1(2) states that as an actual
level of inventories, h, deviates from the desired
level of inventory, h, the cost of holding inven-
tory increases due to the loss of the goodwill for
negative deviation (i.e., h </) and due to the
increase of the storage cost for positive deviation
(i.e., h >/). Further, the convexity is assumed.
Assumption 1(3) describes that the imputed real
values increases at a decreasing rate as inven-
tories increase.7

We solve the firm’s optimization problem. The
firm chooses production and inventory carried-
over so as to maximize the expected profit,

pS- C(y) O(h+l h) -t- V(h+I), (4)

subject to the non-negative constrains on decision
variables,

y_>0 and h+l-h+y-s>_O, (5)

where the firm takes only intended change of
inventory into account when choosing the opti-
mal plan. The Lagrangian of the profit maximi-
zation problem is

d) + v
+ A{y max(0, s h)}. (6)

Differentiating Eq. (6) with respect to y yields the
first-order condition for the optimal production,

gt(h+l) C’(y) -+-,X O, (7)

where g’(h + 1) V’(h + 1)-H’(h + 1- [) is the mar-
ginal future revenue subtracting the marginal

Eckalbar makes the fixed ratio assumption with three reasons: (1) it is easy to work with; (2) it captures the spirit of the
micro-level stocks literature; (3) it is in line with the fact. As already has been stated, Zhang (1989) replaces the fixed-ratio ad-
justment with the non-linear adjustment function and obtains persistent cyclical behavior.
6We can take a more rigorous approach to the multiperiod optimizing problem of the firm. We, however, do not do so for

two reasons. First, we avoid to solve the complicated mathematical problem. Second, the gist of this paper is not to rigorously
study the details of an inventory-holding firm but rather to reveal the role of a profit maximizing firm and the dynamics of
the model. We use the simpler approach to inventory-holding behavior in order to highlight the purpose of the paper. Our ap-
proach approximates it and captures its essential features.

There are some studies in a literature of optimal inventory theory that can be used to entail Assumption (3).
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cost for carrying inventories to the future period,
and where A is a Lagrange multiplier associated
with the non-negative constraint. An optimal
condition for maximizing profit, (7), indicates
that the cost of producing one additional unit
today and storing it until tomorrow is not less
than the revenue gained by selling one unit out
of the inventory stock tomorrow. The optimal
production depends on the relative magnitude
among the initial level of inventory, h, the expec-
tation on sales, s, and a level of inventory, de-
noted by ho(s), that equates the marginal revenue
to the marginal cost of holding inventory. 8 In par-
ticular, if h s > ho(s) holds, we have g’(h + 1) < 0
and C’(h + (h s)) > 0 for any h+ > h s.

In this case, the first-order condition, (7), leads
to no production. That is, if the initial level of
inventory is large enough, the cost of holding
inventory is over the expected return so that the
producer does not produce at all but liquidates
stocks of inventory to meet demand for the con-

sumption goods. On the other hand, if h-s <
ho(s) holds, the optimal production, denoted by
y* (s, h), satisfies the following condition:

-/4’(h +/(% h) ).
Changes in an initial level of inventory and of

expectation on sales alter the optimal level of
production. A standard comparative statics exer-
cise for the optimal production yields the follow-
ing effects on the equilibrium production:

Oy* H"- V"
-1 < O---=-C,,+H,,_V,,<O, (9)

Oy* fill" + H"- V" C"
>-1 as/3 >O<

Os C" + H"- V" < < H"
(10)

Inequality conditions on Eq. (9) indicate that an

increase in initial level of inventory reduces
production but not the entire amount of the
increase. The remaining amount is met with
decreases in the optimal inventory carried-over.9

The change in the expected sales shifts the gt(h+
curve and the C(y) curve, both of which affect the
optimal production. If the shift of the
curve dominates the shift of the C(y) curve (i.e.,
fill"> C"), changes in the optimal production is
greater than the change in the expected sales, and
vice versa. This is what the second inequalities in
Eq. (10) indicates.

