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We describe a nonlinear feedback functional method for study both of control and
synchronization of spatiotemporal chaos. The method is illustrated by the coupled map
lattices with five different connection forms. A key issue addressed is to find nonlinear
feedback functions. Two large types of nonlinear feedback functions are introduced. The
efficient and robustness of the method based on the flexibility of choices of nonlinear
feedback functions are discussed. Various numerical results of nonlinear control are
given. We have not found any difficulty for study both of control and synchronization
using nonlinear feedback functional method. The method can also be extended to time
continuous dynamical systems as well as to society problems.
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1 INTRODUCTION

"Two fundamental questions dominate future
chaos control theories. The first is the problem
of controlling higher-dimensional chaos in physi-
cal systems The second question has yet to be
addressed: the problem of control in a spatio-
temporal system" [1]. In recent years, control and
synchronization of hyperchaos in higher-dimen-
sional systems as well as spatiotemporal chaos
(STC) in spatially extended systems have become
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a much more important and challenging subject.
This is because the behaviors in spatially extended
systems are extremely rich [2], such as STC, patterns
formation, traveling waves, spiral waves, turbu-
lence and so on. Especially, the control and syn-
chronism of such behaviors have extensive and
great potential of interdisciplinary applications,
such as security communication, laser, many
fluid dynamics, biological systems, crystal growth,
information processing, chemical reactor, bio-
chemistry, medicine and engineering. However,
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this subject is not much known and remains an

outstanding open problem.
Spatially extended systems are often modeled

by partial differential equations (PDE), ordinary
differential equations (ODE), cellular automata
(e.g. cellular neural networks (CNNs)) and
coupled map lattices (CML). For example, CNN
has been found to be very effective for parallel
signal processing and real-time simulation of phe-
nomena described by PDE [3]. STC occurs in
continuous physical systems (such as in optics
and plasma systems, etc.) when different types of
motion interact to destroy the spatial coherence
of the system concurrent with the onset of tem-
poral chaos. This phenomenon is also described
by PDE [4]. Controlling STC in such systems
turns out to be more difficult and much more

interesting. Here we do not seek to describe the
characterization and classification of the all pos-
sible spatiotemporal behavior. Our goal in this
letter will focus on control of STC by using non-
linear feedback functional method (NFFM). Be-
cause the CML, among the above models, has
been quite popular recently, various studies have
been carried out o/n it. The reasons for its popu-
larity are simplicity in analysis and simulation
[2]. This model is tractable, easy to handle nu-
merically as well as analytically, and is sometimes
able to capture the essential qualitative feature of
physical systems. Detailed studies show [2] that it
can give rise to a variety of rich spatial and tem-

poral structures, therefore, we will illustrate the
NFFM with the CML in this paper.

There have been some attempts toward attain-
ing control and synchronization and offer
the possibilities of control of STC in recent years
[3-24]. Among them, however, most of above
methods are based on linearized models and the
concept of linear feedback which is restricted to
small perturbation in the linear regime. Therefore
this paper is particularly interested in nonlinear
feedback methods (e.g. [22-24]). Here we men-
tion some of above methods. An experimental
control and synchronization of spatially extended
globally coupled multimode laser was carried out

[5]. The pinning feedback in both coordinate

space and momentum space is used to control in
a one-dimensional nonlinear drift-wave equation
driven by a sinusoidal wave [6]. A small pertur-
bation feedback control approach is applied to
control the uniform field point of STC in the
CML with open boundary condition [7]. The
above methods are an extension of the Ott-
Grebogi-Yorks method (utilizing linear feedback
to stabilize a UPO) and cannot be readily ap-
plied to control STC in systems comprising
continuously extended media since they are in-
trinsically globally coupled and infinite-dimen-
sional. They are valid only for limited set of
parameter values. The other theoretical study in
stabilizing the no-motion state in the Rayleigh-
Benard convection was carried out by perturbing
the boundary in a feedback manner [8]. A video-
feedback control experiment which eliminated
chaotic temporal fluctuation of thermal patterns
on a catalytic wafer is implemented [14]. Another
feedback method is based on the idea of stabi-
lization of unstable periodic patterns (UPP)
embedded in STC attractor [4]. It uses a small
time- and space-dependent feedback to perturb a
variable of the system and has been demonstrated
numerically in a transversely extended three-level
laser. Although most control methods for the
above various spatially extended systems belong
to linear feedback, nonlinear control of STC has
been paid attention to recently, such as inte-
grated approach for nonlinear feedback control
was presented with the Gray-Scott model for cubic
autocatalysis in a flow reactor [21]. Therefore this
subject still calls for new approaches, in which
nonlinear feedback control has become a much
more important direction both in automatic con-
trol as well as in control chaos [22]. Very re-

cently, we have suggested a method of nonlinear
feedback functions (NFF) which has been ap-
plied to synchronization of chaos and hyperchaos
in higher-dimensional continuous systems as well
as spatiotemporal chaos [23].
An interesting question that can be asked is the

