
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2011, Article ID 628369, 12 pages
doi:10.1155/2011/628369

Research Article
Dynamics of a Discrete Internet Congestion
Control Model

Yingguo Li

School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China

Correspondence should be addressed to Yingguo Li, yguoli@fjnu.edu.cn

Received 24 July 2011; Accepted 1 September 2011

Academic Editor: Carlo Piccardi

Copyright q 2011 Yingguo Li. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We consider a discrete Internet model with a single link accessed by a single source, which
responds to congestion signals from the network. Firstly, the stability of the equilibria of the
system is investigated by analyzing the characteristic equation. By choosing the time delay as a
bifurcation parameter, we prove that Neimark-Sacker bifurcations occur when the delay passes
a sequence of critical values. Then, the explicit algorithm for determining the direction of the
Neimark-Sacker bifurcations and the stability of the bifurcating periodic solutions is derived.
Finally, some numerical simulations are given to verify the theoretical analysis.

1. Introduction

Congestion control algorithms and active queue management (AQM) for Internet have been
the focus of intense research since the seminal work of Kelly et al. [1]. The primal algorithms
they have introduced are based on explicit feedback functions, where the sum of user utilities
is maximized within the capacity constraints of the links. In primal algorithms, the users
adapt the source rates dynamically based on the congestion signal generated by the link, and
the links select a static law to determine the link prices directly from the arrival rates at the
links [2]. In [3], a stability condition was provided for a single proportionally fair congestion
controller with delayed feedback. Since then, this result was extended to networks in [4, 5]
and for different classes of controllers in [6].

In this paper, we consider an Internet model with a single link and single source, which
can be formulated as a congestion control systemwith feedback delay. Themodel is described
by [3, 7, 8]

x′(t) = k
[
w − x(t − τ)p(x(t − τ))], (1.1)

where x(t) is the sending rate of the source at time t, k is a positive gain parameter, τ is the
sum of forward and return delays,w > 0 is a target (set point), and the congestion indication
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function p(·) is increasing, nonnegative, and not identically zero, which can be viewed as
the probability that a packet at the resource receives a feedback congestion indication signal.
System (1.1) corresponds to a rate control algorithm for the user, which can be used to adjust
the sending rate x(t) so that the expected number of signals received by the user will tend
to target w. A great deal of research has been devoted to the asymptotic behaviour, periodic
solutions, global stability, and other properties of this model, for which, we refer to [3, 7–9].

But considering the need of scientific computation and real-time simulation, our
interest is focused on the behaviors of discrete dynamics system corresponding to (1.1).
Many authors considered the numerical approximation of a scalar delay differential equation
by using different numerical methods, such as θ-method, Euler method, and Trapezoidal
method (see [10–15]). In this paper, we use the forward Euler scheme to make the
discretization for system (1.1).

Moreover, it is also of interest to find what will happen when the congestion control
system loses stability. The purpose of this paper is to discuss this version as a discrete
dynamical system by using Neimark-Sacker bifurcation theory of discrete systems. We not
only investigate the stability of the fixed point and the existence of the Neimark-Sacker
bifurcations, but also the stability and direction of the Neimark-Sacker bifurcation of the
discrete system.

The paper is organized as follows: in Section 2, we analyze the distribution of the
characteristic equation associated with the discrete model and obtain the existence of the
local Neimark-Sacker bifurcation. In Section 3, the direction and stability of closed invariant
curve from the Neimark-Sacker bifurcation of the discrete delay model are determined by
using the theories of discrete systems in [16]. In the final section, some computer simulations
are performed to illustrate the analytical results found.

2. Stability Analysis

Let u(t) = x(tτ). Then (1.1) can be rewritten as

u′(t) = τk
[
w − u(t − 1)p(u(t − 1))

]
. (2.1)

We consider sufficient small step size of the form h = 1/m, where m ∈ Z+. The Euler method
applied to this equation yields the delay difference equation

un+1 = un + τkh
[
w − un−mp(un−m)

]
, (2.2)

where un is an approximate value to u(nh). Let u∗ be a positive equilibrium of (2.2), then we
have

u∗p(u∗) = w. (2.3)

Set yn = un − u∗, then there follows:

yn+1 = yn + τkh
[
w − (yn−m + u∗

)
p
(
yn−m + u∗

)]
. (2.4)
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By introducing a new variable Yn = (yn, yn−1, . . . , yn−m)
T , we can rewrite (2.4) in the form