These considerations imply that the demand
for labor has two phases:

Ld(s,h) max{O,F-l(y*(s,h))}. (ll)

Partial derivatives of positive demand for labor
are

OLd Oy
0-- F’(y*) Os > 0

OLd Oy*
0-----= F’(y*) Os > O.

and

(12)

2.3 Determination of Actual Transaction

We consider determination of actual transactions
in the labor market and the goods market. We
restrict our analysis to a "Keynesian" state. That
is to say, the consumer achieves his desired trans-
action in the goods market and cannot in the
labor market while the producer can achieve his
transaction in the labor market and cannot in
the goods market. In order to highlight the endo-
genous non-linearity of the model, we assume
that the exogenous amount of labor supply, N, is
not a binding constraint in the labor market.
The model functions as follows. At the start of

a period, the producer holds an initial stock of
inventory, h, and forms a subjective expectation

Assumption 1(2) and (3) imply that g’(h+l)>0 for a small enough level of h+ 1, and g’(h+ ) < 0 for a large enough level of
h+, and that g"(h+_l)=V"(h+)-H"(h+-h)< 0. Thus there is a level of inventory, ho(s), such that g’(ho(s))=O or
v’(h0(s)) H’(ho(S)- ).
9We can see this by differentiating the intended inventory accumulation equation in (5) where y is replaced with y*(s,h) and h

with the optimal inventory carried-over, h*+ (i.e., Oh*+/Oh + (-Oy*/Oh) 1).
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on current sales, s. Following the analysis above,
the producer determines his desired demand for
labor Ld(s,h) while the consumers offers a fixed
quantity of labor supply, N. The consumer and
the producer meet first in the labor market in
which there exists excess supply. According to
the min-rule, the demand side of the labor mar-
ket determines the actual quantity of labor
employed, L:

L- min{N, Ld(s,h)} Ld(s,h). (13)

the following section, we assume a formation of
adaptive expectations. That is, the producer
adaptively adjusts his expectation according to a

difference between demand for the consumption
goods and current level of expectation,

+ .(s- 5)

where c is the adjustment coefficient and s+l
denotes the expectation one period ahead.

After the labor market closes, the consumer
chooses his demands for the consumption goods,
S(L). Actual employment also determines the
current production for output, F(L). The starting
stock of inventory is a sum of the current pro-
duction and initial inventory, h+F(L). This is
the supply of the goods that we denote by yS(L).
The producer is assumed to hold enough amount
of inventory so that the consumer always realize
his desired demand for the consumption goods.
Thus the actual sales, Y, is the demand for the
consumption goods:

INVENTORY DYNAMICS WITH
ADAPTIVE EXPECTATION

In this section we demonstrate that endogenous
inventory cycles appear when the speed of expec-
tation adjustment is varied.1 The dynamic sys-
tem that governs the expectation on sales, st, and
the level of inventory, ht, is

st+ st + (y*(st. ht))) st).
ht+l ht-q- y*(st, ht) S(F-l(y*(st, ht))).

(16)

Y-- min{ yS(L),S(L)} S(L). (14)

At the end of the period, transactions complete
and the economy is in a temporary equilibrium
state in which the sum of actual purchases equals
the sum of actual sales. A difference between the
demand for the goods and output produced de-
termines an actual level of inventory carried over
to the next period. Moreover, the producer re-

cognizes a difference between the expectation on
sales and the actual demand. Consequently, the
producer adjusts his expectations on sales in the
following period. Hence the inventory accumula-
tion and the expectation revision can be sources
of dynamics of the model.

Equation (2) governs the inventory accumula-
tion process. In order to describe dynamics of
the model, we need to specify how the expecta-
tion is revised from one period to the next. In

where the first is the expectation revised equation
and the second is the inventory accumulation
equation. In the following, we illustrate the dy-
namic behavior of the model in phase diagrams
as a first-order approximation and then analyze
it mathematically. Before proceeding, we define
an equilibrium state of the model that is a fixed

point of the dynamic system, (16).

DEFINITION An equilibrium state of the macro-
model with adaptive expectations is a pair of ex-

pectation and inventory, (s*, h*), such that y*(s*, h*)
S(F l(y, (s*, h*))) and S (F- l(y (s*, h*))) s*.

3.1 Graphical Analysis

To make a graphical analysis of the behavior of
inventory, ht, we find the locus of (st, ht) points
along which the level of inventory is constant.

A time subscript, t, is attached to time-dependent variables hereon.
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This locus, which we call the constant inventory
locus, must satisfy

y*(st, ht) S(F-l(y*(st, ht))). (17)

Determining the slope of the locus by differen-
tiating Eq. (17), we find from (9) and (10) that it
has a positive slope in the (st, ht) plane:

To put it another way, output produced equals the
quantity demand for (st, ht) on the constant
inventory locus. Such an equality holds at a point
where the production curve, F(L), crosses the
demand curve, S(L). Both curves are increasing at
non-increasing rates with respect to L. There will
be no intersection, one, or two depending on

exogenously determined parameters like prices,
wage, autonomous demand, consumer’s charac-
teristics, properties of the production function, etc.
We make the following assumption to ensure the
intersections.

