
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 105496, 9 pages
doi:10.1155/2012/105496

Research Article
On the Behavior of a System of Rational
Difference Equations xn+1 = xn−1/(ynxn−1 − 1), yn+1 =
yn−1/(xnyn−1 − 1), zn+1 = 1/xnzn−1

Liu Keying,1 Wei Zhiqiang,1 Li Peng,1, 2 and Zhong Weizhou2

1 School of Mathematics, North China University of Water Resources and Electric Power,
Zhengzhou 450045, China

2 School of Economics and Finance, Xi’an Jiaotong University, Xi’an 710061, China

Correspondence should be addressed to Zhong Weizhou, weizhou@mail.xjtu.edu.cn

Received 28 June 2012; Accepted 24 August 2012

Academic Editor: Cengiz Çinar
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We are concerned with a three-dimensional system of rational difference equations with nonzero
initial values. We present solutions of the system in an explicit way and obtain the asymptotical
behavior of solutions.

1. Introduction

Difference equations, also referred to recursive sequence, is a hot topic. There has been an
increasing interest in the study of qualitative analysis of difference equations and systems
of difference equations. Difference equations appear naturally as discrete analogues and as
numerical solutions of differential and delay differential equations having applications in
biology, ecology, economics, physics, computer sciences, and so on. Especially, Gu and Ding
[1] have considered the state space models described by difference equations.

Particularly, there is a class of nonlinear difference equations, known as rational
difference equations or fractional difference equations. A lot of work has been concentrated
on it [2–12]. There is one way to study rational difference equations—giving the exact
expression of solutions [4, 5]. Another way is studying the qualitative behavior such as
asymptotical stability using the linearized method, semicycle analysis, and so on [2].

At the same time, more and more attention is paid to systems of rational difference
equations composed by two or three rational difference equations [3, 6–12]. The single
equation is simple, but the coupled ways of systems are various and thus such systems have
no fixed ways to follow to investigate their behavior.
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In [4, 5], Çinar has obtained the solutions of the following difference equations:

xn+1 =
xn−1

1 + xnxn−1
, xn+1 =

axn−1
1 + bxnxn−1

.
(1.1)

In [6], Çinar has proved the periodicity of positive solutions of the following difference
equation system:

xn+1 =
1
yn

, yn+1 =
yn

xn−1yn−1
. (1.2)

In [7], Stevic has investigated the following system of difference equations:

xn+1 =
axn−1

bynxn−1 + c
, yn+1 =

αyn−1
βxnyn−1 + γ

. (1.3)

In fact, such a general system has no explicit solutions and the author has classified the
parameters to give explicit solutions for 14 special cases.

In [8], Kurbanli et al. have studied the behavior of positive solutions of the system of
the following rational difference equations:

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1
xnyn−1 − 1

. (1.4)

Based on it, other three-dimensional systems have been investigated in [9], [10], and
[11], respectively,

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1
xnyn−1 − 1

, zn+1 =
zn−1

ynzn−1 − 1
; (1.5)

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1
xnyn−1 − 1

, zn+1 =
1

ynzn
; (1.6)

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1
xnyn−1 − 1

, zn+1 =
xn

ynzn−1
. (1.7)

In [12], we improved the results on (1.5) of those in [9] and also investigated the
system

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1
xnyn−1 − 1

, zn+1 =
zn−1

xnzn−1 − 1
. (1.8)

Some other results would be presented in [3].
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In this paper, motivated by the above references and the references cited therein, we
consider the following system:

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1
xnyn−1 − 1

, zn+1 =
1

xnzn−1
, (1.9)

where the initial conditions are nonzero real numbers.
In next section, we express solutions of the system (1.9) and try to describe the

behavior of solutions.

2. Main Results

Through the paper, we suppose the initial values to be

y0 = a, x0 = c, y−1 = b, x−1 = d, z0 = e, z−1 = f. (2.1)

Here, a, b, c, d, e, and f are real numbers such that (ad − 1)(cb − 1)/= 0, cdef /= 0. We call this
to be the hypothesis H.