following: What is the relationship between control
and synchronization? Could one give a unified
formulation (description) for both cases? In this
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work, on the one hand, a unified description for
both control and synchronization is discussed in
Section 2 at first. On the other hand, we apply
the NFFM to control STC in spatially extended
sygtem based on the idea of stabilization of UPP
embedded in STC. Both cases have a common

subject with different goal (reference) states for
their purpose. A good strategy that can be used
for both cases is the variable feedback method. As
examples, some typical kinds of NFF and their

algorithms are introduced for controlling STC in
Section 3. We take the various coupled forms of
the CML as our models to demonstrate the
NFFM through the numerical simulations in
Section 4. The main results are shown in
Section 5. Finally, discussions and conclusions
are provided.

A UNIFIED DESCRIPTION FOR
STUDY OF BOTH CONTROL
AND SYNCHRONIZATION

In this section, we would like to describe a uni-
fied formulation for both control and synchroni-
zation of STC (including chaos and hyperchaos).
Because synchronization method of the NFF can
be easily extended to control of STC once the
relationship between control and synchronization
of chaos is clarified. In our point of view, control
and synchronization have a common basis with
different reference states and end results. A good
strategy that can be used for both cases is to

apply the linear and nonlinear variable feedback
method. We now pay attention to nonlinear feed-
back control since most of previous works are

based on the linear feedback. Let us consider, for
illustration, the coupled map lattice (CML)
which can be defined as:

Xn+l (i) --/iF(Xn(i)) +- eijh(Xn(mij)),

i-l,2,...,L, #<_L-l, (1)

where F(Xn(i)) describes the internal dynamics of
the ith site when couplings with other sites are

absent. For example, we take F(X,)=aX,(1-
which is the one-dimensional logistic map behav-
ing chaotically in the range of a=3.8-4. In
Eq. (1), and n denote discrete space and time
variables and L is the total number of sites each
of which is connected to # neighbors, /i is ith
system parameter, mij is the index of the jth
neighbor of the ith site, % is the coupling
strength of the jth neighbor of the ith site and

h(X,,(mi)) is a function of the state variables

X,,(mo.). The dynamical behavior of a CML de-
pends on the parameters /3i, the nature of cou-

pling (type of h and values of m,y), the coupling
strengths %. and boundary conditions. We have
used periodic boundary conditions in this work.
Using the feedback functions

Gn(X, Y) cijgn(Xn(mij), Yn(mij)),
j=l

u<_L,

i--1,2,...,L, (2)

the controlled/synchronized CML then becomes

Yn+ (i) iF(Yn(i)) + - Z eo’h(Yn(mo’))
j=l, jTi

+ Gn(X, Y),

where i-1,2,...,L, # <_ L-1. Equations (1) and
(3) are also called the drive, master and response,
slave systems, respectively, if we consider syn-
chronization between Eq. (1) and Eq. (3) with

Y(0) # X(0). Therefore controlled and synchro-
nized systems can be unified by the same formu-
lation, Eqs. (1)-(3). If a desired unstable period
orbits (UPO) or UPP embedded in strange STC
attractor is stabilized, i.e., the state vectors

X- Xdn control is achieved. For synchronization
between the master (Eq. (1)) and slave systems
(Eq. (3)) it is said to be achieved if Y-X, where
X is (spatiotemporal or temporal) chaotic refer-
ence (goal) state. In other words, Eqs. (1)-(3)
can describe both the problems, of controlling
and synchronizing spatiotemporal chaos, of
course including chaos as well as hyperchaos
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[23]. A common important property of the feed-
back function for both cases is that it vanishes
when synchronization or control is realized. For
discrete map systems, that is

Gn Xn, Xd) 0 when X Xd,, (4)

or for continuous systems

G( X, Y) G( X, X) 0 when Y X. (5)

The state vector X (Xn Xdn) in the controlled
system describes the desired or ’goal’ UPO/UPP if
the STC is synchronized to Xdn in the CML. In
the following CML, we often use G(i) for the CML
instead of G(X,Y), i.e., Gn(i)=G(X,Xd).
The condition of control and synchronization can
be satisfied by a large class of functional forms
of GnU) or G(X, Y). Some simple linear forms of
G(X, Y) have been used previously. For example,

Gi(X, Y) Ki( Yi- Xi), (6)

{i(X, Y) B gj.( Yj. Xj.);
j=l

i-- 1,2,..., n. (7)

Equations (6) and (7) contain n and n2 feedback
parameters Ki and B respectively. K is matrix of
the feedback parameters. However, control or

synchronization may be achieved by a fewer num-
ber of parameters: in some cases control/synchro-
nization is possible even by adjusting only one
parameter. We have shown that the NFFM are
effective for synchronizing chaotic as well as

hyperchaotic systems [23]. The method will be ex-
tended further to control of STC in this work.
The important point to note here is that the flex-
ibility in the choice of G,,(i) or G(X, Y) provides
robustness and efficiency to the method for deal-
ing with not only chaotic and hyperchaotic, but
also spatiotemporal chaotic systems of diverse
nature.
The transition time of realizing control/

synchronization for a given CML is measured
by the zeros (to machine precision) of the function

A(.), where for discrete map systems

A(r/) V/’’=l (X’n(i)- X’dn(i))2

and for continuous systems,

m(,) V/E/L_I (y-- X’)2.

