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The existence and global exponential stability of periodic solutions for a class of numerical
discretization neural networks are considered. Using coincidence degree theory and Lyapunov

method, sufficient conditions for the existence and global exponential stability of periodic solutions
are obtained. Numerical simulations are given to illustrate the results.

1. Introduction

In this paper, we investigate the existence and stability of periodic solutions for a numerical
discretization neural network, which results from the 0-method for neural networks with
finite delays and distributed delays:

%i(t) = —bi()x;(t)

+ fi(t,xl(t— T (®), e Tt = Tom();
(1.1)

I+m kii(s)x1(t —s)ds,..., J‘+°° Kim (8) %, (£ = s)ds) + I;(t),
0 0

t>0, 7;(H)>0, ij=1,...,m

System (1.1) is a more general form of neural networks with delay. Many authors have
discussed other neural networks with delays [1-8], and most of their systems can be deduced
from (1.1).
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For system (1.1), we make the following assumptions.

(H,) Foreachi e {1,...,m}, b;(t) is bounded and continuous with b;(t) > 0 and b;(t+w) =
b;(t) for t € R*, I;(t) is bounded and continuous, and I;(t + w) = I;(t) for t € R*,
where w is a positive constant.

(Hz) Foreachi,j € {1,...,m}, kij : R* — R* satisfies

f kij(s)ds =1, f skij(s)ds < +co. (1.2)
0 0

(H3) Foreachie {1,...,m}, fi : R" xR"xR™ — Ris bounded and continuous and there
exists nonnegative, bounded, and continuous functions a;;(t), f;;(t) defined on R*
such that

|fi(tlu1/"'lum;vll’"/vm) _fi(t/ﬁll"'Iﬂm;all"‘lam)|

m _ . . (1.3)
SZ[ai]-(t)|uj—u]-|+[3ij(t)|vj—v]-|], i=1,...,m.
=1
forany (ui, ..., um), (U1,..., Um), (V1,...,0m), (01,...,0m) € R™.
For system (1.1), we consider initial conditions of the form
xi(t) = ¢i(t), te€(-o0,0],i=1,...,m, (1.4)

where ¢;(t) is bounded and continuous on (—oo, 0].

For convenience in our study, we adopt the following notations. Let Z denote the set
of all integers, Z{ = {0,1,2,...},[a,b]; = {a,a+1,...,b-1,b} where a,b € Z,a < b, and
[a,0); = {a,a+1,a+2,...} where a € Z. We begin approximating the continuous-time
network (1.1) by replacing the integral terms with discrete sums of the form

f:o Kyt -s)ds = > wi;(h)ki,([%]h)x,([%] h- [%] h) 15

[s/h]=1

fort € [nh,(n+1)h),s € [ph, (p + 1)h),n € Z],p € Z*, where [r] denotes the integer part of a
real number 7, h > 0 is a fixed number denoting a uniform discretization step size satisfying
h=w/w,weN,wjh) >0, for h>0and w;j(h) = h+ O(h?) for small h > 0. We note that
w;j(h) are chosen so that the analogue kernels

([ - ()

satisfy the following properties:

(Ha) Hij : Z* — [0,+00), 3,5 Hij(p) = 1, 3,5 Hij(p)p < oo.
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This analogue has been employed elsewhere (see, e.g., [9-11] in the formulation of discrete-
time analogues of the distributed delay). With (1.5) and (1.6), we approximate (1.1) by
differential equations with piecewise constant arguments of the form

Xi(t) = =bi(t)x;(t)

+ f; <t,x1(t — 71 (1), ., Xt = Tim(£)); [nglaeﬂq%] h>x1<[%] h- [%] h)

[sgfeim ( [%] " > X ( [%] h- [%] h)> +L(t)

(1.7)

for t € [nh,(n+ 1)h),s € [ph,(p +1)h), and n € Z;,p € Z*. Noting that [t/h] = n, and
[s/h] = p and adopting the notation u(n) = u(nh), we rewrite (1.7) as

xi(t) = = bi(t)xi(t)

+ fi <t,x1(t =T1(t), ..., X (t = Tim (t)); Z.O'Jeil (p)x1(n-p),...,
p=1 (18)

+00
Z#im(p)xm(n—p)> +I;(t), t>0,i=1,...,m.
p=1

The initial values of (1.8) will be given below in (1.14).
The application of 8-method to the differential equation

