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Let G a graph and f : G → G be a continuous map. Denote by h(f), R(f), and SA(f)
the topological entropy, the set of recurrent points, and the set of special α-limit points of f ,
respectively. In this paper, we show that h(f) > 0 if and only if SA(f) − R(f)/= ∅.

1. Introduction

Let (X, d) be a metric space. For any Y ⊂ X, denote by
◦
Y , ∂Y , and Y the interior, the boundary,

and the closure of Y in X, respectively. For any y ∈ X and any r > 0, write B(y, r) = {x ∈ X :
d(x, y) < r}. Let � be the set of all positive integers and �+ = � ∪ {0}.

Denote by C0(X) the set of all continuous maps fromX toX. For any f ∈ C0(X), let f0

be the identity map of X and fn = f ◦ fn−1 the composition map of f and fn−1. A point x ∈ X
is called a periodic point of f with period n if fn(x) = x and fi(x)/= x for 1 ≤ i < n. The orbit
of x under f is the set O(x, f) ≡ {fn(x) : n ∈ �+}. Write ω(x, f) =

⋂∞
i=1 O(fi(x), f), called the

ω-limit set of x under f . In fact, y ∈ ω(x, f) if and only if there exists a sequence of positive
integers n1 < n2 < n3 < · · · such that limi→∞fni(x) = y. x is called a recurrent point of f if
x ∈ ω(x, f). x is called a special α-limit point of f if there exist a sequence of positive integers
{ni}∞i=1 and a sequence of points {yi}∞i=0 such that fni(yi) = yi−1 for any i ∈ � and limi→∞yi = x.
Denote by P(f), R(f), and SA(f) the sets of periodic points, recurrent points, and special α-
limit points of f , respectively. From the definitions it is easy to see that P(f) ⊂ SA(f) and
P(f) ⊂ R(f). Let h(f) denote the topological entropy of f , for the definition see [1, Chapter
VIII].

A metric space X is called an arc (resp., an open arc, a circle ) if it is homeomorphic
to the interval [0, 1] (resp., the open interval (0, 1), the unit circle S1). Let A be an arc and
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h : [0, 1] → A a homeomorphism. The points h(0) and h(1) are called the endpoints of A,
and we write End(A) = {h(0), h(1)}. A compact connected metric space G is called a graph
if there are finitely many arcs A1, . . . , An (n ≥ 1) in G such that G =

⋃n
i=1 Ai and Ai ∩ Aj =

End(Ai) ∩ End(Aj) for all 1 ≤ i < j ≤ n. A graph T is called a tree if it contains no circle. A
continuous map from a graph (resp., a tree, an interval) to itself is called a graph map (resp.,
a tree map, an interval map).

Let G be a given graph. Take a metric d on G such that, for any x ∈ G and any r > 0,
the open ball B(x, r) ≡ {y ∈ G : d(y, x) < r} is always connected. For any finite set S, let |S|
denote the number of elements of S. For any x ∈ G, write val(x) = limr → + 0|∂B(x, r)|, which
is called the valence of x. x is called a branching point (resp., an endpoint) of G if val(x) > 2
(resp., val(x) = 1). Denote by End(G) and Br(G) the sets of endpoints and branching points
of G, respectively. Take a finite subset V (G) of G containing End(G) ∪ Br(G) such that, for
any connected component E of G − V (G), the closure E is an arc. Such a subset V (G) is
called the set of vertexes of G, and the closure of every connected component of G − V (G) is
called an edge. For any edge I of G and any a, b ∈ I, we denote by [a, b]I (or simply [a, b]
if there is no confusion) the smallest connected closed subset of I containing {a, b}, which
is called a closed interval of G. So, a closed interval is always a subset of an edge. Write
(a, b] = [b, a) = [a, b] − {a} and (a, b) = (a, b] − {b}. Let G be a graph and J,K ⊂ G closed
intervals, and f ∈ C0(G). We write f(J)�K if there exists a closed subinterval L ⊂ J such that
f(L) = K.