This is a qualifying measure for both control and
synchronization.
The above unified description for study of both

control and synchronization in the CML can be
easily extended to continuous spatially extended
systems. To do this, let us consider two n-dimen-
sional autonomous dynamical systems described
by the differential equations

[ F(X), (S)
(- F(Y)+ G(X, Y). (9)

Here the state vectors X,Y E Rn are n-dimen-
sional vectors with components X1, X2,..., X and
Y1, Y2,..., Yn respectively. The vector functions
F and G have the components F1, F2,..., F and
G1, G2,..., Gn respectively. The Eqs. (8) and (9)
are equivalent to Eqs. (1) and (3). The function
F(Y) may be a replica of the function F(X) but
may be a different one from the point of view of
generalized synchronization/control. G(X,Y) is
the above feedback function. For control we only
use Eq. (9) and is enough to study. For synchro-
nization, however, the dynamics of the X and
systems are needed and started from different
initial conditions (Y(t 0) - X(t 0)). Control
and synchronization are said to be achieved if
the dynamical system describing the time evolu-
tion of the difference e=Y-X, i.e, the error
equation

6 F(Y) + G(X, Y) F(X)

F(X + + a(X, X + F(X) (10)

has a stable fixed point at e-0. Another way
of saying this is that we achieve control/
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synchronization if IIY Xll --+ 0 and G(X, Y) -+ 0
as oo, where X is a desired (goal) state. The
above control or synchronization conditions can
be satisfied by a very large number of linear and
nonlinear functional forms of G(X, Y). The feed-
back scheme of Eqs. (1) and (3) and Eqs. (8) and
(9) not only includes the approaches in current
references and our suggestions in the next section
but also has the flexibility of introducing all pos-
sible new feedback functions and thus giving ro-
bustness to the method of feedback control. For
example, recently, Kocarev and Parlitz have used
an active-passive decomposition scheme for syn-
chronization [24]. This scheme involves decom-
posing the dynamical systems as:

F(X,s), (11)

F(Y, s), (12)
s h(X), (13)

h(X, s). (14)

Mathematically, this decomposition scheme is
included in our approach if we choose G(X, Y)=
F(Y,s)-F(Y). The mathematical equivalence
between their decomposition scheme and the ap-
proaches of Pecora and Carroll [25] has been
shown. Therefore, the feedback scheme of Eqs. (8)
and (9) or Eqs. (1)-(3) is of universal formu-
lation which includes control approaches as well
as synchronization. The evidences are that a

dynamical system can be synchronized by a vari-
ety of choices of the feedback function G(X,Y)
[23], as shown later on. A key issue addressed is
how to find all families of nonlinear feedback
functions NFF from a general method. One of
the important points to find NFF is based on

their property of GnU) or G(X,Y), which tends
to zero and has a well-behaved (no intermittence
and no catastrophe for long time and so on)
when control/synchronization is achieved for
long time. Some feedback functions for a given
system (e.g. CMLs) are sampled in next section
by trial and error but a general method of gener-
ating NFF is still open.

NONLINEAR FEEDBACK FUNCTIONS
AND CONTROL ALGORITHMS

Now we are in a position to discuss the key issue
of the method. In spatially extended systems,
there may exist a large number of UPP states
even in the presence of a stable output. Consider
the two cases: (1) in the first case assume that
some UPO or UPP states are known and(2) in
the second case exist unknown UPO/UPP states.
In view of these two cases, we would like to
classify the NFF into two kinds. The first type is
one for stabilizing desired UPO or UPP em-
bedded in the original chaotic/STC attractor.
Second type is one for generating certain new

dynamics that we need. In other words, there are
two types of NFF to be applied to control and
synchronize spatiotemporal chaos. For the first
one, NNF1, an important property of the feed-
back functions is that they vanish (Gn(i)-O)
when control is realized. Because these NFF1
can be designed to stabilize or synchronize any
desired UPO or UPP embedded in the STC.
Therein the NFF2, G.(i) does not vanish, it is
designed not only to stabilize UPO or UPP but
also to generate new patterns one expects. In any
case, two types of NFF are not unique, i.e., there
are many different families of feedback functions
that can control/synchronize a goal state or gen-
erate a desired new dynamics. A large variety of
feedback functions can be found as illustrated
below. For the NFF1 corresponding to logistic
map, we have:

gn(i) (Xdn(i) Xn(i))(2Xn(i) 1),

gn(i) 1/2(Xdn(i) Xn(i))(kXn(i)2 1),

k- 3,4,...,

gn(i) tanh{(Xdn(i) Xn(i))(2Xn(i) 1)],

gn(i) (Xdn(i)- Xn(i))tanh[(2Xn(i)- 1)],

gn(i) (2Xn(i) 1)tanh(Xdn(i) Xn(i)),

gn(i) (2Xn(i) 1)sin(Xdn(i) Xn(i)),

(15)