X(t) = f(t, x(t)) (1.9)
gives
Xn41 = Xn + HOf (tn, x4) + H(1 = 0) f (tps1, Xns1), 0<0<1, (1.10)

where h is step size.
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Applying 6-method (1.10) to (1.8) over the interval [nh,t], where t < (n + 1)h and
adopting the notation u(n) = u(nh), we have

xi(t) = x;(n) + (t —nh)0

x < - bi(n)x;(n) + fi <n,x1(n -11(n)),..., xm(n - Tim(n));fjeffﬂ (p)xi(n-p),...,

p=1

Zdéim(p)xm(n—p)> +L~(n)> +(t—nh)(1-0)
p=1
X <— bi(t)xi(t) + fi <t,x1(t - Til(t)),. . .,xm(t - Tim(t)),'

zie’éﬂ (p)xi(n —p),...,zoje’éim(p)xm(n —p)> + Ii(t)>,

i=1,...,m, neZj, here0<6<1,
(1.11)

and by allowing t — (n + 1)h in the above, we obtain

xi(n+1)

= x;(n) + ho

p=1

x <—bi(n)xi(n) +f <n,x1(n—Tﬂ(n)),...,xm(n—Tim(n));fefeﬂ(p)xl(n—p),...,
ge/eim(p)xm(n—p)> +1,»(n)> +h(1-06)
x <—bi(n+1)xi(n+1) +fi<n+1,x1(n+1 —ra(n41)), . Xom(1 4 1 = Tom(n +1));
g#ﬂ(P)xl("—P)r-'wg#im(i?)xm("—l?)) +Ii(n+1)>,

i=1,....m, ne€Zj, here0<0<1.
(1.12)
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Then we have

xi(n+1)

1
1+ (1-0)hbi(n+1)

X ((1 — Ohb;(n))x;(n) + 6h <fl <n, x1(n—-ta(n)),..., xmm - Ty (n));
ZJZil (p)xi(n-p),.. .,ZJZim(p)xm (n- p)> + L-(n)>
p=1 p=1
+(1- 9)h<fi <n+ Lxiin+1l-t1(n+1)),...,xp(n+1-1(n+1));

Jzo}léﬂ (p)xi1(n —p),...,i#im(p)xm(rz —p)) +ILi(n+ 1)>>,

i=1,...,m, neZj, here0<6<1.
(1.13)

One can show that (1.13) converges towards (1.1) when h — 0*. In studying the discrete-time
analogue (1.13), we assume that

(Hs) h € (0,0), bj : Z — (0,00), 73j : Z — Z§, i,j = 1,2,...,m, and the function f;
satisfies (H3). The system (1.13) is supplemented with initial values given by

xi(s) = gi(s), se€Z;={0,-1,-2,...}. (1.14)

For convenience, we will use the following notations
1 w-1
L,={0,1,...,w-1}, u=—=>u(k), (1.15)
=

where {u(k)} is w-periodic sequence of real numbers defined for k € Z and the notations:
M _ . M _ .
&ij = rgeazx aij(n), ﬂij = nr}éizx Pij(n),
ne

bi=min{bi(m)}, bi=max{b(n)}, i=12...,m, (1.16)

M= sup {|fi(w)

UER* xR xRM™

,i=1,2,...,m}, ]M=m?x{|I,~(n)|, i=1,2,...,m}.
nel,



6 Discrete Dynamics in Nature and Society

2. Existence of Periodic Solutions

In this section, based on Mawhin’s continuation theorem (see [12-14]), we will study the
existence of at least one periodic solution of (1.13).

Let X, Z be normed vector spaces, L : DomL ¢ X — Z a linear mapping, and N :
X — Z a continuous mapping. This mapping L will be called a Fredholm mapping of index
zero if dimKer L = codim Im L < oo and Im L is closed in Z. If L is a Fredholm mapping of
index zero and there exist continuous projectors P : X — X and Q : Z — Z such that Im P
=KerL, KerQ =ImL =Im(I — Q), it follows that L | Dom LN Ker P : (I - P)X — ImL is
invertible; we denote the inverse of that map by kp. If Q is an open bounded subset of X, the
mapping N will be called L-compact on Q; if QN(Q) is bounded and kp(I - Q)N : Q — X
is compact, since Im Q is isomorphic to Ker L, there exist isomorphisms J : ImQ — Ker L.