ASSUMPTION 2 The F(L) curve intersects the
S (L) curve twice.

Since F(0)--0 < S(0), Assumption 2 implies
that the production curve crosses the demand
curve from below and then from left as L in-
creases from zero to infinity. We denote the first
intersection by (yl, L1) and the second intersec-
tion by (y2, L2) where Yi is output produced with
L; (i.e. Yi F(Li) for i-1,2). At these points, the
following inequality conditions hold:

F’ (L) > S (L) forL=L1

and F’(L) < S’(L) for L L2.

Oh
Oy*/Oh (19)

We differentiate the second equation in dynamic
system (16) and then transform the resultant
equation into

O(ht+ h,) (20)
Oh,

Since the second factor, Oy*/Oht, is negative by
Eq. (9), the sign of Eq. (20) depends upon the
relative magnitude of the marginal product, F’,
and the marginal propensity to demand with
respect to employment, S’. By Assumption 2, we
have F’(L) > S’(L) for L=L1 and F’(L) < S’(L)
for L L2. Thus h, + < ht if and only if (s,, hi) lies
above the locus producing yl, while ht + > ht if and
only if (s,, h,) lies above the locus producing Y2.
We can also determine a locus of (st, ht) along

which the expectation on sales is constant and
will call it the constant expectation locus. Follow-
ing the first difference equation of the dynamic
system, (16), the locus satisfies

S(F-(y*(st, h))) st, (21)

As a result of Assumption 2, there are two con-

stant inventory loci: one corresponds to the lower
production, y*(s,h)=yl, and the other to the
higher production, y*(s, ht) Y2. The constant in-
ventory locus crosses the ht axis for h that satis-
fies y*(0, h)=y (i=1,2). This intercept is

positive or negative according to whether Yi is
less or greater than the optimal level of produc-
tion for s h 0. l

which means that the expectation on sales is rea-
lized. It is verified that this locus intersects the
y*(st, ht)-O locus at a point (s,h) where s=
S(0) and h satisfies y*(s,h)=O. 12

By totally differentiating Eq. (21), we obtain
the slope of the constant expectation locus:

Os s,+,=s, S’Oy*/Oh O-]Os- S’ (22)

11Suppose that Y0 satisfies the optimal condition, C’(yo)= V’(yo)-S’(yo). y* (s,, h,) yo is a locus of (st, ht) starting at
the origin, (0, 0) in the (s,,h,) plane. In Fig. 1, we assume Yl < Y0 < Y2.

12 For (s ,h ), the demand for the goods is S(F- (y (s ,h ))) S(O) s Thus the constant expectation locus passes through
the point (s ,h ). For (st, h t) over the y (s,,h,)=0 locus, zero production takes place. Hence the constant expectation locus is
S St
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Y*(St. ht )=0
Y*(St, ht )=Yl

’ y*(st, ht )=Y2

St/l= st

sts-Y1 s}-y2
FIGURE

where the first factor is negative but the sign of
the second factor is ambiguous. F’/(Oy*/Os) is a

reciprocal of the second equation in Eq. (12). It
is a slope of the L Ld(st, ht) curve that, for each
level of employment, L, measures what the ex-
pectation on sales would have to be for the pro-
ducer in order to choose that level of employment.
The constant expectation locus has a negative or

positive slope according to that the L--Ld(s, ht)
curve intersects the s=S(L) curve from below
(i.e. F’/(Oy*/Os)>S’) or from left (i.e.
F’/(Oy*/Os) < S’ ). Moreover, even if it is positive-
ly sloped, the constant expectation locus is flatter
than the constant inventory locus. 13 To examine
the dynamic behavior of st, we differentiate the
expectation adjustment equation to obtain

o(,+, ,)
Os

St zSl

F’ Oy*
S ’) (23)c - Os

In either case in which F’/(Oy*/Os)> S’ or

g’/(Oy*/Os) < S’, st+ < st if (st, ht) lies above
the st + st locus.
We plot possible shapes of the constant inven-

