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This paper studies multispecies nonautonomous Lotka-Volterra competitive systems with delays
and fixed-time impulsive effects. The sufficient conditions of integrable form on the permanence
of species are established.

1. Introduction

In this paper, we consider the nonautonomous n-species Lotka-Volterra type competitive
systems with delays and impulses

x′
i(t) = xi(t)

⎡
⎣ai(t) − bi(t)xi(t) −

n∑
j=1

aij(t)xj

(
t − τij(t)

)
⎤
⎦, t /= tk,

xi

(
t+k
)
= hikxi(tk), i = 1, 2, . . . , n, k = 1, 2, . . . ,

(1.1)

where xi(t) represents the population density of the ith species at time t, the functions ai(t),
bi(t), aij(t), and τij(t) (i, j = 1, 2, . . . , n) are bounded and continuous functions defined on
R+ = [0,+∞), aij(t) ≥ 0, bi(t) ≥ 0, τij(t) ≥ 0 for all t ∈ R+, and impulsive coefficients hik for
any i = 1, 2, . . . , n and k = 1, 2, . . . are positive constants.
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In particular, when the delays τij(t) ≡ 0 for all t ∈ R+ and i, j = 1, 2, . . . , n, then the
system (1.1) degenerate into the following nondelayed non-autonomous n-species Lotka-
volterra system

x′
i(t) = xi(t)

⎡
⎣ai(t) −

n∑
j=1

bij(t)xj(t)

⎤
⎦, t /= tk,

xi

(
t+k
)
= hikxi(tk), i = 1, 2, . . . , n, k = 1, 2, . . . ,

(1.2)

where bii(t) = bi(t) + aii(t) and bij(t) = aij(t) for i, j = 1, 2, . . . , n and i /= j. For system (1.2),
the author establish some new sufficient condition on the permanence of species and global
attractivity in [1].

As we well know, systems like (1.1) and (1.2) without impulses are very important
in the models of multispecies populations dynamics. Many important results on the
permanence, extinction, global asymptotical stability for the two species ormulti-species non-
autonomous Lotka-Volterra systems and their special cases of periodic and almost periodic
systems can be found in [2–14] and the references therein.

However, owing tomany natural andman-made factors (e.g., fire, flooding, crop-dust-
ing, deforestation, hunting, harvesting, etc.), the intrinsic discipline of biological species or
ecological environment usually undergoes some discrete changes of relatively short duration
at some fixed times. Such sudden changes can often be characterized mathematically in
the form of impulses. In the last decade, much work has been done on the ecosystem
with impulsive(see [1, 15–21] and the reference therein). Specially, the following system is
considered in [22]:

x′
i(t) = xi(t)

⎡
⎣ai(t) − bii(t)xi(t) −

n∑
j=1,j /= i

∫0

−∞
kj(s)xj(t + s)ds

⎤
⎦, t /= tk,

xi

(
t+k
)
= hikxi(tk), i = 1, 2, . . . , n, k = 1, 2, . . . .

(1.3)

The author establish some new sufficient conditions on the permanence of species and global
attractivity for system (1.3). However, the effect of discrete delays on the possibility of species
survival has been an important subject in population biology. We find that infinite delays are
considered in the system (1.3). In this paper, it is very meaningful that discrete delays are
proposed in the impulsive system (1.1).

2. Preliminaries

Let τ = sup{τij(t), t ≥ 0, i, j = 1, 2, . . . , n}. We define Cn[−τ, 0] the Banach space of bounded
continuous function φ : [−τ, 0] → Rn with the supremum norm defined by:

∥∥φ∥∥c = sup
−τ≤s≤0

∣∣φ(s)∣∣, (2.1)

where φ = (φ1, φ2, . . . , φn), and |φ(s)| = ∑n
i=1 |φi(s)|. Define Cn

+[−τ, 0] = {φ = (φ1, φ2, . . . , φn) ∈
Cn[−τ, 0] : φi(s) ≥ 0, and φi(0) ≥ 0 for all s ∈ [−τ, 0] and i = 1, 2, . . . , n}.
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Motivated by the biological background of system (1.1), we always assume that all solutions
(x1(t), x2(t), . . . , xn(t)) of system (1.1) satisfy the following initial condition:

xi(s) = φi(s) ∀s ∈ [−τ, 0], i = 1, 2, . . . , n, (2.2)

where φ = (φ1, φ2, . . . , φn) ∈ Cn
+[−τ, 0].