Lemma 2.1. Let L be a Fredholm mapping of index zero and let N be L-compact on Q. Suppose that

(a) for each A € (0,1) every solution x of Lx = ANx is such that x ¢ 0Q,
(b) QNx #0 for each x € 0Q NKer L and deg{JOQN,QNKerL, 0} #0.

Then the equation Lx = Nx has at least one solution lying in Dom LN Q.

Theorem 2.2. Assume that (H1)—(Hs) and b;h < 1 hold, Then system (1.13) has at least one w-
periodic solution.

Proof. Define

Ly ={x=x(k):x(k) eR™, keZ},

" 172
x| = (fo) , VYxeR™
i=1

(2.1)

Let [ C I,, denote the subspace of all w-periodic sequences equipped with the norm || - ||, that
is, ||x|| = maxey, |x(k)|, for any x(k) = {1 (k), x2(K), ..., xm(K)T, ke Z} elv.

It is easy to prove that [ is a finite-dimensional Banach space.

Let

w-1

I = {y = (YR} 1 =Sy = 0}, 1=y ={y()) el y(k) =ceR", keZ],
k=0

(2.2)

then it follows that [j) and I’ are both closed linear subspaces of I and

“=1el®,  diml=m. (2.3)
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Now letus define X =Y =%, (Lx)(k) = x(k+1) —x(k), x € X, k € Z,and

h(Obi(n) + (1 - 0)bi(n + 1)) oh
T+ A0+ VT AC oD

(Nxi)(n) = -

x <fi <n, x1(n =71 (n)), ..., Xm(n = Tim(n)); feﬂn (p)xi(n-p),...,

p=1

o (1-06)h
g%m<p)xm(”‘p)> ”i(n)) T T (- 0)hbi(n+ 1)

(2.4)
X <f1- <n +1L,xin+1-1tn(n+1)),...,. x(n+1 -1 (n+1));
+00 T
S Hap)xi(n=p),..., > Him(p)xm(n-p) | +Li(n+1) ),
p=1 p=1
i=1,...,m, neZ;.
It is easy to see that L is a bounded linear operator and
KerL =12, ImL =1, (2.5)
as well as
dim Ker L = m = codim ImL; (2.6)
then it follows that L is a Fredholm mapping of index zero.
Define
1 w-1 1 w-1
Px = —Zx(k), x €X, Quy = —Zy(k), yeY. (2.7)
= =
It is not difficult to show that P and Q are continuous projectors such that
ImP =Kerl, KerQ=ImL=Im(I - Q). (2.8)
Furthermore, the generalized inverse(to L) kp : ImL — Ker PN Dom L is given by
n-1 1 v=1
(key)(m) = 2 y() = => 3 y(s), nel0w-1 (29)
v=0 v=1s=0

Clearly, QN and kp(I — Q)N are continuous, since X is a finite-dimensional Banach space.
Using the Arzela-Ascoli theorem, it is not difficult to show that kp(I — Q)N Q) is compact
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for any open bounded set & C X. Moreover, QN (Q) is bounded. Thus, N is L-compact on Q.

Since Im Q = Ker L, the isomorphic mapping J from Im Q to Ker L is I. We now are in position

to search for an appropriate open, bounded subset Q C X for the continuation theorem.
Corresponding to operator equation Lx = ANx, A € (0,1), we have

_h(Obi(n) + (1-O)bi(n+1)) oh

T+ A-0ibm+]) I AComms D)

xi(n+1) —xi(n) = A(

x <f1 <n,x1(n -tn(n)),..., xm(n— Tim(n));ioJé,-l (p)xi(n-p),...,
p=1

o (1-0)h
Pglv/gim(p)xm(n - p)> + Ii(”)) R (1-0)hbi(n+1)

X <fl- <n+1,x1(n+1 —ta(n+1)),...,.xmn+1-1p,(n+1));

24&1 (p)xi(n-p),. ..,Ze’fim(}?)xm(n —p)> +Ii(n+1) >>,

i=1,...,m, neZ;.
(2.10)