In the study of dynamical systems, recurrent points, topological entropy, and special
α-limit points play an important role. For interval maps, Hero [2] obtained the following
result.

Theorem A (see [2, Corollary]). Let I be a compact interval and f ∈ C0(I). Then the following are
equivalent:

(1) some point y that is not recurrent is a special α-limit point;

(2) some periodic point has period that is not a power of two.

It is known [1, Chapter VIII, Proposition 34] that h(f) > 0 if and only if some periodic
point of f has period that is not a power of two for interval map f .

In [3], Llibre and Misiurewicz studied the topological entropy of a graph map and
obtained the following theorem.

Theorem B (see [3, Theorems 1 and 2]). Let G be a graph and f ∈ C0(G). Then h(f) > 0 if and
only if there exist n ∈ � and closed intervals L, J,K ⊂ G with J,K ⊂ L and |K ∩ J | ≤ 1 such that
fn(J)�L and fn(K)�L.

Recently, there has been a lot of work on the dynamics of graph maps (see [4–13]). In
this paper, we will study the topological entropy and special α-limit points of graph maps.
Our main result is the following theorem.

Theorem 1.1. Let G be a graph and f ∈ C0(G). Then h(f) > 0 if and only if SA(f) − R(f)/= ∅.

2. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. To do this, we need the following lemmas.
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Lemma 2.1 (see [11, Theorem 1]). Let G be a graph and f ∈ C0(G). If x ∈ SA(f), then there exist
a sequence of positive integers n1 ≤ n2 ≤ n3 ≤ · · · and a sequence of points {yi}∞i=0 with y0 = x such
that fni(yi) = yi−1 for any i ∈ � and limi→∞yi = x.

Remark 2.2. The main idea of the proof of Theorem 1 in [11] is similar to the one of Main
Theorem in [2].

Lemma 2.3. Let G be a graph and f ∈ C0(G). Then SA(f) ⊂ f(SA(f)).

Proof. Let x ∈ SA(f). Then there exist a sequence of points {xi}∞i=0 and a sequence of positive
integers 2 ≤ m1 ≤ m2 ≤ · · · such that fmi(xi) = xi−1 for every i ∈ � and limi→∞xi = x. Write
yi = fmi−1(xi) for i ∈ �. Let yk0 = y1, yk1 , yk2 , . . . , yki , . . . be a convergence subsequence of
{yi}∞i=1, and let limi→∞yki = y. Then

f
(
y
)
= lim

i→∞
f
(
yki

)
= lim

i→∞
fmki (xki) = lim

i→∞
xki−1 = x. (2.1)

Write

μi =

⎧
⎨

⎩

mk1−1 + · · · +m1, if i = 1,

mki−1 +mki−2 + · · · +mki−1 , if i ≥ 2.
(2.2)

Then fμi(yki) = fμi+mki
−1(xki) = fmki−1−1(xki−1) = yki−1 for any i ∈ �, which implies that y ∈

SA(f) and SA(f) ⊂ f(SA(f)). The proof is completed.

Lemma 2.4 (see [3, Lemma 2.4]). Let G be a graph and f ∈ C0(G). Suppose that J and L = [a, b]
are intervals of G. If there exist x ∈ (a, b) and y /∈ (a, b) such that {x, y} ⊂ f(J), then f(J)�[a, x]
or f(J)�[x, b].

Theorem 2.5. Let G be a graph and f ∈ C0(G). Then h(f) > 0 if and only if SA(f) − R(f)/= ∅.