It is obvious that the solution (x1(t), x2(t), . . . , xn(t)) of system (1.1) with initial
condition (2.2) is positive, that is, xi(t) > 0 (i = 1, 2, . . . , n) on the interval of the existence
and piecewise continuous with points of discontinuity of the first kind tk (k ∈ N) at which it
is left continuous, that is, the following relations are satisfied:

xi

(
t−k
)
= xi(tk), xi

(
t+k
)
= hikxi(tk), i = 1, 2, . . . , n, k ∈ N. (2.3)

For system (1.1), we introduce the following assumptions:

(H1) functions ai(t), bi(t), aij(t) and τij(t) are bounded continuous on [0,+∞], and bi(t),
aij(t) and τij(t) (i, j = 1, 2, . . . , n) are nonnegative for all t ≥ 0.

(H2) for each 1 ≤ i ≤ n, there are positive constants ωi > 0 such that

lim inf
t→∞

(∫ t+ωi

t

bi(s)ds

)
> 0, (2.4)

and the functions

hi

(
t, μ
)
=
∑

t≤tk<t+μ
lnhik (2.5)

are bounded for all t ∈ R+ and μ ∈ [0, ωi].

First, we consider the following impulsive logistic system

x′(t) = x(t)
[
α(t) − β(t)x(t)

]
, t /= tk,

x
(
t+k
)
= hkx(tk), k = 1, 2, . . . ,

(2.6)

where α(t) and β(t) are bounded and continuous functions defined on R+, β(t) ≥ 0 for all
t ∈ R+, and impulsive coefficients hk for any k = 1, 2, . . . are positive constants. We have the
following results.

Lemma 2.1. Suppose that there is a positive constant ω such that

lim inf
t→∞

(∫ t+w

t

β(s)ds

)
> 0,

lim inf
t→∞

(∫ t+w

t

α(s)ds +
∑

t≤tk<t+ω
lnhk

)
> 0,

(2.7)
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and function

h
(
t, μ
)
=
∑

t≤tk<t+ω
lnhk (2.8)

is bounded on t ∈ R+ and μ ∈ [0, ω]. Then we have

(a) there exist positive constantsm and M such that

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ M, (2.9)

for any positive solution x(t) of system (2.6);

(b) limt→∞(x(1)(t) − x(2)(t)) = 0 for any two positive solutions x(1)(t) and x(2)(t) of system
(2.6).

The proof of Lemma 2.1 can be found as Lemma 2.1 in [1] by Hou et al.
On the assumption (H2), we firstly have the following result.

Lemma 2.2. If assumption (H2) holds, then there exist constants d > 0 and D > 0 such that for any
t2 ≥ t1 ≥ 0

∣∣∣∣∣
∑

t1≤tk<t2
lnhik

∣∣∣∣∣ ≤ d(t2 − t1) +D, i = 1, 2, . . . , n. (2.10)

The proof of Lemma 2.2 is simple, we hence omit it here.

3. Main Results

Let xi0(t) be some fixed positive solution of the following impulsive logistic systems as the
subsystems of system (1.1):

x′
i(t)= xi(t)[ai(t) − bi(t)xi(t)], t /= tk,

xi

(
t+k
)
= hikxi(tk), k = 1, 2, . . . .

(3.1)

On the permanence of all species xi (i = 1, 2, . . . , n) for system (1.1), we have the following
result.

Theorem 3.1. Suppose that assumptions (H1)-(H2) hold. If there exist positive constants ωi such
that for each 1 ≤ i ≤ n:

lim inf
t→∞

⎛
⎝
∫ t+ωi

t

⎛
⎝ai(s) −

n∑
j /= i

aij(s)xj0
(
s − τij(s)

)
⎞
⎠ds +

∑
t≤tk<t+ωi

lnhik

⎞
⎠ > 0, (3.2)
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and the functions

hi

(
t, μ
)
=
∑

t≤tk<t+μ
lnhik (3.3)

are bounded for all t ∈ R+ and μ ∈ [0, ωi]. Then the system (1.1) is permanent, that is, there are
positive constants γ > 0 and M > 0 such that

γ ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ M, i = 1, 2, . . . , n, (3.4)

for any positive solution x(t) = (x1(t), x2(t), . . . , xn(t)) of system (1.1).

Proof. Let x(t) = (x1(t), x2(t), . . . , xn(t)) be any positive solution of system (1.1). We first prove
that the components xi (i = 1, 2, . . . , n) of system (1.1) are bounded. From assumption (H1)
and the ith equation of system (1.1), we have

x′
i(t) ≤ xi(t)[ai(t) − bi(t)xi(t)], t /= tk,

xi

(
t+k
)
= hikxi(tk), k ∈ N.