Theorem 2.1. Suppose that the hypothesis H holds and let {xn, yn, zn} be a solution of the system
(1.9). Then all solutions of (1.9) are

xn =

⎧
⎪⎨

⎪⎩

d

(ad − 1)k
, n = 2k − 1,

c(cb − 1)k, n = 2k,
k = 1, 2, . . . , (2.2)

yn =

⎧
⎪⎨

⎪⎩

b

(cb − 1)k
, n = 2k − 1,

a(ad − 1)k, n = 2k,
k = 1, 2, . . . , (2.3)

zn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

cf(cb − 1)k−1
, n = 4(k − 1) + 1,

(ad − 1)k

de
, n = 4(k − 1) + 2,

f

(cb − 1)k
, n = 4(k − 1) + 3,

e(ad − 1)k, n = 4(k − 1) + 4.

k = 1, 2, . . . . (2.4)

Proof. It is obvious to obtain (2.2) and (2.3) and referred to [8]. Here, we only focus on (2.4).
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First, for k = 1, from (1.9) and (2.2), we easily check that

z1 =
1

x0z−1
=

1
cf

,

z2 =
1

x1z0
=

1
(d/(ad − 1))e

=
ad − 1
de

,

z3 =
1

x2z1
=

f

cb − 1
,

z4 =
1

x3z2
= e(ad − 1).

(2.5)

Next, we assume the conclusion is true for k, that is, (2.4) holds.
Then, for k+1, we confirm it. In fact, from (1.9), (2.2), and (2.4), we have the following:

z4k+1 =
1

x4kz4(k−1)+3
=

1

c(cb − 1)2k ×
(
f/(cb − 1)k

) =
1

cf(cb − 1)k
,

z4k+2 =
1

x4k+1z4k
=

1
(
d/(ad − 1)2k+1

)
× e(ad − 1)k

=
(ad − 1)k+1

de
,

z4k+3 =
1

x4k+2z4k+1
=

1

c(cb − 1)2k+1 ×
(
1/cf(cb − 1)k

) =
f

(cb − 1)k+1
,

z4k+4 =
1

x4k+3z4k+2
=

1
(
d/(ad − 1)2k+2

)
×
(
(ad − 1)k+1/de

) = e(ad − 1)k+1,

(2.6)

and complete the proof.

By Theorem 2.1, the expressions of (2.2), (2.3), and (2.4) will greatly help us to
investigate the asymptotical behavior of solutions of (2.4).

Corollary 2.2. Suppose that the hypothesis H holds and let {xn, yn, zn} be a solution of the system
(1.9). Also, if ad = cb = 2, then all solutions of (1.9) are four periodic.

Proof. In this case, from (2.2), (2.3), and (2.4), we have the following:

xn =

{
d, n = 2k − 1,
c, n = 2k,

k = 1, 2, . . .
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yn =

{
b, n = 2k − 1,
a, n = 2k,

k = 1, 2, . . .

zn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
cf

, n = 4(k − 1) + 1,

1
de

, n = 4(k − 1) + 2,

f, n = 4(k − 1) + 3,

e, n = 4(k − 1) + 4,

k = 1, 2, . . . ,

(2.7)

and complete the proof.

Corollary 2.3. Suppose that the hypothesis H holds and let {xn, yn, zn} be a solution of the system
(1.9). Also, if ad, cb ∈ (1, 2), and c > 0, then all solutions of (1.9) satisfy

lim
n→∞

(
x2n−1, y2n−1, z2n−1

)
= (∞,∞,∞),

lim
n→∞

(
x2n, y2n, z2n

)
= (0, 0, 0).

(2.8)

Proof. From the hypothesis and ad, cb ∈ (1, 2), and d > c, we obtain that 0 < ad − 1 < 1,
0 < cb − 1 < 1 and thus, (ad − 1)n and (cb − 1)n tend to zero as n tends to ∞.

First, from (2.2), we have

lim
n→∞

x2n−1 = lim
n→∞

d

(ad − 1)n
= d · ∞ =

{
−∞, d < 0,
+∞, d > 0.

(2.9)

Similarly, from (2.3), we have

lim
n→∞

y2n−1 = lim
n→∞

b

(cb − 1)n
= b · ∞ =

{
−∞, b < 0,
+∞, b > 0.

(2.10)

As far as z2n−1 is concerned, from (2.4) we could consider z4k+1 and z4k+3 for n = k + 1,
respectively,

lim
n→∞

z4k+1 = lim
n→∞

1

cf(cb − 1)k
=

1
cf

· ∞ =

{
−∞, f < 0, c > 0
+∞, f > 0,

lim
n→∞

z4k+3 = lim
n→∞

f

(cb − 1)k+1
= f · ∞ =

{
−∞, f < 0,
+∞, f > 0.

(2.11)
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Thus,

lim
n→∞

z2n−1 =

{
−∞, f < 0,
+∞, f > 0.