Proof Necessity

If SA(f) − R(f)/= ∅, then take a point w0 ∈ SA(f) − R(f). By Lemma 2.3 and f(R(f)) = R(f),
for every i = 1, 2, . . ., there exists a point wi ∈ SA(f) − R(f) such that f(wi) = wi−1. Note
that w0, w1, w2, . . . are mutually different. Since the numbers of vertexes and edges of G are
finite, there exists an edge I ofG such that I ∩{w0, w1, w2, . . .} is an infinite set. We can choose
integers 1 < i1 < i2 < · · · such that {wik : k ∈ �} ⊂ I and wik ∈ (wi1 , wik+1) for every

k ≥ 2. Take points {y, x, z} ⊂
◦
I ∩ (SA(f) − R(f)) with x ∈ (y, z) such that fm(y) = x and

fn(x) = z for some m,n ∈ �. Without loss of generality we may assume that I = [0, 1] and
0 < y < x < z < 1. Since y ∈ SA(f) −R(f), we can take points {yi : i ∈ �} ⊂ (0, 1) and positive
integersm + n < m1 < m2 < m3 < · · · satisfying the following conditions:

(1) the sequence (y1, y2, y3, . . .) is strictly monotonic with fmi(yi) = yi−1 for any i ∈ �

and y0 = y (see Lemma 2.1) and limi→∞yi = y;

(2) mi > m1 +m2 + · · · +mi−1 for any i ≥ 2.
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Let xi = fm(yi) and zi = fn(xi) for any i ∈ �+. Then limi→∞xi = x and limi→∞zi = z. Noting
that x, z ∈ SA(f) − R(f), we can assume that {xi, zi : i ∈ �} ⊂ (0, 1), and there exists ε > 0
such that the following conditions hold:

(3) fi(x) /∈ [x − ε, x + ε] for any i ∈ �;
(4) the sequences (x1, x2, x3, . . .) and (z1, z2, z3, . . .) are strictly monotonic, and {xi : i ∈

�} ⊂ [x − ε, x + ε] ⊂ (y, z).

In the following wemay consider only the case that (x1, x2, x3, . . .) is strictly decreasing
since the other case that (x1, x2, x3, . . .) is strictly increasing is similar.

Write μi = mi +mi−1 + · · · +m1 for any i ∈ �. Put Ii = [xi, xi−1] andAi = fμi−1(Ii) for any
i ≥ 2. Then Ai is a connected set, and

{
fμi−1(xi−1), fμi−1(xi)

}
=
{
x, fμi−1(xi)

} ⊂ Ai. (2.3)

Noting that fmi(fμi−1(xi)) = fμi(xi) = x, we have x ∈ fmi(Ai) ∩ Ai. Write Si =
⋃∞

j=0 f
jmi(Ai).

Then Si is a connected set containing x and fmi(Si) ⊂ Si for every i ≥ 2.
Since fmi(xi−1) = fmi−μi−1(x) and fmi(xi) = xi−1 for any i ≥ 2, by Lemma 2.4 it follows

that fmi(Ii)�[x − ε, xi−1] or fmi(Ii)�[xi−1, x + ε]. There are two cases to consider.

Case 1. There exist 2 ≤ α < β < λ such that fmi(Ii)�[x − ε, xi−1] for every i ∈ {α, β, λ}.

Subcase 1.1. There exists λ ≤ τ such that Sτ/⊂(0, 1). Then Sτ ∩ {yα, zα+1}/= ∅, and there exist
r ≥ μτ−1 and u ∈ Iτ such that fr(u) ∈ {yα, zα+1}, from which andmα+1 > m + n it follows

fm+r(u) = fm(yα

)
= xα or fmα+1−n+r(u) = fmα+1−n(zα+1) = xα. (2.4)

Noting fm+r(xτ−1) = fm+r−μτ−1(x) and fmα+1−n+r(xτ−1) = fmα+1−n+r−μτ−1(x), we have

{
fm+r−μτ−1(x), fmα+1−n+r−μτ−1(x)

} ∩ [x − ε, x + ε] = ∅. (2.5)

There exists s ∈ {m + r,mα+1 − n + r} such that fs(Iτ)�Iβ ∪ Iλ or fs(Iτ)�Iα, which implies

fs+mλ(Iλ)�fs(Iτ)�Iβ ∪ Iλ or fs+mα+mλ(Iλ)�fs+mα(Iτ)�fmα(Iα)�Iβ ∪ Iλ. (2.6)

On the other hand, fmβ(Iβ)�Iβ ∪ Iλ. Thus we can obtain fl(Iλ)�Iβ ∪ Iλ and fl(Iβ)�Iβ ∪ Iλ for
some l ∈ {(s +mλ)mβ, (s +mα +mλ)mβ}. By Theorem B it follows that h(f) > 0.