tory locus and the constant expectation locus in
Fig. in which F’/(Oy*/Os) > S’ is assumed. An
intersection of two loci is an equilibrium state.
There are two equilibrium states that we label el,

and e2, respectively. At el equilibrium state the
lower production, y, takes place (i.e., y*(s*l,h*)=
y) while at e2 equilibrium state the equilibrium
production, Y2, takes place (y*(s],h])=yl).
Arrows in Fig. indicate possible movements of
trajectories generated by the dynamic system, (16).
We can see that e2 equilibrium is a saddle point
and hence unstable except one stable path. As is
seen below, the stability of el equilibrium depends
on particular values of the adjustment coefficient,
c, and of the inventory-expectation ratio,/3.

’3 Subtracting (23) from (20) shows that (Oh/Os)ll,,, h,- (Oh/Os)l ....... s, -F’/(S’Oy*/Oh) > O.
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3.2 Stability Analysis

We analyze the local stability at each equilibrium
mathematically. The Jacobian matrix, which is
obtained by a linear Taylor expansion of the sys-
tem (16) evaluated at the equilibrium point, is

(24)

The determinant, the trace, and the characteristic
equation of (24) are, respectively, as follows:

(25)

It follows that the characteristic roots are

A,,2 1/2 tr J(c) + x/-D(c) where D(c0 det J(c0-
1 (tr J(c0)2 is the discriminant of the characteris-4
tic equation. Depending on the sign of the discri-
minant and on whether the modulus of the
characteristic root is greater or less than unity,
the trajectories diverge or converge. Next theo-
rem confirms the graphical intuition that e2 equi-
librium is a saddle point.

THEOREM e2 equilibrium is a saddle point.

Proof Since (1-S’/F’)< 0 holds at e2 equili-
brium by Assumption 2, < Oy*/Oh < 0, and 0

< Oy*/Os by Eqs. (9) and (10), then it can be ver-
ified that (0)
(1-S’/F’) (Oy*/Oh)< 0 for all cc(0,1). Hence
two roots are real and positive. Furthermore one

root is greater than unity, and the other is less than
unity.

As can be seen in Eq. (22), the slope of the
constant expectation locus is either negative or

positive according to whether F’/(Oy*/Os) is

greater or less than S. By Eq. (1), S=c, the
marginal propensity to consume that is assumed
to be constant. Both of F and Oy*/Os depend on
the inventory-expectation ratio, /3. To emphasize
the dependency of Oy*/Os on the value of/3, we
denote Oy*/Os by f(fl). Returning to Eq. (10), we

define two functions of /3: ()=H"(h+y*-
(1 +fl)s) and rl(/3)=C"(y*). Since positive pro-
duction takes place for /3=0, (0)=0 < r/(0). If
we assume that these functions intersect only
once, say, for = ill, we then have f(flt)= and
’(flt) > r/’(fl). A derivative off(fl) is

f’(fl) ={’(fl) r/’(fl)f(fl) + (O/Ofl)(H"-V")

>< [1-f(fl)]}/{C"+ H"-V"}, (26)

which leads to f’(fl)>0 for fl--fll" We assume
that this positive relation in the vicinity of fll
holds globally:

ASSUMPTION 3 f’(fl) > 0 for all/3>_ 0, and there
is a value of the inventory-expectation ratio, /3*,
that satisfies f(fl*)= F’/S’, where F’ and S’ are

evaluated at e equilibrium.

Theorem 2 below states that e equilibrium is

locally stable if a value of the adaptive coeffi-
cient, c, is confined to an interval, (0, 1), and the
inventory-expectation ratio,/3, is not so large.

THEOREM 2 For fl < fl*, equilibrium is stable.

Proof Since F’> S’ holds at e equilibrium by
Assumption 2, (F’/S’)(Oy*/Os) < for/3 < fl* by
Assumption 3, and -1 < Oy*/Oh < 0 by Eq. (9),
it can be verified that 0 < detJ(c0 < and 0 <
tr J(c0 < 2 for all c in an interval, (0, 1). Further-
more, (0)=detJ(c0>0 and (1)=-c(1-S’/
F’)(Oy*/Oh) > 0. We then have two cases depend-
ing on values of c. For c such that D(c0 < 0,
the characteristic roots are real. From the famili-
ar relationship between the roots and coefficients
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of the characteristic equation, 0 < A1A2 < 1, <
"1 -- "2 < 2, o(1)=(1-A1)(1-A2) > 0. Thus real
roots are positive and less than unity so that the
trajectories monotonically converge. For c such
that D(c0 > 0, the characteristic roots are com-
plex conjugate. Since the modulus of the root is
equal to the square root of det J(c0, it is less than
unity (i.e., mod(A)= v/detJ(c) < 1). That is, the
trajectories oscillatory converges. 1