(3.5)

by the comparison theorem of impulsive differential equation, we have

xi(t) ≤ yi(t), ∀t ≥ 0, (3.6)

where yi(t) is the solution of (3.1) with initial value yi(0) = xi(0). From the condition (3.2),
we directly have

lim inf
t→∞

(∫ t+ωi

t

ai(s)ds +
∑

t≤tk<t+ωi

lnhik

)
> 0, i = 1, 2, . . . , n. (3.7)

Hence, from conclusion (a) of Lemma 2.1, we can obtain a constant Mi1 > 0, and there is a
Ti1 > 0 such that yi(t) < Mi1 for all t ≥ Ti1. LetM = max1≤i≤n{Mi1} and T1 = max1≤i≤n{Ti1}, we
have

xi(t) ≤ M, ∀t ≥ T1, i = 1, 2, . . . , n. (3.8)

Hence, we finally have

lim sup
t→∞

x(t) ≤ M. (3.9)

Next, we prove that there is a constant γ > 0 such that

lim inf
t→∞

x(t) ≥ γ, i = 1, 2, . . . , n. (3.10)
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For any t1 and t2 directly from system (1.1), we have

xi(t1) = xi(t2) exp

⎛
⎝
∫ t1

t2

⎡
⎣ai(t) − bi(t)xi(t) −

n∑
j=1

aij(t)xj

(
t − τij(t)

)
⎤
⎦dt +

∑
t2≤tk≤t1

lnhik

⎞
⎠. (3.11)

From condition (3.2), we can choose constants 0 < ε < 1 small enough and T2 > 0 large
enough such that

∫ t+ωi

t

⎛
⎝ai(s) − [bi(s) + aii(s)]ε −

n∑
j /= i

aij(s)
[
xj0
(
s − τij(s)

)
+ ε
]
⎞
⎠ds +

∑
t≤tk<t+ωi

lnhik > ε, (3.12)

for all t ≥ T2 and i = 1, 2, . . . , n. Considering (3.5), by the comparison theorem of impulsive
differential equation and the conclusion (b) of Lemma 2.1., we obtain for the above ε ≥ 0 that
there is a T3 > T2 such that

xi(t) ≤ xi0(t) + ε ∀t ≥ T3, i = 1, 2, . . . , n, (3.13)

where xi0(t) is a globally uniformly attractive positive solution of system (3.1).

Claim 1. There is a constant η > 0 such that lim supt→∞xi(t) > η (i = 1, 2, . . . , n) for any
positive solution x(t) = (x1(t), x2(t), . . . , xn(t)) of system (1.1). In fact, if Claim 1 is not true,
then there is an integer k ∈ {1, 2, . . . , n} and a positive solution x(t) = (x1(t), x2(t), . . . , xn(t))
of system (1.1) such that

lim sup
t→∞

xk(t) < ε. (3.14)

Hence, there is a constant T4 > T3 such that

xk(t) < ε ∀t ≥ T4. (3.15)

On the other hand, by (3.13) there is a T5 ≥ T4 such that

xi(t) ≤ xi0(t) + ε ∀t ≥ T5, (3.16)



Discrete Dynamics in Nature and Society 7

where i = 1, 2, . . . , n and i /= k. By (3.11) and (3.16), we obtain

xk(t) = xk(T5 + τ) exp

⎛
⎝
∫ t

T5+τ

⎡
⎣ak(s) − bk(s)xk(t) −

n∑
j=1

akj(s)xj

(
s − τij(s)

)
⎤
⎦ds

+
∑

T5+τ≤tk≤t
lnhkk

)

≥ xk(T5 + τ) exp

⎛
⎝
∫ t

T5+τ

⎡
⎣ak(s) − (bk(s) + akk(s))ε −

n∑
j=1,j /= k

aij(s)
(
xj0
(
s − τij(s)

)
+ ε
)
⎤
⎦ds

+
∑

T5+τ≤tk≤t
lnhkk

)
,

(3.17)

for all t ≥ T5 + τ . Thus, from (3.12) we finally obtain limt→∞xk(t) = ∞, which lead to a
contradiction.

Claim 2. There is a constant γ > 0 such that lim inft→∞xi(t) > γ (i = 1, 2, . . . , n) for any positive
solution of system (1.1).