Yn+1 = F(Yn, τ), (2.5)

where F = (F0, F1, . . . , Fm)
T , and

Fj =

⎧
⎨

⎩

yn + τkh
[
w − (yn−m + u∗

)
p
(
yn−m + u∗

)]
, j = 0

yn−j+1, 1 ≤ j ≤ m.
(2.6)

Clearly the origin is a fixed point of (2.5), and the linear part of (2.5) is

Yn+1 = AYn, (2.7)

where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 · · · 0 −τkh[p(u∗) + u∗p′(u∗)]

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0
... 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.8)

The characteristic equation of A is given by

a(λ) := λm+1 − λm + τkh
[
p(u∗) + u∗p′(u∗)

]
= 0. (2.9)

It is well known that the stability of the zero equilibrium solution of (2.5) depends on the
distribution of the zeros of the roots of (2.9). In order to proof the existence of the local
Neimark-Sacker bifurcation at fixed point, we need some lemmas as follows.

Lemma 2.1. There exists a τ > 0 such that for 0 < τ < τ all roots of (2.9) have modulus less than
one.

Proof. When τ = 0, (2.9) becomes

λm+1 − λm = 0. (2.10)

The equation has, at τ = 0, anm-fold root λ = 0 and a simple root λ = 1.
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Consider the root λ(τ) such that λ(0) = 1. This root depends continuously on τ and is
a differential function of τ . From (2.9), we have

dλ

dτ
=
kh
[
p(u∗) + u∗p′(u∗)

]

mλm−1 − (m + 1)λm
,

dλ

dτ
=
kh
[
p(u∗) + u∗p′(u∗)

]

mλ
m−1 − (m + 1)λ

m
.

(2.11)

Since p(·) is increasing and nonnegative, we have

d|λ|2
dτ

∣∣∣∣∣
τ=0,λ=1

=

[

λ
dλ

dτ
+ λ

dλ

dτ

]∣∣∣∣∣
τ=0,λ=1

= −2kh[p(u∗) + u∗p′(u∗)] < 0. (2.12)

So with the increasing of τ > 0, λ cannot cross λ = 1. Consequently, all roots of (2.9) lie in the
unit circle for sufficiently small positive τ > 0, and the existence of the τ follows.

A Neimark-Sacker bifurcation occurs when a complex conjugate pair of eigenvalues
of A cross the unit circle as τ varies. We have to find values of τ such that there are roots on
the unit circle. Denote the roots on the unit circle by eiω, ω ∈ (−π,π]. Since we are dealing
with complex roots of a real polynomial, we only need to look for ω ∈ (0, π]. For ω ∈ (0, π],
eiω is a root of (2.9) if and only if

eiω − 1 + τkh
[
p(u∗) + u∗p′(u∗)

]
e−imω = 0. (2.13)

Separating the real part and imaginary part from (2.13), there are

cosω + τkh
[
p(u∗) + u∗p′(u∗)

]
cosmω = 1, (2.14)

sinω − τkh[p(u∗) + u∗p′(u∗)] sinmω = 0. (2.15)

So

cosω = 1 − 1
2
(τkh)2

[
p(u∗) + u∗p′(u∗)

]2
. (2.16)

From (2.14) and (2.15), we obtain that

sinmω cosω + cosmω sinω = sinmω, (2.17)

that is,

sin(m + 1)ω = sinmω, (2.18)
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then there exists a sequence of

ωj ∈
(

2jπ
m

,

(
2j + 1

)
π

m

)

, j = 0, 1, 2, . . . ,
[
m − 1
2

]
, (2.19)

where [·] denotes the greatest integer function. It is clear that there exists a sequence of the
time delay parameters τj satisfying (2.14) and (2.15), according to ω = ωj .
From (2.15), we have

τj = τ
(
ωj

)
=

sinωj

kh
[
p(u∗) + u∗p′(u∗)

]
sinmωj

. (2.20)

Differentiating (2.16) with respect to ω, we obtain that

sinω = τ
{
kh
[
p(u∗) + u∗p′(u∗)

]}2 dτ
dω

. (2.21)

This gives

dτ

dω

∣∣∣∣
ω=ωj ,τ=τj

=
sinωj

τj
{
kh
[
p(u∗) + u∗p′(u∗)

]}2 > 0. (2.22)

Therefore,

0 < τ0 < τ1 < · · · < τ[(m−1)/2]. (2.23)

Lemma 2.2. Let λj(τ) = rj(τ)eiωj (τ) be a root of (2.9) near τ = τj satisfying rj(τj) = 1 and ωj(τj) =
ωj . Then

dr2j (τ)

dτ

∣∣∣∣∣
τ=τj ,ω=ωj

> 0. (2.24)

Proof. From (2.11), we have

dr2j

dτ

∣∣∣∣∣
τ=τj ,ω=ωj

=
d
∣∣λj
∣∣2

dτ

∣∣∣∣∣
τ=τj ,ω=ωj

=

[

λ
dλ

dτ
+ λ

dλ

dτ

]∣∣∣∣∣
τ=τj ,ω=ωj

=
2kh
[
p(u∗) + u∗p′(u∗)

][
m cosmωj − (m + 1) cos(m + 1)ωj

]

∣∣mei(m−1)ωj − (m + 1)eimωj
∣∣2

.