Theorem 3 below shows that the stability of el,

equilibrium may be violated if/3 becomes larger.
Before proceeding the instability analysis, we

digress to discuss the following two lemmas. These
lemmas concern with critical values of the adap-
tive coefficients, c0 and Cl, for which the dy-
namics of the system, (16), qualitatively changes.

LEMMA For /3>*, there are the adaptive
coefficients, Co and ozl, such that D(c0)=0 and
det J(cl) 1.

Proof We detect the existence of c1 first. In the
same way as the proof of Theorem 1, it can be
verified that 0<detJ(0) < and detJ(1)>l.
Furthermore, detJ(c0 is monotonically increasing
for/3 >/3*. Thus, in an interval, (0, 1], there is c1
that satisfies detJ(Cl)= 1. Turn to the existence
of c0. It is also verified that D(0) 1/4 [det J(0) 112
<0 and D(Cl)--1--[trJ(Cl]2 which is positive
if tr J(cl) < 2. Substituting (1 c1) (1 S’/F’)
(Oy*/Oh) cl (1 (S’/U) (Oy*/Os)), which is ob-
tained from detJ(c)= 1, into the second equa-
tion of (25), we have trJ(c)= 2 + (1-(S’/U))
(Oy*/Oh)c so that 0 < tr J(c) < 2 for 0 < c1 < 1.
Then we have D(Cl)> 0. Thus there is an adap-
tive coefficient, c0, in an interval, (0, c1), such
that D(c0) 0.

Since c0 and c depend on a value of/3, we
denote these by c0() and c1(/3), respectively.
Lemma implies c0(/3) < c1(/3). As used in the

proof of Lemma l, an alternative expression of
detJ(c)-- is

1- (S’/F’)f(/3)
(1 S’/F’)(Oy*/Oh) =- ()"

(27)

It can be verified that g(1)=0, g’(cl) < 0. If we
assume ’(/)>0,14 then c’1(/3)=’(/3)/g’(c)
< 0. By definition of/3* in Assumption 3 (i.e.,
(S’/F’)f(/3*)= 1), (3")=0 and thus c1(/3") 1.
We summarize these results in

LEMMA 2 c0(/3) < c 1(/3) _< Jbr >_ * where
equalities holdfor/3-*, and c(/3) < O.

These lemmas imply the following theorem.

THEOREM 3 Given >_/3", el equilibrium is lo-
cally stable for 0 < c < Cl(/3) and unstable for
>

Proof For c>Cl(/3), Lemmas and 2 imply
D(c0 > 0 and det J(c0 > 1. The characteristic roots
are complex conjugate and their moduli are

greater than unity. Thus the trajectories are oscil-
latory divergence. By the same token, Lemmas
land 2 imply that D(c0 < 0 and detJ(c0 < for
0 < c < c0(/3) and that D(c0 > 0 and det J(c) <
for c0(/3) < c < c1(/3). Thus for 0 < c < c(/3),
the real roots are positive and less than unity,
and the modulus of the complex root is less than
unity. Hence the trajectories monotonically or

oscillatory converge to e equilibrium. 7q

We turn to the issue of cyclicity in a case
where e equilibrium is unstable. The following
lemma is a truncated version of the Hopf bifur-
cation theorem. s

LEMMA 3 Let the mapping x + G(xt, oz),
xt e R2, oe e R, have a smooth family of fixed
points x*(c) at which the eigenvalues are complex

14As can be seen in Eq. (9), a sign of ’(/3) depends on the signs of third-order derivatives of the functions involved. If

(0@/3) (Oy*/Oh) is negative but its absolute value is small, or positive, we can have ’(/3)> 0.
5See Lorenz (1993, Theorem 3.6, p. 96).
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ealfoots;
stable

complex oots;
unstable

FIGURE 2

conjugate. If there is an a* such that

modA(a*)-I but An(a )-1, n-1,2,3,4,5

and

d(modA(a)) > O,
da

then there is an invariant closed curve bifurcating

ft’om oz o*.
The following theorem guarantees the existence

of closed orbits (i.e., endogenous inventory cycles)
in the model with adaptive expectations.