If Claim 2 is not true, then there is an integer k ∈ {1, 2, . . . , n} and a sequence of initial
function {φm} ⊂ C+[−τ, 0] such that

lim inf
t→∞

xk

(
t, φm

)
<

η

m2
∀m = 1, 2, . . . , (3.18)

where constant η is given in Claim 1. By Claim 1, for every m there are two time sequences
s
(m)
q and t

(m)
q , satisfying:

0 < s
(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
2 < · · · < s

(m)
q < t

(m)
q < · · · , lim

q→∞
s
(m)
q = ∞, (3.19)

such that

xk

(
s
(m)
q , φm

)
≥ η

m
, xk

(
t
(m)
q , φm

)
≤ η

m2
, (3.20)

η

m2
≤ xk

(
t, φm

) ≤ η

m
∀t ∈

(
s
(m)
q , t

(m)
q

)
. (3.21)
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From the above proof, there is a constant T (m) ≥ T2 such that xi(t, φm) < M (i = 1, 2, . . . , n) for
all t ≥ T (m). Further, there is an integer K(m)

1 > 0 such that s(m)
q > T (m) for all q > K

(m)
1 . From

(3.11) and lemma 2.2., we can obtain

xk

(
t
(m)
q , φm

)
≥ xk

(
s
(m)
q , φm

)
exp

⎛
⎜⎝
∫ t

(m)
q

s
(m)
q

⎡
⎣ak(s) − bk(s)M −

n∑
j=1

akj(s)M

⎤
⎦ds+

∑

s
(m)
q ≤tk≤t(m)

q

lnhkk

⎞
⎟⎠

≥ xk

(
s
(m)
q , φm

)
exp
(
−(r1 + d)

(
t
(m)
q − s

(m)
q

)
−D
)
,

(3.22)

where r1 = supt≥0{|ai(t)| + bi(t)M +
∑n

j=1 aij(t)M}. Consequently, from (3.20) we have

t
(m)
q − s

(m)
q ≥ lnm −D

r1 + d
∀q > K

(m)
1 . (3.23)

By (3.12), there is a large enough P > 0 such that for all t ≥ T2, a ≥ P and a ∈ [lwi, (l + 1)wi)
and i = 1, 2, . . . , n, then, we obtain

∫ t+a

t

⎛
⎝ai(s) − [bi(s) + aii(s)]ε −

n∑
j /= i

aij(s)
[
xj0
(
s − τij(s)

)
+ ε
]
⎞
⎠ds +

∑
t≤tk<t+a

lnhik

=
∫ t+lwi

t

⎛
⎝ai(s) − [bi(s) + aii(s)]ε −

n∑
j /= i

aij(s)
[
xj0
(
s − τij(s)

)
+ ε
]
⎞
⎠ds +

∑
t≤tk<t+lwi

lnhik

+
∫ t+a

t+lwi

⎛
⎝ai(s) − [bi(s) + aii(s)]ε −

n∑
j /= i

aij(s)
[
xj0
(
s − τij(s)

)
+ ε
]
⎞
⎠ds +

∑
t+lwi≤tk<t+a

lnhik

> lε − r2wi,

(3.24)

where r2 = supt≥0{|ai(t)| + [bi(t) + aii(t)]ε +
∑n

j /= i aij(s)[xj0(s − τij(s)) + ε]}. So, we choose
L = 2 + (r2wi/ε) such that for all l > L, we have

∫ t+a

t

⎛
⎝ai(s) − [bi(s) + aii(s)]ε −

n∑
j /= i

aij(s)
[
xj0
(
s − τij(s)

)
+ ε
]
⎞
⎠ds +

∑
t≤tk<t+a

lnhik > ε. (3.25)

From (3.23), there is an integer N0 such that for any m > N0 and q > K
(m)
1 , we have

η

m
< ε, t

(m)
q − s

(m)
q > 2Q, (3.26)

where constant Q > P + τ .
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So, whenm > N0 and q > K
(m)
1 , for any t ∈ [s(m)

q +Q+τ, t(m)
q ], from (3.11), (3.21), (3.25),

and (3.26)we can obtain

xk

(
t
(m)
q , φm

)
= xk

(
s
(m)
q +Q + τ, φm

)

× exp

⎛
⎜⎝
∫ t

(m)
q

s
(m)
q +Q+τ

⎡
⎣ak(t) − bk(t)xk

(
t, φm

) −
n∑
j=1

akj(t)xj0
(
t − τkj(t)

)
, φm

⎤
⎦dt

+
∑

s
(m)
q +Q+τ≤tk≤t(m)

q

lnhkk

⎞
⎟⎠

(3.27)

Consequently, from (3.20) and (3.25) it follows

η

m2
≥ η

m2

× exp

⎛
⎜⎝
∫ t

(m)
q

s
(m)
q +Q+τ

⎡
⎣ak(t) − (bk(t) + akk(t))ε −

n∑
j=1,j /= k

akj(t)xj0
(
t − τkj(t)

)
+ ε

⎤
⎦dt

+
∑

s
(m)
q +Q+τ≤tk≤t(m)

q

lnhkk

⎞
⎟⎠

>
η

m2
.