(16)

(17)

(IS)

(19)

(20)
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g,(i) sin[(Xdn(i) X,,(i))(2X,(i) 1)], (21)

g,(i) (Xd(i) X,,(i))sin[(2Xn(i) 1)], (22)

etc.,

where Xd(i) is a desired (known) UPO or UPP
in the CML. The first kind NFF1 is suitable for
controlling UPO/UPP of the CMLs known either
from experiment or numerical calculation/analy-
sis [26]. How to construct such NFF1 is the most

important problem. One of the key points is

based on the property of GnU) which tends to zero
and is well-behaved (no intermittence and no

catastrophe for long time, and so on) when con-
trol or synchronization is achieved for long time.
A construction method for feedback functions is

Lyapunov functional one which will be given
elsewhere. So there are large classes of the NFFls
which may satisfy the above property. It has
been demonstrated that the above g,,(i) forms
(Eqs. (15)-(22))can be applied to realize syn-
chronization of chaos, hyperchaos and spatio-
temporal chaos if it is all right in the parameter
space [23]. The main idea of the control algorithms
corresponding to the above NNF1 is that a non-

linear feedback (term) signal, G,,(i corresponding
to NFF1, is assigned to perturb the spatial dyna-
mical variables at each site or sporadic sites di-
rectly. The NFF1 is designed for the controlled (or
response) system to follow (or synchronize with)
the desired UPP embedded in the STC attractor.
Therefore the NFF1 tends to zero when the con-

trol/synchronization is achieved. In other words,
the nonlinear signal forces the response system to
be synchronized with one desired UPP/UPO.

For the second one, NFF2 corresponding to

logistic map, we have:

gn(i) KiXn(i)(Xn(i) Xdn(i))
+ Ai sin Ai(Xn(i) Xdn(i)),

etc.,

(28)

where Ai, Bi, Ki and Ai, i= 1,2,... ,n are adjust-
able parameters. The NFF2 is suitable for unknown

UPO/UPP in the master systems when one wants
to get certain stable new pattern state. The above
forms of g,(i), Eqs. (23)-(28), can control STCs
to generate some of the desired patterns for Eq. (3)
or Eq. (9). The results will also be given below.
Other forms of the NFF, both NFF1 and NFF2,
are conceivable. In the following section, we

consider CMLs for which we have successfully
controlled STC by the NFFM.

FIVE CONNECTION FORMS
FOR THE CML

Let us now consider various coupled forms for
the CML in order to test the efficiency of the
NFFM. With a view to possible applications to
neural networks, we are particularly interested in

(i) lattices with random neighbors and fixed cou-

pling strength (CMLR) and (ii) lattices with ran-

dom neighbors and random coupling strengths
(CMLRR). For the CMLR and CMLRR, the mij
were found by a random number generator and
we set h(X,(mo.))=F(X,,(mo.)). The CMLR and
CMLRR are, respectively, given under the control
by:

Xn+l(i) 7{(1 e)fn(i) + Z fn(m6)]
lj= l, jTi

+ Gn(i), (29)

gn(i) KiXn(i)(AiAiXn(i) Xdn(i)),

gn(i) Ki(Xn(i) Xdn(i))(AiXn(i) 1),

gn(i) Ai sin/i(Xn(i) Xdn(i)),

gn(i) B/cos/i(Xn(i) Xdn(i)),

gn(i) Bi(1 cos Ai(Xn(i) Xdn(i))),

(23)

(24)

(25)

(26)

(27)

Xn+l (i) 9’[(1 e)fn(i) + 1S Z oz/jf(rn/j)]
1
j= 1, jTLi

+ Gn(i), (30)

while for the types of CMLs described by some

authors, such as Kaneko [2], Shinbrot [18] and
Hu [6] which we call as CMLK, CMLS and
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CMLH respectively, we have:

L

Xn+] (i) 7{(1 e)fn(i) + Z fn(j)] + Gn(i),
j=l

(31)

X’n+l (i) y{(1 e)fn(i)
L-1

L- lj=l,j
(32)

X+ (i) 7[(1 e)f(i)
Ne (f(i +j) +f(i-j)] +

j=l

(33)

other words, the STC can be synchronized to the
desired UPO/UPP. The number of neighbors u

in Eqs. (29) and (30) varied from to L-1. It
may be pointed out that we can find low periodic
solutions for the CMLH, CMLR, CMLK and
CLMS analytically or numerically [26]. Thus the
NFF1 with any g,,(i) from Eqs. (15)-(22) are
always found to control and synchronize STC in
all of Eqs. (29)-(33), as given later on. For the
CMLRR, however, it is rather difficult or is not
necessary to find the solutions of UPP analyti-
cally or numerically. In such a case, the NFF2
would be suitable for control.