Suppose that {(x1(n), x2(n),...,xm(n))T} € X is a solution of system (2.10) for a certain
A € (0,1). In view of (2.10) and condition b;h < 1 in Theorem 2.2, we have

max|x;(n)| = max|x;(n + 1)|
nel, nel,

< max
nel,

AR (Ob;(n) + (1 = O)bi(n +1)) A6k
<<1_ 1+ (1-0)hbi(n+1) >|xi(n)|+1+(1—9)hb,~(n+1)

X

fi <n, x1(n—Tin(n)),..., Xm(n = Tim(n)); fﬂn (p)x1(n-p),...,
p=1
A(1-0)h

Ty A-0)hb(n+1)

S i (p) (1 - P)> +Ii(n)
p=1

X

fi <n+1,x1(n+1 —ta(n+1)),...,.xmn+1-1p,(n+1));

Z.Oe’eil (p)xi(n-p),..., f#im (p)xm(n - p)> +L(n+1)
p=1 p=1

Ahb;
<({1- — max|xi(n)|+/\h<M+]M>.
1+ hb; /) n€lo

)

(2.11)
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Therefore,
b;
= _max|xi(n)| < (M + ]M), i=1,2,...,m, (2.12)
1+ hbl nely
that is,
(M + JM) (1 + hb;
max|x; (1) < b< ) =A;, i=12,...,m. (2.13)
nel, i

Denote A = (374 Al.z)l/ > + B, where B > 0 is a constant. Clearly, A is independent of \.
Now we take Q = {x € X : ||x]| < A}. This Q satisfies condition (i) in Lemma 2.1. When
x € 0QNKerL = 0Q2N R™, x is a constant vector in R™ with ||x|| = A. Then, if necessary, we
can let A be greater such that

_ (25O + (1= O)bi(k + 1)
xXTQNx =Y (—X?hz w(1+ (1-0)hb;(k +1))

i=1 k=0

+x-wz_1< Oh (f(k x x )+I-(k))
lk:O w(1+(1_9)hbl(k+1)) i\ AL ey Am i

(1-6)h
Yo x40 hbk w1y ik + L) + Lk + 1))>> (2.14)

m b;h
St )

bih
< —min { —=— Hjx|]? + vmh(M + ]M>||x|| <0.
1+ hbl

Therefore, QN x #0 for any x € 0QnNker L. Let ¢:(y; x) = -yx+(1-y)QNx, y € [0,1], then for
any x € 0Qnker L, x¢s(y; x) < 0. From the homotopy invariance of Brower degree, it follows
that

deg{JON,QnNKerL,0} =deg{-x,QNnKerL,0} #0. (2.15)

Condition (b) of Lemma 2.1 is also satisfied. Thus, by Lemma 2.1 we conclude that Lx = Nx
has at least one solution in X, that is, (1.13) has at least one w-periodic solution. The proof is
complete. m

3. Stability of Periodic Solution

In this section, we shall construct appropriate Lyapunov functions to study the stability of
periodic solutions of (1.13).
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Theorem 3.1. Assume that (H1)—(Hs) holds. Furthermore, assume that 7;j(n) = 7;; > 2, 7;j € Z",
neZ ij=1,2,...,mare constants and

bih<1,  6b> i(aj‘f + ﬂ?f), fp)&’,zﬁ(p) < +00, (3.1)
j=1 p=1

then the w-periodic solution x*(n) = {(x{(n),x;(n),...,x;*n(n))T} of (1.13) is unique and global
exponential stability in the sense that there exist constants A > 1 and 6 > 1 such that

zm”x,-(n) -xi(n)| <6 1 nzm: sup|xi(s) - xi(s)| p, neZ. (3.2)
A
i=1 i

i=1 SEZa

Proof. Let x(n) = {(x1(n), x2(n),..., xu(n))"} be an arbitrary solution of (1.12), and x*(n) =
{(x](n),x5(n),..., x, (n))"} a w-periodic solution of (1.12). Then

|xi(n+1) = x} (n+1)| < |xi(n) - x:-‘(n)|<1 - egh)

m
+ QhZalg}/fixj (n—mj) - xj(n- Tij)'
j=1

+ RPN i (p) |xi(n=p) - x; (n=p)| (3:3)
=1 p=1

m
+(1 —G)hZaf}’I|xj(n+1 - i) —x;(n+1 —Tij)|
j=1
i=1,2,...,m.