THEOREM 4 Given > *, there is an invariant

closed curve bifurcating from a 1 (/3).

Proof We first check that An(a1) for n 1,2,
3, 4,5. 6 Let A(a)=cos0+isin0 in which

cos 01 1/2 tr J(a). < tr J(al) < 2 implies either

01 E (0, r/3) or 01E(-r/3, 0). Suppose that 01
r/n for n> 3. Ak(al)--1 implies kO1--2rr for
some integer r. We can transform the last equa-
tion into k- 2nr > 6r. This inequality implies
Ak(al)=/=--I for k < 7. By the same token,
AK(al) for k < 7. Thus An(a1) does not have

characteristic roots with absolute values equal to

for n- 1, 2, 3, 4, 5. We then verify that the other
conditions of Lemma 3 are satisfied. The charac-
teristic roots are complex conjugate for a > a by
Lemma 2. Further mod(A(OZl))- v/detJ(c)-
by Lemma and

dk/det J(a
da

2 .et j()_ (det J(1)v/d det J(O)) > O,

16We follow the proof of Reichlin (1986, footnote 4, p. 95).
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where det J(0) < and det J(1) > are shown in
Lemma 1. The module crosses the unit circle

with non-zero speed. This covers the assumptions
of the Hopf Theorem. Hence given /3>/3", a

Hopf bifurcation occurs at c c(/3). F1

where y. is a first-order partial derivative of
y*(s,h) with respect to the ith argument, and y.
is a second-order partial derivative. Taking the
Taylor expansion of the dynamic system (16)
under Assumption 4, we have

By Eq. (27) and Lemma 2, we can depict a

parameter space of the inventory-expectation ra-

tio,/3, and the adaptive coefficient, c, as Fig. 2.17
c0(/3) is a boundary between a region for real
roots and one for complex roots, and c1() is a

boundary between a stable region and an unstable
one.

3.3 Stability Index

Taking account of the higher-order terms in the
Taylor expansion of the dynamic system, we can

compute the stability index of the limit cycle ob-
tained in Theorem 4. To this end, we simplify the
model to avoid lengthy calculations and then to
make a change of coordinates so that the dy-
namic system is of the form provided by Wan
(1978, see the formulation on p. 168).

ASSUMPTION 4 (1) F" 0, (2) k(Oy*/Os) > 1,
where k= S’/F’ < 1, (3) k(1 + (Oy*/Os) 2.

Condition (1) assumes a linear production func-
tion that consequently implies a linear cost func-
tion of production, C(y). We impose conditions

(2) and (3) to generate a Hopf bifurcation for
admissible values of the adjustment coefficient,
c. ls We consider the stability index in the neigh-
borhood of el equilibrium, F’> S’ is also as-

sumed. Thus k S’/F’ is less than unity. Further
it is constant by Eq. (1) and Assumption 4(1).
Returning to Eqs. (9) and (10), we find by
Assumption 4(1) that

ISt+l Iht+l

A- [1 -t-o(ky*- 1)] A- [1 + o(ky*- 1)]

St) 02 (29)
ht

+

where the higher-order terms up to the third in the
Taylor’s series are explicitly expressed as

O2_1(kY*llS2). (1 -k)y*is 2

1( kY*lll $3 )@. (1 k)Yll s3 -+- O
(30)

We make a change of coordinate so that the
system has an appropriate form to compute the
stability index. We choose a new coordinate, (z, ),
such that

( A-{1 + a(ky* 1)] X- [1 + c(ky* -1)]

(31)

In the new coordinate system we have

0 < Yl < +/3, Y2 (28) q (z) -Az + -c k(A- A) 2 + Yl $3

Y] 2 O, Y;1 O,
nt- 0(1214)’

17By Eq. (26), it can be verifed that c(/3)> for /3 </3", and as /3-+/3_, limc(/3)-+ oc where /3_ is defined by
(/3_1)=-1. By solving 4detJ(1)=[trJ(1)]2, we can detect the existence of the inventory-expectation ratio, ill, such that

O0(1) 1.
la It can be verified that.det J(1) >_ and D(1) > 0 under these assumptions.
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where s--ck(z+2) by Eq. (31). Lengthy
computations 19 show that the stability index,
which we denote by 3’(cl) (i.e., fb(0) in Theorem
of Wan (1978, p. 168), is reduced to

3,(cl)-
(ck)2 { tr J(cl)2 + 2 }8 2D(Cl) YZll (ck)2 Y111

(32)

As D(c)> 0, the dynamic system has a repellent
invariant cycle (i.e., a subcritical Hopf bifurcation)
when Yll < 0.