(2.25)
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From (2.14) and (2.15), we obtain that

cosmωj =
1 − cosωj

τjkh
[
p(u∗) + u∗p′(u∗)

] ,

sinmωj =
sinωj

τjkh
[
p(u∗) + u∗p′(u∗)

] .

(2.26)

It is easy to see that
cos(m + 1)ωj = cosmωj cosωj − sinmωj sinωj

=
cosωj − 1

τkh
[
p(u∗) + u∗p′(u∗)

] .
(2.27)

Using (2.25)–(2.27), we have

d
∣∣λj
∣∣2

dτ

∣∣∣∣∣
τ=τj ,ω=ωj

=
2(2m + 1)

(
1 − cosωj

)

τj
∣∣mei(m−1)ωj − (m + 1)eimωj

∣∣2
> 0. (2.28)

This completes the proof.

Lemma 2.3. Equation (2.9) has a pair of simple roots e±iωj on the unit circle when τ = τj , j =
0, 1, 2, . . . , [(m − 1)/2]. Furthermore, if τ ∈ [0, τ0), then all the roots of (2.9) have modulus less than
one; If τ = τ0, then all roots of (2.9) except e±iω0 have modulus less than one. But if τ ∈ (τj , τj+1], for
j = 0, 1, 2, . . . , [(m − 1)/2], (2.9) has 2(j + 1), roots have modulus more than one.

Proof. From (2.18)–(2.20), we have that (2.9) has toots e±iωj if and only if τ = τj and ω = ωj

given in (2.19) and (2.20). By Lemmas 2.1 and 2.2, we know that if τ ∈ [0, τ0), then all roots of
(2.9) have modulus less than one; if τ = τ0, then all roots of (2.9) except e±iωj have modulus
less than one; furthermore, by the Rouchs theorem (Dieudonné [17, Theorem 9.17.4]), the
statement on the number of eigenvalues with modulus more than one is as follows.

Lemma 2.3 immediately leads to stability of the zero solution of (2.4), and equivalently,
of the positive fixed point u = u∗ of (2.2). So we have the following results on stability and
bifurcation in system (2.2).

Theorem 2.4. There exists a sequence of values of the time delay parameter 0 < τ0 < τ1 < · · · <
τ[(m−1)/2] such that the positive fixed point u = u∗ of (2.2) is asymptotically stable for τ ∈ [0, τ0)
and unstable for τ > τ0. Equation (2.2) undergoes a Neimark-Sacker bifurcation at the u∗ when
τ = τj , j = 0, 1, 2, . . . , [(m − 1)/2], where τj satisfies (2.20).

3. Direction and Stability of the Neimark-Sacker Bifurcation in
Discrete Model

In the previous section, we obtain the conditions under which a family of periodic solutions
bifurcate from the steady state at the critical value τ = τj , j = 0, 1, 2, . . . , [(m − 1)/2]. Without
loss of generality, denote the critical value τ = τj by τ∗. For continuous systems, as pointed
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out in Hassard et al. [18], it is interesting and important to determine the direction, stability,
and the period of these periodic solutions bifurcating from the steady state. In this section,
following the idea of Hassard et al., we shall study the direction, stability, and the period
of the bifurcating periodic solution when τ = τ0 in the discrete Internet congestion control
model. The method we used is based on the theories of discrete system by Kuznetsov [16].

Set τ = τ0+ν, ν ∈ R. Then ν = 0 is a Neimark-Sacker bifurcation value for (2.4). Rewrite
(2.4) as

yn+1 = yn − τkh
[(
p(u∗) + u∗p′(u∗)

)
yn−m +

1
2
(
2p′(u∗) + u∗p′′(u∗)

)
y2
n−m

+
1
6
(
3p′′(u∗) + u∗p′′′(u∗)

)
y3
n−m

]
+O
(∣∣yn−m

∣∣4
)
.