Now we consider functions f;(:,-), i =1,2,...,m, defined by

m

m +oo
pi(vi,n) =1 -v;(1-6b;(n)h) —h aﬁflv:jiﬂ - hZﬁﬁ’IZUfﬂe’Zﬁ(p), (3.4)
=1 -1 pel

where v; € [1,00), nel,, i=1,2,...,m, since
_ S M C M
Bi(1,n) = Ob;(n)h - hz;aﬁ - h}%ﬁji

J= ]=

(3.5)

= h<6bi(n) - -Zﬁj‘f) >hn>0, i=1,2,...,m,
j=1 j=1
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where
S n_ < M _ < M | .
n= E}g‘n{ﬁe j;aji j;ﬂji }/ (3.6)

using the continuity of p;(v;, n) on [1, +oo) with respect to v; and the fact that p;(v;, n) — —oo
as v; — oo uniformly inn € I,, i = 1,2,...,m, we see that there exists v}(n) € (1,0)
such that f;(v;(n),n) = 0 forn € Iy, i = 1,2,...,m. By choosing A = min{v}(n), n €
Io, i =1,2,...,m} where A > 1, we obtain f;(\,n) > O foralln € I,, i = 1,2,...,m with
the implications

m m +co
A(1 - 0b;(n)h) + hza?fﬂﬁ(")” +hY B YNV Hi(p) <1, nely, i=1,2,...,m. (37
j=1 j=1  p=1

Hence,

m m +00
A(1 - Obih) + h]gla;‘fﬂﬁ(")” + hépﬁﬁ;wu@ﬁ (p) <1, i=12,...,m  (38)

Now let us consider

o |xi(n) = x (n) |

u(n) =21 . , neZ i=1,2,...,m. (3.9)

Using (3.3) and (3.9), we derive that

m m +oo
ui(n+1) < A(l - egh)u,-(n) + > Oha} N (n = 7i;) + Y RBY D W K (p)uj(n - p)
j=1 p=1

j=1

+ Z(l - G)hzxg.’l)f"f*luj (n+1-1).

j=1
(3.10)
We consider the Lyapunov function
m m n-1 m +00 n-1
Vim) =3, <u,~(n) + 20half AT S ui(s) + SRS Hij (p) A D ui(s)
i=1 j=1 S=N—T;j j=1 p=1 s=n—-p
(3.11)

+§:(1—9)haf>flf‘7” E u]-(s)>.

j:] S:n+1—Ti]'
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Consider the difference AV (n) = V(n + 1) — V(n) along (3.11), we obtain

AV (n) = Zm: <ui(n +1) —u;(n) + Zmzehaf)ﬂ)f"f” (uj(n) —uj(n-m;j))

i-1 j=1

+ DB > i (p) W (uj(n) —uj(n—p))
i=1 p=1

+i(1 _ Q)hazj,}/fj\ﬂfrl (uj(n) —uj(n+1- Ti]')>>

=1

i=1

< i <<A<1 - egh) >ul (n) + ZhaMAT'J+1u (n) + Zh[} E;prel, (p)u](n)>
p=

g—m 1-A(1-6bih) —h_ aMw“ h [5 wuel p) Jui(n)
bi i(p)
j=

i=1
(3.12)

and by using (3.8) above, we deduce that AV (n) < 0 for n € Z]. From this result and (3.9),
we have

Dui<V(n)<Vv(0) forneZ'. (3.13)
i=1

Thus,
m o |xi(n) - x}(n)|
ST Wb bl

< i <ul(0) + ZQhuMAT’f+1 Z u;(s)

i=1 = S=—Tjj

(3.14)

+§m:hﬁ Zae,](p)WlZu (s) +i(1—9)ha§}4ﬁf” i uj(s)>

j=1 s=-p j=1 s=1-1;;
m

; <1 ¥ hZaMW“T] RS (p)ﬂ’“v) sup{ |xi(s) - x; ()| ).

j=t p=l S€Zy

Therefore, we obtain the assertion in Theorem 3.1:

6= max{1+hZaMw+1T +th Zefeﬂ(p)ﬂ’“ } (3.15)

1<i<m =1 i=1 p=1
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We conclude from (3.2) that the unique periodic solution of (1.13) is global exponential
stability. This completes the proof. O

4. Numerical Simulations

Remark4.1. 1f0 =1/2 or 0 = 1, then (1.13) reduces to a discrete neural network by Trapezoidal
method or Euler method (see Examples 4.2 or 4.3).