5 VARIOUS CONTROL RESULTS

and their corresponding parameters for Eq. (1)
are as follows"

/i- + (1- L)e, e0.-e, #-L-l, (34)

/i-P, #- L- 1, %-
-/L--S5’ (35)

/i 6,
6/j e

(36)
# 2N’

where 7 is an adjustable parameter. The c0. in
Eq. (30) for the CMLRR are random numbers
with 0 < cij. < e and the symmetry condition

Oij--Oji is not invoked. During the iterations if

Xn+ 1(i) falls outside the basin of attraction (here
the interval (0, 1)), then the contribution of the
feedback term is scaled so that Xn+ 1(i) belongs
to this interval or simply set Xn+(i)-IXn+(i)[
modulo 1. As example, some common parameters
of the CMLs we used in this text are as follows:
L--50 and a-4. For control of STC, the NFF1
signal (term), Gn(i), may be applied to every site
and at every iteration or it can be applied spo-
radically. Suppose that solutions of desired UPO/
UPP, Xd, are specified for Eqs. (29)-(33) in such
a way that G,,(i) corresponding to g,,(i), tends to
vanish when control of the STC is achieved. In

The main results will focus on control by using
NFF1 since synchronization of chaos and hyper-
chaos as well as of STC have been shown mainly
in [23]. However, both control and synchroniza-
tion as two strategic ways are used alternatively
for control of STC in this section.

5.1 Periods in Time and Fixed Point in

Space for the CMLR, CMLH and CMLK

It is interesting to stabilize any desired UPO/UPP
of CMLs since there exist numerous UPO/UPP in
the CMLs. The dynamics of a CML can be con-
trolled to synchronize with desired periodic orbits
by using the above NFF1. Here we only present
some examples of UPO/UPP that we have consid-
ered. All the periodic solutions are obtained by
appropriately choosing the initial values of the
coordinates X(i), i= 1,2,..., L. Periodic solution
with fixed point in space (X(i)= XI(j), i,j) and
fixed point (FP) in time (X,+=Xn, Vn) can be
found for the CMLR, CMLK and CMLH by using
the periodic orbits of the single logistic map,
because periodic orbits of the logistic map are easy
to find [26]. Some examples of periodic orbits of
the logistic map (X,+I:aX,,(1- X,O) are given
below.
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1. Period-2 periodic points: 3. Period-5 periodic points if a-4:

XI- +a+ a -2a -3a2),

(a e / 4 2)XI-- +a- a -2a -3a

2. Period-3 periodic points if a- 4"

or

or

X- 0.9504844339512096,

0.1882550990706332,

0.6112604669781572;

X 0.9698463103929542,

0.116977778440511,

0.4131759111665348.

or

X 0.00903565136864665,

0.03581603349196369,

0.1381329809474649,

0.4762090420881289,

0.9977359612865423.

As a typical example, Fig. gives the period-3
in time and FP in space for the CMLR. Follow-
ing coordinates of 3-dimensional figures is the
same as Fig. 1. For the CMLS with a 4, the FP
and period-2 solutions are obtained by using
X= 1/4(3 + e) and X 1/8(e + 5+ v/62 +6e+ 5)
respectively for XI(i) X(j) X, Vi, j. Similar
controls for the other CMLs are easily realized.

50

0 25300

FIGURE The period-3 in time and fixed point in space for the CMLH is stabilized using the NFF1 of Eq. (15). L= 50,
N= 2 and 0.8 and a 4. Following coordinates of 3-dimensional figures is the same as Fig. 1.
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5.2 Stabilize Spatiotemporal Periodic
Solutions by Synchronization Method

A detailed study of spatially periodic solution of
CMLs type lattices with nearest neighbor interac-
tions can be found in [26]. In what follows we

give examples.

1. Period-2 both in space and in time if a-4,
and e < 1/4:

XI(1)

Xl(2)

8e-5+ 3J2-28e+5
8(2)(e- 1)

8e- 5 v/32e2 28e + 5

where e_<l/4 with Xl(j)--Xl(1) if j is odd
and Xl(j)- Xl(2) ifj is even. A period-2 both
in space and time can also be obtained by

another complicated formula involving e. For
example with e 0.1,

and
X1 (1) 0.3747722408220005

(2) 0.7842654775396390

can generate periodic solutions. Figure 2
shows stabilized period-2 pattern by NFF1 (15).

2. A period-5 in space and period-2 in time if
a-4 and e-0.1"

Xl(1) 0.3908791844931709,

X (2) 0.9080286804380671,

X1 {3) 0.74571288644516,

X1 (4) 0.3704760085054254,

X1 (5) 0.7843770872390666

FIGURE 2 The period-2 both in space and time for the CMLS is stabilized using the NFF1 of Eq. (22). L= 50, N=2 and
0.023 and a 4.
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FIGURE 3 The period-5 in space and period-2 in time for the CMLH is stabilized using the NFF1 of Eq. (16) with K=3.
L 50, N 2 and 0.8 and a 4.

with repeating XI(j) after every 5 sites (XI(I),
Xl(2), Xl(3), Xl(4), Xl(5), XI(1), Xl(2),...).
Such a UPP can be also stabilized by the
NFF1 Eq. (9), as shown in Fig. 3.