(3.1)

So system (2.5) is turned into

Yn+1 = AYn +
1
2
B(Yn, Yn) +

1
6
C(Yn, Yn, Yn) +O

(
‖Yn‖4

)
, (3.2)

where

B(Yn, Yn) = (b0(Yn, Yn), 0, . . . , 0), C(Yn, Yn, Yn) = (c0(Yn, Yn, Yn), 0, . . . , 0), (3.3)

b0
(
φ, ψ
)
= −τkh(2p′(u∗) + u∗p′′(u∗))φmψm,

c0
(
φ, , ψ, η

)
= −τkh(3p′′(u∗) + u∗p′′′(u∗))φmψmηm.

(3.4)

Let q = q(τ0) ∈ C
m+1 be an eigenvector of A corresponding to eiω0 , then

Aq = eiω0q, Aq = e−iω0q. (3.5)

We also introduce an adjoint eigenvector q∗ = q∗(τ) ∈ C
m+1 having the properties

ATq∗ = e−iω0q∗, ATq∗ = eiω0q∗, (3.6)

and satisfying the normalization 〈q∗, q〉 = 1, where 〈q∗, q〉 =
∑m

i=0 q
∗
i qi.

Lemma 3.1 (see [19]). Define a vector-valued function q : C → C
m+1 by

p(ξ) =
(
ξm, ξm−1, . . . , 1

)T
. (3.7)

If ξ is an eigenvalue of A, then Ap(ξ) = ξp(ξ).

In view of Lemma 3.1, we have

q = p
(
eiω0
)
=
(
eimω0 , ei(m−1)ω0 , . . . , eiω0 , 1

)T
. (3.8)
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Lemma 3.2. Suppose that q∗ = (q∗0, q
∗
1, . . . , q

∗
m)

T is the eigenvector ofAT corresponding to eigenvalue
e−iω0 , and 〈q∗, q〉 = 1. Then

q∗ = K
(
1, a0eimω0 , a0e

i(m−1)ω0 , . . . , a0e
i2ω0 , a0e

iω0
)T
, (3.9)

where a0 = −τkh(2p′(u∗) + u∗p′′(u∗)) and

K =
(
eimω0 +ma0e−iω0

)−1
. (3.10)

Proof. Assign q∗ satisfies ATq∗ = zq∗ with z = e−iω0 , then the following identities hold

q∗0 + q
∗
1 = e

−iω0q∗0,

q∗k = e−iω0q∗k−1, k = 2, . . . , m,

a0q
∗
0 = e

−iω0q∗m.

(3.11)

Let q∗m = a0eiω0K, then

q∗ = K
(
1, a0eimω0 , a0e

i(m−1)ω0 , . . . , a0e
i2ω0 , a0e

iω0
)T
. (3.12)

From normalization 〈q∗, q〉 = 1 and computation, (3.10) is held.

Let a(λ) be characteristic polynomial of A and λ = eiω0 . Following the algorithms in
[16] and using a computation process similar to that in [19], we can compute an expression
for the critical coefficient c1(τ0),

c1(τ0) =
g20g11(1 − 2λ0)

2
(
λ20 − λ0

) +

∣∣g11
∣∣2

1 − λ0
+

∣∣g02
∣∣2

2
(
λ20 − λ0

) +
g21
2
, (3.13)

where

g20 =
〈
q∗, B

(
q, q
)〉
, g11 =

〈
q∗, B

(
q, q
)〉
, g02 =

〈
q∗, B

(
q, q
)〉
,

g21 =
〈
q∗, B

(
q,ω20

)〉
+ 2
〈
q∗, B

(
q,ω11

)〉
+
〈
q∗, C

(
q, q, q

)〉
,

ω20 =
b0
(
q, q
)

a
(
λ20
) p
(
λ20
) −
〈
q∗, B

(
q, q
)〉

λ20 − λ0
q −
〈
q∗, B

(
q, q
)〉

λ20 − λ0
q,

ω11 =
b0
(
q, q
)

a(1)
p(1) −

〈
q∗, B

(
q, q
)〉

1 − λ0 q −
〈
q∗, B

(
q, q
)〉

1 − λ0
q.