Example 4.2. One has

. 2
) = S os G ) +5)
. y(n-3)h x(n-1)h
<(1 Zhicostmar) + oNxm = (-3 1+ @m-1)
zn-Dh (e -Detx(n-p)h
4+ G011y (510 (b - Ve trr(n-p))
5sin(nir) + 5sin((n + 1)yz')>,
- 2
v ) = @G r T D) 7 2)
y ~ x(n—4)h y(?’l—l)h
<(1 2h(cos(bnir) +5))y(n) + 1 (x(n 4))2 + s (y(n - 1))2
2n-0h (e x(n—p)h (1
L+ (z0=0)" 54 (519 (b~ 1)erhx(u-p))’
+5 cos(nar) + 4 cos((n + 1)Jl')>,
z(n+1) = 2

2+ h(4cos(3(n+ 1)) +1)

x(m-3)h __ ym-Dh

. <(1 Ao O = e (g 1)

z(n-7)h . Z;(E(eh_l)efphx("_mh
TGO gy (510 (- e r(n-p))’

+7 cos(nir) + 6cos((n + 1)JI')>,
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of hAAAAA L ol o aaaas
2V A

-10  EEEEE -10 'JV

Figure 1: 0 = 1/2, h = 0.025.

with initial conditions

(1) ¢1(n) = sin(ornh) +7, ¢o(n) = 4cos(3rnh) +1, 3(n) = 2sin(2rnh) —
(2) p1(n) = 0.5sin(2rnh) — 6, y(n) = 0.8 cos(2ornh) + 15, ¢3(n) = sin(3xrnh) -6,
(3) p1(n) =1, p2(n) =3 cos(ornh) — 15, p3(n) = 2sin(2ornh) +9,

respectively.

It is easy to verify that

NS
\%

-
Il
—_

bih <1, (at+ ), 4.2)

and the function <#;;(p) satisfies

100 100

eh—1)e P =1, ple"-=1)e " < Np(e"-1)e™" < +co. (4.3)
2 2 Z

p=1 p=1
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So condition (Hy) is satisfied. Furthermore, using the same method as Theorem 3.1, we can
choose a constant A such that

100 100

© W h
D PNV Hi(p) = D p\ <eh - 1>e”"h < jrzpj\r’ (eh _ 1>efph _AMe"-1)e
p=1 p=1 p=1

= —(1 - ,\e—h)z < +co. (4.4)

Therefore, by using Theorems 2.2 and 3.1, the system (4.1) has a unique positive 2-periodic
solution which is global exponential stability (see Figure 1).

Example 4.3. One has

x(mh_ ymh

*(n+1) = x(n) ~ Ah(Sin(7n) + S)xlm) + FE 2 m o [y(m)]”

z(n)h . x(n—-1)h . ngi (e"=1)ePx(n-p)h
3+ [zm)]* 1+[x(n-1)]? 14+ [Z;Zq(iol (el —1)ePhx(n —P)]

5 + 5sin(nr),

x(n)h y(n)h
2t 2
T+[x(m]” 2+ [y(n)]

y(n+1) = y(n) — 4h[sin(5nr) + 7]y (n) +

zmh | x(n-Dh S (e - 1)ePrx(n—p)h

3+ [zm)]® 1+ [x(n-D1]* 5, [Zﬁ(l(i (eh —1)ePhx(n - p>]

5 +6cos(nr),
x(mh _ y(mh

z(n+1) = z(n) — 4h[sin(3nr) + 7]z(n) + 1+ (P 2+ [y(n)]z

zmh | x(n-Dh S (e - 1)e P x(n-p)h
34l 1+ [xm-DF 54 (520 (h - 1)epie(n-p)|

5 +7sin(nor),

(4.5)

with initial conditions

(1) p1(n) =40, p2(n) =1, ¢3(n) =-20,
(2) p1(n) =50, ¢2(n) =20, p3(n) =-8,

(3) ¢1(n) = =10, ga(n) = ~15, g3(n) = -25,

respectively.

Similarly, it is straight forward to check that all the conditions needed in Theorems
2.2 and 3.1 are satisfied. Therefore, system (4.5) has exactly one 2-periodic solution which is
global exponentially stability (see Figure 2).
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Figure 2: 0 =1, h = 0.025.
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