Subcase 1.2. Si ⊂ (0, 1) for all i ≥ λ, and there exists τ ≥ λ such that x < supSτ . Then we can
take j ≥ τ such that [x, xj] ⊂ Sτ . Thus there exist r ≥ μτ−1 and u ∈ Iτ such that fr(u) = xj ,
which implies fr+mj+···+mα+1(u) = xα. Write s = r + mj + · · · + mα+1. Then fs(Iτ)�Iβ ∪ Iλ or
fs(Iτ)�Iα since fs(xτ−1) = fs−μτ−1(x) /∈ [x − ε, x + ε], which implies

fs+mλ(Iλ)�fs(Iτ)�Iβ ∪ Iλ or fs+mα+mλ(Iλ)�fs+mα(Iτ)�fmα(Iα)�Iβ ∪ Iλ. (2.7)

On the other hand, fmβ(Iβ)�Iβ ∪ Iλ. Thus we can obtain fl(Iλ)�Iβ ∪ Iλ and fl(Iβ)�Iβ ∪ Iλ for
some l ∈ {(s +mλ)mβ, (s +mα +mλ)mβ}. By Theorem B it follows that h(f) > 0.
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Subcase 1.3. One has Si ⊂ (0, 1) and x = supSi for all i ≥ λ.
If fmr (x) < f2mr (x) < x for some r ≥ λ, then there exist j ≥ r + 2 and u ∈ Ir such that

fμr (u) = f2mr (xj) since limi→∞f2mr (xi) = f2mr (x) and {fmr (x), x} ⊂ fμr (Ir), which implies
fμr+mj+mj−1+···+mα+1−2mr (u) = xα. Using arguments similar to ones developed in the proof of
Subcase 1.2, we can obtain fl(Iλ)�Iβ ∪ Iλ and fl(Iβ)�Iβ ∪ Iλ for some l ∈ �. By Theorem B it
follows that h(f) > 0. Now we assume f2mr (x) ≤ fmr (x) < x for all r ≥ λ. Note fμr−1(xr) /∈
O(fmr , x) since x /∈ R(f).

If f2mr (x) ≤ fmr (x) < fμr−1(xr) < x for some r ≥ λ, then fmr ([fmr (x),
fμr−1(xr)])�[fmr (x), x] and fmr ([fμr−1(xr), x])�[fmr (x), x]. By Theorem B it follows that
h(f) > 0.

If fμr−1(xr) < fmr (x) for some r ≥ λ, then there exist j ≥ r + 2 and u ∈ Ir such that
fμr−1(u) = fmr (xj) since limi→∞fmr (xi) = fmr (x) and {fμr−1(xr), x} ⊂ fμr−1(Ir), which implies
fμr−1+mj+mj−1+···+mα+1−mr (u) = xα. Using arguments similar to ones developed in the proof of
Subcase 1.2, we can obtain fl(Iλ)� Iβ ∪ Iλ and fl(Iβ)� Iβ ∪ Iλ for some l ∈ �. By Theorem B it
follows that h(f) > 0.

Case 2. There exists κ ≥ 2 such that fmi(Ii)� [xi−1, x + ε] for all i ≥ κ.

Subcase 2.1. There exist κ ≤ α < β such that Si /⊂ (0, 1) for every i ∈ {α, β}. Then
Sβ ∩ {yβ, zβ+1}/= ∅ and Sα ∩ {yβ, zβ+1}/= ∅. Thus there exist r ≥ μβ−1 and u ∈ Iβ such that
fr(u) ∈ {yβ, zβ+1}, from which it follows that fm+r(u) = xβ or fmβ+1−n+r(u) = xβ. Since
fm+r(xβ−1) = fm+r−μβ−1(x), fmβ+1−n+r(xβ−1) = fmβ+1−n+r−μβ−1(x), and