(2.12)

Therefore,

lim
n→∞

(
x2n−1, y2n−1, z2n−1

)
= (∞,∞,∞). (2.13)

Next, from (2.2) and (2.3), we have

lim
n→∞

x2n = lim
n→∞

c(cb − 1)n = 0,

lim
n→∞

y2n = lim
n→∞

a(ad − 1)n = 0.
(2.14)

At last, for z2n, we have

lim
n→∞

z4k+2 = lim
n→∞

(ad − 1)k+1

de
= 0,

lim
n→∞

z4k+4 = lim
n→∞

e(ad − 1)k+1 = 0.
(2.15)

Thus,

lim
n→∞

z2n = 0 (2.16)

and complete the proof.

Corollary 2.4. Suppose that the hypothesis H holds and let {xn, yn, zn} be a solution of the system
(1.9). Also, if a, b, c, d ∈ (0, 1), then all solutions of (1.9) satisfy

lim
n→∞

(
x2n−1, y2n−1, z2n−1

)
= (∞,∞,∞),

lim
n→∞

(
x2n, y2n, z2n

)
= (0, 0, 0).

(2.17)

Proof. From a, b, c, d ∈ (0, 1), we have −1 < ad − 1 < 0, −1 < cb − 1 < 0. The remainder is
similar to that of Corollary 2.3 and we omit here.

Corollary 2.5. Suppose that the hypothesis H holds and let {xn, yn, zn} be a solution of the system
(1.9). Also, if ad, cb ∈ (2,+∞), and d > 0, then all solutions of (1.9) satisfy

lim
n→∞

(
x2n−1, y2n−1, z2n−1

)
= (0, 0, 0),

lim
n→∞

(
x2n, y2n, z2n

)
= (∞,∞,∞).

(2.18)
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Corollary 2.6. Suppose that the hypothesis H holds and let {xn, yn, zn} be a solution of the system
(1.9). Also, if ad, cb ∈ (−∞, 0), and d > 0, then all solutions of (1.9) satisfy

lim
n→∞

(
x2n−1, y2n−1, z2n−1

)
= (0, 0, 0),

lim
n→∞

(
x2n, y2n, z2n

)
= (∞,∞,∞).

(2.19)

The above theorems describe the asymptotical behavior of solutions in case of the
initial values lying in different intervals. At last, we describe the behavior in another way.

Corollary 2.7. Suppose that the hypothesis H holds and let {xn, yn, zn} be a solution of the system
(1.9). If one of the following holds:

(1) 1 < ad < cb;

(2) cb < ad < 1;

(3) ad < 1 < cb and ad + cb > 2;

(4) cb < 1 < ad and ad + cb < 2,

then all solutions of (1.9) satisfy

lim
n→∞

x2ny2n−1 = cb,

lim
n→∞

x2n−1y2n = ad,

lim
n→∞

z2n−1z2n = 0.

(2.20)

Proof. In view of (2.2), (2.3), and (2.4), we have

lim
n→∞

x2ny2n−1 = lim
n→∞

(

c(cb − 1)n × b

(cb − 1)n

)

= cb,

lim
n→∞

x2n−1y2n = lim
n→∞

(
d

(ad − 1)n
× a(ad − 1)n

)

= ad.

(2.21)

As far as z2n−1 and z2n are concerned, from (2.4) we could consider z4k+1 and z4k+2,
z4k+3 and z4k+4 for n = k + 1, respectively. In fact, we have

z4k+1z4k+2 =
1

cf(cb − 1)k
× (ad − 1)k+1

de
=

ad − 1
cdef

(
ad − 1
cb − 1

)k

,

z4k+3z4k+4 =
f

(cb − 1)k+1
× e(ad − 1)k+1 = ef

(
ad − 1
cb − 1

)k+1

.

(2.22)

If one of the four conditions holds, we obtain |(ad − 1)/(cb − 1)| < 1 and the conclusion is
apparent.
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Corollary 2.8. Suppose that the hypothesis H holds and let {xn, yn, zn} be a solution of the system
(1.9). If one of the following holds:

(1) 1 < cb < ad;

(2) ad < cb < 1;

(3) ad < 1 < cb and ad + cb < 2;

(4) cb < 1 < ad and ad + cb > 2

and (ad − 1)/cd > 0, then all solutions of (1.9) satisfy

lim
n→∞

x2ny2n−1 = cb,

lim
n→∞

x2n−1y2n = ad,

lim
n→∞

z2n−1z2n = ∞.

(2.23)

The proof is omitted here. In fact, we could obtain |(ad − 1)/(cb − 1)| > 1 if one of the
four conditions holds and the condition of (ad − 1)/cd > 0 is to keep the sign.
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