(3.14)
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By (3.4), (3.8), and Lemma 3.2, we get

b0
(
q, p
(
ei2ω0

))
= −τkh(2p′(u∗) + u∗p′′(u∗)),

b0
(
q, q
)
= −τkh(2p′(u∗) + u∗p′′(u∗)),

b0
(
q, q
)
= −τkh(2p′(u∗) + u∗p′′(u∗)),

c0
(
q, q, q

)
= −τkh(3p′′(u∗) + u∗p′′′(u∗)),

a
(
ei2ω0

)
= ei2(m+1)ω0 − ei2mω0 + τkh

(
2p′(u∗) + u∗p′′(u∗)

)
,

a(1) = τkh
(
2p′(u∗) + u∗p′′(u∗)

)
,

b0
(
q, p(1)

)
= −τkh(2p′(u∗) + u∗p′′(u∗)).

(3.15)

Substituting these into (3.13), we have

c1(τ0) =
K

2

{[
τkh
(
2p′(u∗) + u∗p′′(u∗)

)]2

a(ei2ω0)
+
2
[
τkh
(
2p′(u∗) + u∗p′′(u∗)

)]2

a(1)

−τkh(3p′′(u∗) + u∗p′′′(u∗))
}

.

(3.16)

Lemma 3.3 (see [20]). Given the map (2.5) and assume that

(1) λ(τ) = r(τ)eiω(τ), where r(τ∗) = 1, r ′(τ∗)/= 0 and ω(τ∗) = ω∗;

(2) eikω
∗
/= 1 for k = 1, 2, 3, 4;

(3) Re[e−iω
∗
c1(τ∗)]/= 0.

Then an invariant closed curve, topologically equivalent to a circle, for map (2.5) exists for τ in a
one-side neighborhood of τ∗. The radius of the invariant curve grows like O(

√
|τ − τ∗|). One of the

four cases below applies:

(1) r ′(τ∗) > 0,Re[e−iω
∗
c1(τ∗)] < 0. The origin is asymptotically stable for τ < τ∗ and unstable

for τ > τ∗. An attracting invariant closed curve exists for τ > τ∗.

(2) r ′(τ∗) > 0,Re[e−iω
∗
c1(τ∗)] > 0. The origin is asymptotically stable for τ < τ∗ and unstable

for τ > τ∗. An repelling invariant closed curve exists for τ < τ∗.

(3) r ′(τ∗) < 0,Re[e−iω
∗
c1(τ∗)] < 0. The origin is asymptotically stable for τ > τ∗ and unstable

for τ < τ∗. An attracting invariant closed curve exists for τ < τ∗.

(4) r ′(τ∗) < 0,Re[e−iω
∗
c1(τ∗)] > 0. The origin is asymptotically stable for τ > τ∗ and unstable

for τ < τ∗. An repelling invariant closed curve exists for τ > τ∗.

From the discussion in Section 2, we know that r ′(τ∗) > 0; therefore, by Lemma 3.3, we
have the following result.
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Figure 1: (a) The equilibrium u∗ of (2.2) is asymptotically stable for τ = 0.9 < τ0 = 1.0159, (b) Phase plot of
(2.2) on the plane (u(n), u(n − 4)) for τ = 0.9 < τ0 = 1.0159.

Theorem 3.4. For (2.2), u = u∗ is asymptotically stable for τ ∈ [0, τ0) and unstable for τ > τ0. An
attracting (repelling) invariant closed curve exists for τ > τ0 if Re[e−iω0c1(τ0)] < 0(> 0).

4. Computer Simulation

In this section, we will confirm our theoretical analysis by numerical simulation. We choose
p(x) = x/(20 − 3x) as in [8] and set k = 1.5, m = 4, w = 1. Then τ0 = 1.0159 is the Neimark-
Sacker bifurcation value.

Figures 1 and 2 are about delay difference equation (2.2)when step size h = 0.25.
In Figure 1, we show the waveform plot and phase plot for (2.2) with initial values

uj = 3 (j = 0, 1, . . . , 4) for τ = 0.9 < τ0 = 1.0159. The equilibrium u∗ = 3.2170 of (2.2)
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Figure 2: (a) Waveform plot of (2.2) for τ = 1.1 > τ0 = 1.0159, (b) A bifurcating periodic solution appears
on the plane (u(n), u(n − 4)) for τ = 1.1 > τ0 = 1.0159.

is asymptotically stable. In Figure 2, we show the waveform plot and phase plot for (2.2)
with initial values uj = 3 (j = 0, 1, . . . , 4). The equilibrium u∗ = 3.2170 of (2.2) is unstable
for τ = 1.1 > τ0 = 1.0159. When τ varies and passes through τ0 = 1.0159, the equilibrium
loses its stability and a periodic solution bifurcates from the equilibrium for τ = 1.1 > τ0 =
1.0159. That is the delay difference equation (2.2) which has a Neimark-Sacker bifurcation at
τ0.
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