{
fm+r−μβ−1(x), fmβ+1−n+r−μβ−1(x)

} ∩ [x − ε, x + ε] = ∅, (2.8)

there exists s ∈ {m + r,mβ+1 − n + r} such that fs(Iβ)� Iβ ∪ Iα or fs(Iβ)�Iβ+1, which implies
fs(Iβ)�Iβ∪Iα or fs+mβ+1(Iβ)�fmβ+1(Iβ+1)� Iβ∪Iα. In similar fashion, we can show ft(Iα)�Iβ∪Iα
for some t ∈ �. Thus we get fl(Iβ)� Iβ ∪ Iα and fl(Iα)� Iβ ∪ Iα for some l ∈ {st, (s+mβ+1)t}. It
follows from Theorem B that h(f) > 0.

Subcase 2.2. There exists ϑ ≥ κ such that Si ⊂ (0, 1) for all i ≥ ϑ and there exists τ ≥ λ ≥ ϑ
such that x < supSτ and x < supSλ. Take j ≥ τ + 2 such that Si ⊃ [x, xj] for i ∈ {λ, τ}. Then
there exist r1 ≥ μτ−1, r2 ≥ μλ−1, and u ∈ Iτ , v ∈ Iλ such that fr1(u) = fr2(v) = xj . Using
arguments similar to ones developed in the proof of Subcase 2.1, we can obtain fl(Iλ)� Iτ ∪Iλ
and fl(Iτ)� Iτ ∪ Iλ for some l ∈ �. By Theorem B it follows that h(f) > 0.

Subcase 2.3. There exists ϑ ≥ κ such that Si ⊂ (0, 1) and x = supSi for all i ≥ ϑ.
If there exist τ > λ ≥ ϑ such that fmi(x) < f2mi(x) < x for i ∈ {τ, λ}, then there exist

j ≥ τ + 2, u ∈ Iτ , and v ∈ Iλ such that fμτ (u) = f2mτ (xj) and fμλ(v) = f2mλ(xj), which implies
fμτ+mj+mj−1+···+mτ+1−2mτ (u) = xτ and fμλ+mj+mj−1+···+mτ+1−2mλ(v) = xτ . Using arguments similar to
ones developed in the proof of Subcase 2.1, we can obtain fl(Iλ)� Iτ ∪ Iλ and fl(Iτ)�Iτ ∪ Iλ
for some l ∈ �. By Theorem B it follows that h(f) > 0. Now we assume that there exists θ ≥ ϑ
such that f2mi(x) ≤ fmi(x) < x for all i ≥ θ.

If fμi−1(xi) < fmi(x) < x for all i ≥ θ, then using arguments similar to ones developed
in the above proof, we can obtain h(f) > 0.

If f2mr (x) ≤ fmr (x) < fμr−1(xr) < x for some r ≥ θ, then fmr ([fmr (x),
fμr−1(xr)])�[fmr (x), x] and fmr ([fμr−1(xr), x])�[fmr (x), x]. By Theorem B it follows h(f) > 0.
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Sufficiency

If h(f) > 0, then it follows from Theorem B that there exist n ∈ � and closed intervals L, J,K ⊂
G with J,K ⊂ L and |K ∩ J | ≤ 1 such that fn(J) = L and fn(K) = L. Without loss of generality
we may assume that L = [0, 1] and J = [a, b] and K = [c, d] with 0 ≤ a < b ≤ c < d ≤ 1
such that fn([a, b]) = [0, 1] and fn([c, d]) = [0, 1]. By [1, Chapter II, Lemma 2]we can choose
u, v,w ∈ [0, 1]with u < v < w such that one of the following statements holds:

(i) fn(u) = fn(w) = u, fn(v) = w, fn(x) > u for u < x < w and x < fn(x) < w for
u < x < v.

(ii) fn(u) = fn(w) = w, fn(v) = u, fn(x) < w for u < x < w and u < fn(x) < x for
v < x < w.