5.3 Stabilize the Fixed Point both in Space
and in Time

The best test for the NFF1 is to stabilize the
fixed-point (FP) solution Xf(i) both in space
and in time n for Eq. (1). Xf(i)=(a-1)/a is just
the unstable FP solution of a single logistic map.
If a 4, Xf(i)= 0.75 which is unstable. The FP is
easily stabilized for the CMLR, CMLH and
CMLK by use of the NFF1 above. However, the
FP for the CMLS is: Xf(i)=(3 + e)/4. We only
take an example of a typical STC in Fig. 4(a) for
the CMLRR with L=50, N--20, e=0.8 and
a 4. The other STCs are similar to the above. The
FP is easily stabilized when one of Eqs. (15)-(22)
is applied to Eqs. (29)-(33), respectively, as

shown in Fig. 4(b) by using NFF1 of gn(i)=
0.7 sin[(Xf(i) X,,(i))(ZX (i) 1)].

In order to compare the efficiency of NFF1,
transition time, A(n), which tends to zero for
stabilizing the FP in various CMLs, is given in
Figs. 5(a)-(d) for the CMLR, CMLRR, CMLH
and CMLK under the control by each same forms
of NFF1, respectively. It is seen from Fig. 5 that
each of the four kinds of NFF1, Eqs. (8), (16),
(14) and (21) can always control the STC in four
kinds of connection form of CML. We see the
transition time n is generally less than 20 for
CMLRR, CMLS and CMLK, and n 46-66 for
the CMLH.

Figure 6(a)-(d) show the other comparison of
transition time A(n) of stabilizing the FP for
each of the four coupled forms of CMLs (with
common L=50 and a=4) under four kinds of
NFF1. In Fig. 2, (a) corresponds to CMLRR
(with N=20, 7=4, e=0.1, 0<_a/y_<e), (b) to
CMLS (with N=2, e=0.023), (c) to CMLH
(with N=L, e=0.8) and (d) to CMLK (with
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(a)

(b)

FIGURE 4 A comparison of spatiotemporal chaos without any control with controlled one for the CMLRR by the NFF1.
L 50, N--20 and 0.3 and a--4. (a) A typical STC in the above CMLRR as a function of discrete space and time variables

and n without any control. (b) The FP is stabilized in the above CMLRR with 7=4 by using gn(i)=
0.7 sin[(Xf(i) Xn(i))(2Xn (i) 1)].
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FIGURE 5 A comparison of transition time A(n) for the CMLRR above, CMLS, CMLH and CMLK under the same NFF1
corresponding to Eqs. (15), (16), (18) and (21), respectively. CMLS: L--50, N--2 and e--0.023 and a=4. CMLH: L= 50, N--2
and 0.8 and a--4. CMLK: L 50, N L and 0.8 and a 4.
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FIGURE 6 A comparison of transition time A(n) for stabilizing the fixed point for the (a) CMLRR, (b) CMLS, (c) CMLK
and (d) CMLH by using four kinds of NFFI" Eq. (15) corresponds to curve-l, Eq. (22) to curve-2, Eq. (17) to curve-3 and
Eq. (16) to curve-4.
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N=2, e=0.8), controlled by four kinds of
NFF1: Eq. (15) corresponds to curve- l, Eq. (22)
to curve-2, Eq. (17) to curve-3 and Eq. (16) to
curve-4, respectively. Clearly, these results show
that any one of NFFls Eqs. (15)-(22), can con-
trol the STC to the FP for the CMLR, CMLRR,
CMLS, CMLH and CMLK effectively.

5.4 Sporadic Feedback for Synchronization
of STC

So far we have considered control or synchroni-
zation of STC [23] in the CMLs applying the
NFF1 to every site. This approach has success-
fully controlled/synchronized the CMLs for all
values of e in the interval (0, 1). It is pointed out
that for certain ranges of values of e, 3’ and L it
is not necessary to apply the NFF1 at every site
for control/synchronization of STC. Sporadic
feedback can also be implemented by using the
NFF1. The success of sporadic feedback depends
on the use of appropriate NFF1 and values of the

system parameters. For example, two typical STCs
in identical two CMLH with (L 50, e 0.8) but
different initial conditions and periodic boundary
conditions are given in Figs. 7(a) and (b).
Synchronization of the STC in Fig. 7(b) with
Fig. 7(a) is achieved by applying the NFF1
Eq. (21) only at site 4 with /=0.5 and at site 10
with 3’ 2.5, respectively; the corresponding tran-
sition times A(n) are shown in Fig. 7(c) and (d).
Obviously the NFF1 can work well. It takes
more transition time than that using feedback at
each site but can save a lot of feedback signal in
practice. Synchronization of periodic structure is
also realized similarly.