(3.28)

This leads to a contradiction. Therefore, Claim 2 is true. This completes the proof.
When system (1.1) degenerates into the periodic case, then we can assume that there

is a constant ω > 0 and an integer q > 0 such that ai(t + ω) = ai(t), bi(t + ω) = bi(t), aij(t +
ω) = aij(t), tk+q = tk + ω and hik+q = hik for all t ∈ R+, k = 1, 2, . . . and i, j = 1, 2, . . . , n.
From Remarks 2.3 and 2.4 in [1], we can see the fixed positive solution xj0 of system (3.1)
can be chosen to be the ω-periodic solution of system (3.1). Therefore, as a consequence of
Theorem 3.1. we have the following result.

Corollary 3.2. Suppose that system (1.1) is ω-periodic and for each i = 1, 2, . . . , n,

∫ω

0
bi(s)ds > 0,

∫ω

0

⎛
⎝ai(s) −

n∑
j /= i

aij(s)xj0
(
s − τij(s)

)
⎞
⎠ds +

q∑
k=1

lnhik > 0.

(3.29)

Then, system (1.1) is permanent.
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4. Numerical Example

In this section, we will give an example to demonstrate the effectiveness of our main results.
We consider the following two species competitive system with delays and impulses:

x′
1(t) = x1(t)[a1(t) − b1(t)x1(t) − a11(t)x1(t − τ11(t)) − a12(t)x2(t − τ12(t))],

x′
2(t) = x2(t)[a2(t) − b2(t)x2(t) − a21(t)x1(t − τ21(t)) − a22(t)x2(t − τ22(t))],

t /= tk

x1
(
t+k
)
= h1kx1(tk),

x2
(
t+k
)
= h2kx2(tk),

k = 1, 2, . . . .

(4.1)

We take a1(t) = 2, a2(t) = b1(t) = b2(t) = a11(t) = a12(t) = a22(t) = 1, a21 = 1 − | sin(π/2)t|,
τij(t) = 2, h1k = e−1, h2k = e, tk = k. Obviously, system (4.1) is periodic with period ω = 2.
For q = 2, we have tk+q = tk + ω, h1k+q = h1k and h2k+q = h2k for all k = 1, 2, . . .. Consider the
following impulsive logistic systems as the subsystems of system (4.1):

x′
1(t) = x1(t)(2 − x1(t)),

x′
2(t) = x2(t)(1 − x2(t)),

t /= k

x1(t+) = e−1x1(tk),

x2(t+) = ex2(tk),
t = k.

(4.2)

According to the formula in [1], we can obtain that subsystem (4.2) has a unique globally
asymptotically stable positive 2-periodic solution (x10(t), x20(t)), which can be expressed in
following form:

x10(t) =
2x10

x10 + (2 − x10)e−2(t−k)
, t ∈ [k, k + 1), k = 0, 1, 2, . . . ,

x20(t) =
x20

x20 + (1 − x20)e−(t−k)
, t ∈ [k, k + 1), k = 0, 1, 2, . . . ,

(4.3)

where x10 = (2(e−0.2 − e−2)/(1 − e−2)) and x20 = (e − e−1)/(1 − e−1). Since

∫ω

0
(a1(t) − a12(t)x20(t − τ12(t)))dt +

q∑
k=1

lnh1k

= 2
∫1

0

(
2 − x20

x20 + (1 − x20)e−(t−2)

)
dt +

2∑
k=1

lnh1k

≈ 1.5244,
∫ω

0
(a2(t) − a21(t)x10(t − τ21(t)))dt +

q∑
k=1

lnh2k

= 2
∫1

0

(
1 −
(
1 − sin

π

2
t
) 2x10

x10 + (2 − x10)e−2(t−2)

)
dt +

2∑
k=1

lnh2k

≈ 3.8398,

(4.4)
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Figure 1: Time series of x1(t) and x2(t).

we obtain that all conditions in Corollary 3.2 for system (1.1) holds. Therefore, from Theorem
3.1. we see that system (1.1) is permanent (see Figure 1).
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