We may consider only case (i) since case (ii) is similar. We claim that, for any x ∈ (v,w) and
any 0 < ε < w − x, there exist y ∈ [w − ε,w) and s ∈ � such that fsn(y) = x. In fact, we can
choose u < · · · < xi < xi−1 < · · · < x1 ≤ v < x0 = x such that limi→∞xi = u and fn(xi) = xi−1 for
any i ∈ �. Thus there exists some xN ∈ fn([w − ε,w)). That is, we can choose y ∈ [w − ε,w)
satisfying fn(y) = xN , which implies f (N+1)n(y) = x. The claim is proven.

By the above claimwe can choose a sequence of positive integers {si}∞i=1 and a sequence
of points v < y0 < y1 < y2 < · · · < w such that fnsi(yi) = yi−1 for any i ∈ � and limi→∞yi = w.
Note that fn(w) = fn(u) = u; thenw ∈ SA(fn)−R(fn) ⊂ SA(f)−R(f). The proof is completed.

Acknowledgments

Project Supported by NSF of China (10861002) and NSF of Guangxi (2010GXNSFA013106,
2011GXNSFA018135) and SF of Education Department of Guangxi (200911MS212).

References

[1] L. S. Block and W. A. Coppel, Dynamics in One Dimension, vol. 1513 of Lecture Notes in Mathematics,
Springer, Berlin, Germany, 1992.

[2] M. W. Hero, “Special α-limit points for maps of the interval,” Proceedings of the American Mathematical
Society, vol. 116, no. 4, pp. 1015–1022, 1992.

[3] J. Llibre and M. Misiurewicz, “Horseshoes, entropy and periods for graph maps,” Topology, vol. 32,
no. 3, pp. 649–664, 1993.

[4] A. M. Blokh, “On transitive mappings of one-dimensional branched manifolds,” in Differential-
Difference Equations and Problems of Mathematical Physics (Russian), pp. 3–9, Akad. Nauk Ukrain. SSR
Inst. Mat., Kiev, Russia, 1984.

[5] A. M. Blokh, “Dynamical systems on one-dimensional branched manifolds. I,” Theory of Functions,
Functional Analysis and Applications, no. 46, pp. 8–18, 1986 (Russian), translation in Journal of Soviet
Mathematics, vol. 48, no. 5, pp. 500–508, 1990.

[6] A. M. Blokh, “Dynamical systems on one-dimensional branched manifolds. II,” Theory of Functions,
Functional Analysis and Applications, no. 47, pp. 67–77, 1987 (Russian), translation in Journal of Soviet
Mathematics, vol. 48, no. 6, pp. 668–674, 1990.

[7] A. M. Blokh, “Dynamical systems on one-dimensional branched manifolds. III,” Theory of Functions,
Functional Analysis and Applications, no. 48, pp. 32–46, 1987 (Russian), translation in Journal of Soviet
Mathematics, vol. 49, no. 2, pp. 875–883, 1990.

[8] J.-H. Mai and S. Shao, “The structure of graph maps without periodic points,” Topology and Its
Applications, vol. 154, no. 14, pp. 2714–2728, 2007.

[9] J. Mai and T. Sun, “The ω-limit set of a graph map,” Topology and Its Applications, vol. 154, no. 11, pp.
2306–2311, 2007.



Discrete Dynamics in Nature and Society 7

[10] J.-H. Mai and T.-X. Sun, “Non-wandering points and the depth for graph maps,” Science in China.
Series A, vol. 50, no. 12, pp. 1818–1824, 2007.

[11] T. X. Sun, H. J. Xi, Z. H. Chen, and Y. P. Zhang, “The attracting centre and the topological entropy of
a graph map,” Advances in Mathematics, vol. 33, no. 5, pp. 540–546, 2004 (Chinese).

[12] X. D. Ye, “The centre and the depth of the centre of a tree map,” Bulletin of the Australian Mathematical
Society, vol. 48, no. 2, pp. 347–350, 1993.

[13] X. Ye, “Non-wandering points and the depth of a graph map,” Journal of the Australian Mathematical
Society. Series A, vol. 69, no. 2, pp. 143–152, 2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