5.5 Conversion of the CMLs from the STC to
Various Periodic Patterns

It is also interesting that all CML systems of
Eqs. (29)-(33) can be switched from the STC
to the FP and various periodic patterns in time
and in space by using suitable NFF1 with right

FIGURE 7(a)
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FIGURE 7(b)
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FIGURE 7(c)
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O

5000 04 1.5x104

FIGURE 7(d)

FIGURE 7 Nonlinear feedback to sporadic site. (a) and (b) are typical STC in the CMLH, Eq. (31) with L= 50, N= 2, =0.8
without any control. (c) Transition time A(n) of synchronization is implemented by using the sporadic NFF1 (16) with K= 3,
/= 0.5 at site 4 for the above CMLH. (d) The same as (c) but "T 2.5 at site 10.

parameters. As an example, the conversions of
the CMLRR with L=50, N=20, e=0.96 and
a--4 from period-4, period-1 to two different FP
are shown in Fig. 8 only if the values of X, are
changed from 0.2, 0.6, 0.7 and 0.75 in the same
NFF1 of Eq. (22), respectively. We see from Fig. 8
that the oscillation wave forms of transition pro-
cess correspond to four stabilized states. In fact,
real fixed point for the CMLRR is X, =0.7428.
Therefore, A(n) vanishes and real fixed point is
stabilized if X,=0.7428. Here we ignored many
similar conversion results. This kind of control is
similar to control by the second kind NFF2 de-
scribed in next subsection.

5.6 Generating a Variety of New
Spatiotemporal Patterns

As mentioned above, the second kind NFF2 can
work for controlling new STP if it is not easy or

not necessary to know the solutions of UPP in
the CML. In such a case, a rich variety of new
UPP would be obtained in the CML by the
NFF2. Figure 9 shows some typical controlled 3-
dimensional patterns generated by using NFF2,
in which: (a) stationary spatial pattern in the
CMLS with (L= 50, e=0.0.023, N= 1, a=3.8)
by using any one of the NFF2, above, such as
gn(i) tanh(2X(i) 1)(Xn(i) 1). However, it
cannot be obtained by any linear feedback; (b)
spatial pattern and period-1 in time for the
CMLH with (L=50, e=0.6, N=I, a=2) by
using g,,(i)=(ZX,,(i)- 1)(5X(i)- 1); (c) spatial
pattern and period.1 in time for the CMLR with
(L=60, e=0.8, N=I, a=4) by using g,(i)=
0.5X,,(i)(1.5X,,(i)-l); (d) period-1 both in
space and in time for the CMLH with (L=60,
e=0.8, N=I, a=2) by using gn(i)=O.5Xn(i)
(1.25X,(i)-1). More complex patterns can also
be obtained by using NFF2 but ignored here due
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0.75

20 40 60 80 100

FIGURE 8 The conversion from STC to periods and fixed points for the CMLR with L= 50, N= 10 and e=0.1 and a=4.
From period-4 (curve-l), period-1 (curve-2) to two fixed points (curve-3 and curve-4) when the values of Xo, are changed from
0.2, 0.6, 0.7 to 0.75 in Eq. (22), respectively.

to limited space. It is seen from Fig. 9 that var-
ious spatiotemporal patterns.in the CMLs may
be generated by NFF2 which can be extended to
nature and society similarly.

6 DISCUSSIONS AND CONCLUSION

We have answered the first question addressed in
Introduction. In summary, The relationship be-
tween control and synchronization can be formu-
lated in Eqs. (1)-(3) or Eqs. (8) and (9), which
show that both cases have a common subject
with different reference states for chosen pur-
poses. They are two sides of common subject
with different goal. The goal of chaos control is to
stabilize a desired (or so-called goal, aim, target,
reference) UPO or UPP embedded in the chaotic/
STC attractor, whereas the aim of synchronization

may involve taking a chaotic/STC state as the
reference state. Synchronism of STC/chaotic be-
havior is realized between two identical (or from
the view point of generalized synchronization
[24], different) systems with different initial con-
ditions. However, synchronism is not only to rea-
lize synchronization of STC/chaotic behaviors
between two identical systems but also to control
a UPO/UPP. Therefore they can be viewed as
the same mechanism with different goal states.
Of course, sometimes they are rather different for
various practical purposes. Research of syn-
chronism of STC/chaos has been parallel to the
study of control of STC/chaos. A good strategy
that can be used for both cases is the linear and
nonlinear feedback methods. We regard both
cases as controlling chaos (including hyperchaos
and spatiotemporal chaos): one for taming/sup-
pressing chaos, the other for locking chaotic
orbit to a desired state phase.
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FIGURE 9(a)

FIGURE 9(b)
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FIGURE 9(c)

FIGURE 9(d)