4 CONCLUDING REMARKS

This paper extends the Eckalbar’s disequilibrium
macro-model. Linear behavioral functions are re-

placed with non-linear conventional functions
that are based on individual’s intertemporal opti-
mizing behavior at microeconomic level. The
dynamic system consists of the inventory accu-
mulation equation and the adaptively revised
expectation adjustment equation. It is demon-
strated that the model endowed with a large
stock-expectation ratio generates endogenous in-
ventory oscillations. These results suggests that
the disequilibrium non-linear dynamics may pro-
vide useful explanations for irregularities that are
observed in a macro-time series such as those of
the real GNP, the unemployment rate, and the
inventory investment.

to participants in seminars at University of
Southern California and the Savings Economy
Research Institute. All remaining errors are my
responsibility.
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APPENDIX

In this appendix, we derive the stability index in
Eq. (32). An elementary way of Wan (1978) is
utilized.
When C" =0 is assumed in Eqs. (9) and (10),

partial derivatives of y*(s,h) (asterisk is omitted
for notational simplicity) are as follows:

19 See appendix for full computation.
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Oy* HIt

Yl Os H’’ V" +1

that leads to 0 < yl < +/3,
Oy* H"- V"

Y2- Oh H"- V"
02y

O,Y12 Y21 OsOh
OZY* O,Y22- Oh2

3 {HmV.
Yll

(Ht, Vt,) 2
(Yl- 1)

H" V’"(y (+))}#0.

Taking the Taylor expansion of the dynamic
system, (16), yields

where J is the Jacobian matrix and 02 is the
higher-order terms. Elements of J are given in
Eq. (29) in the text. The determinant and trace
of the Jacobian matrix, J, are

where A 1/2 tr J(al) and

B v/det J(al) 1/4 (det J(al))2.

A2 / B2- holds for the bifurcation parameter

We make a coordinate change by

A--jll k--j11

where jik is the (i,k) element of the Jacobian
matrix, J (in particular, jl2--ozk and jll--

+ a (kyl- 1)). In this new coordinate, we have

(I)(z) /z--(G 2 G22 2)Z + G12z" +

(G:ll Gl12 2, G122 2 G222 3)+ z +-z +-5-z
+04

where

1-A
Gll G12 G22 -yll--(-ozk)2] l’

l
Gl12 ylll (-cek)2

(A1)

According to the Wan’s formulation (1978, p.
168), the stability index is given by

3,(al) Re [(1 2A)’2 ]2(1 A) GllGl2

+ 1/2G1212 + 1/4G2222- Re (Al12)
(A2)

Using Eqs. (A1), we compute each term in the
above formulation, (A2).

(m_ozk)22

2GllG12
2iB ]

(1 A)

y121 (ak)4

4B{(1 2A + A2 B2)

/ i(2AB- 2B))

y121 (ctk)4
2B2(1 A)(A / iB),

(1 2A),{2 (1 2A)(1 ),2
2(1 A) 2(1 A)(1 A)

(1 A)(4A2 2A 3) / iB(4A2 6A / 1)
4(1 -A)
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G12G12 G22G22

4B
(-2A),

X y (ok)2 (1 A) X
Gl2 4 X- A

4
+i

2B

Substituting the results obtained above, the
real parts of complex roots in Eq. (A2) are as
follows:

2(1-A) GG2

Re [-Y121-)4
{(A + iB)[(1 A)(4A2 2A 3)

+ iB(4A- 6A + 1)]}1
Y?l (ok)48B(1 A){A(4A 2A 3) + (1 + A)

x (4A2-6A+1)}

f l( k)4

8B(1 A)(ZA 1),

Re (’112) Ylll (k)28
Hence the stability index, (A2), is

892 (1 A)(2A 1) + +

(Yll (ok)2)2 } (ok)2

4B2 (-2A) --Ylll
8

(ek)2 {2A2+1 (oek) 2 Yll}-T Byl

Since A--1/2trJ(a,) and B-v/D(a), we have
Eq. (32) in the text,

(ak)2 {2(tr J(a))2 + }")/(O1 )--
8 D(a,

yl21 (Ok)2 Ylll