FIGURE 9 Some new 3-dimensional patterns are generated by using NFF2. (a) Stationary spatial pattern in CMLS with
(L= 50, =0.0.023, N= 1, a= 3.8) by using g,(i)=(2X,(i)- 1)(Xn(i) 1). (b) Spatial pattern and period-1 in time for CMLH with
(L= 50, e=0.6, N= 1, a=2) by using g,,(i)=(2X,(i)-1)(5X(i)-1). (c) Spatial pattern and period-1 in time for the CMLR
with (L=60, e=0.8, N=I, a=4) by using g,(i)--O.5X,(i)(1.5X,(i)-1). (d) Period-1 both in space and in time for
the CMLH with (L 60, =0.8, N= 1, a= 2) by using g,(i)=O.5X,(i)(1.25X,(i)- 1).



304 JIN-QING FANG AND M.K. ALI

Of course, we can also regard both cases as
synchronizing chaos: one for synchronizing or
stabilizing to desired UPO/UPP and the other
for synchronizing chaotic/STC state between two
identical systems with different initial conditions.
Anyway, we may deal with both cases as a uni-
fied formulation above by various feedback stra-
tegies. Our recent work [23] and this work have
shown that identical feedback method can be
used for studying both control and synchroniza-
tion of chaos/STC by using NFF, apart from
different natures of the reference (targeted) state.

It can be seen from Figs. 1-7 that all of the
NFFls corresponding to Eqs. (15)-(22) work
very well for control/synchronization of STC.
Results with other values of L, u and feedback to
the dynamical variable for the CMLR, CMLRR,
MLK, CMLS and CMLH with right parameters
can achieve the control and synchronization of
spatiotemporal chaos.
What is the mechanism for both cases by the

NFFM? It is exciting to know development pro-
cess for stabilizing UPP once the NFF signal is
applied to the variables of the lattices. It is very
similar to the process of reorganization in Ref. [4]
and we observe synchronization itself to goal
UPP in the CMLs. There are about three stages
of evolution in general controlled by the NFF1.
The first stage of evolution is still in chaos both
in space and time when the feedback signal is
just applied in the beginning, in which there are
a few goal periodicities emerging through com-
peting with different periodic patterns due to the
role of the feedback signal G,,(i) and reorganiza-
tion. When time evolution is going on, catas-
trophe phenomena occur in both time and
space, where the goal UPP becomes winner,
clearly preferred stable periodic pattern suddenly
begins to synchronize with the goal pattern.
Finally, it takes over the whole lattice when time
n goes on increasing. We also observe that the
time scale of this transition of the goal time peri-
odic pattern is found to be the same as that of
the spatial transition to the spatial periodic pat-
tern. This shows that the NFF signal speeds up

simultaneously to synchronize to the goal pattern
for the CML both in space and time. The above
processes exhibit a possible mechanism of control
of STC by the NFFM.

It is shown above that the nonlinear forms of
the feedback function, such as main kinds of
NFF1, Eqs. (15)-(22), are effective for control-
ling STC and synchronizing chaotic and hyper-
chaotic systems [23]. Obviously, the feedback
scheme of Eqs. (1) and (3) and Eqs. (8) and (9)
not only includes the approaches just mentioned
but also has the flexibility of introducing possible
new feedback functions and thus giving robust-
ness to the method of feedback control, such as
the active-passive decomposition scheme [24]
and the approaches of Pecora and Carroll [25].
There are large classes of the NFF1 which may
satisfy the above requested property. But there is
no general method of constructing NFF1 so far.
The NNF2 is suitable for generating new dy-
namics when desired UPP may not be known or
it is not necessary and difficult to be found. Be-
cause of the robustness of the NFF method, it
does not seem to be hard to find some feedback
functions both of NFF1 and NFF2 for a given
system by trial and error.
One can explore larger classes of nonlinear

feedback functions to control or synchronize chaos
and hyperchaos [23] as well as spatiotemporal
chaos. We anticipate that a realization of the
existence of such a flexibility will help design
appropriate feedback control/synchronization in
real experimental situations. It would be very in-
teresting to see how these findings can be put to
use in experiments. One area to which our find-
ings may be directly relevant is the storage and
retrieval of memory in neural networks. Another
possible area of application is in secure commu-
nication spatiotemporal chaotic or hyperchaotic
signals are transmitted to mask a message and a
synchronized receiver system is set to recover the
message. Thus it may improve security and ob-
tain a more efficient encoding of information.

In conclusion, the unified nonlinear feedback
functional method is presented to study both
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control and synchronization of spatiotemporal
chaos. We have clarified the method by the CML
with five connection forms (CMLR, CMLRR,
CMLK, CMLS and CMLH). We have not found
any difficulty in controlling and synchronizing
spatiotemporal chaos for the CMLs based on
any large number of chaotic elements. Although
our method has been applied to time continuous
dynamical systems (as shown in hyperchaotic sys-
tems [23]), it is now applied to time discrete dy-
namical systems. It may be useful for considering
social problems.
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