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Under some simple conditions, by using some techniques such as truncated method for random
variables (see e.g., Gut (2005)) and properties of martingale differences, we studied the moving
process based on martingale differences and obtained complete convergence and complete
moment convergence for this moving process. Our results extend some related ones.

1. Introduction

Let {Yi,−∞ < i < ∞} be a doubly infinite sequence of random variables. Assume that
{ai,−∞ < i < ∞} is an absolutely summable sequence of real numbers and

Xn =
∞∑

i=−∞
aiYi+n, n ≥ 1 (1.1)

is the moving average process based on the sequence {Yi,−∞ < i < ∞}. As usual, Sn =
∑n

k=1 Xk,
n ≥ 1, denotes the sequence of partial sums.

For the moving average process {Xn, n ≥ 1}, where {Yi,−∞ < i < ∞} is a sequence of
independent identically distributed (i.i.d.) random variables, Ibragimov [1] established the
central limit theorem, Burton and Dehling [2] obtained a large deviation principle, and Li
et al. [3] gave the complete convergence result for {Xn, n ≥ 1}. Zhang [4] and Li and Zhang
[5] extended the complete convergence of moving average process for i.i.d. sequence to ϕ-
mixing sequence and NA sequence, respectively. Theorems A and B are due to Zhang [4]
and Kim et al. [6], respectively.
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Theorem A. Suppose that {Yi,−∞ < i < ∞} is a sequence of identically distributed ϕ-mixing
random variables with

∑∞
m=1 ϕ

1/2(m) < ∞ and {Xn, n ≥ 1} is as in (1.1). Let h(x) > 0 (x > 0) be a
slowly varying function and 1 ≤ p < 2, r ≥ 1. If Y1 = 0 and E[|Y1|rph(|Y1|p)] < ∞, then

∞∑

n=1

nr−2h(n)P
(
|Sn| ≥ εn1/p

)
< ∞, ∀ε > 0. (1.2)

Theorem B. Suppose that {Yi,−∞ < i < ∞} is a sequence of identically distributed ϕ-mixing
random variables with EY1 = 0, EY 2

1 < ∞ and
∑∞

m=1 ϕ
1/2(m) < ∞ and {Xn, n ≥ 1} is as in (1.1).

Let h(x) > 0 (x > 0) be a slowly varying function and 1 ≤ p < 2, r > 1. If E[|Y1|rph(|Y1|p)] < ∞,
then

∞∑

n=1

nr−2−1/ph(n)E
(
|Sn| − εn1/p

)+
< ∞, ∀ε > 0, (1.3)

where x+ = max{x, 0}.

Chen et al. [7] and Zhou [8] also studied the limit behavior of moving average process
under ϕ-mixing assumption. Yang et al. [9] investigated the moving average process for
AANA sequence. For more works on complete convergence, one can refer to [3–6, 10–13]
and the references therein.

Recall that the sequence {Xn, n ≥ 1} is stochastically dominated by a nonnegative
random variable X if

sup
n≥1

P(|Xn| > t) ≤ CP(X > t) for some positive constant C, ∀t ≥ 0. (1.4)

Recently, Chen and Li [14] investigated the limit behavior of moving process under
martingale difference sequences. They obtained the following theorems.

Theorem C. Let r ≥ 1, 1 ≤ p < 2 and rp < 2. Assume that {Xn, n ≥ 1} is a moving average process
defined in (1.1), where {Yi,Fi,−∞ < i < ∞} is a martingale difference related to an increasing
sequence of σ-fields Fi and stochastically dominated by a nonnegative random variable Y . If E[Yrp +
Y log(1 + Y )] < ∞, then for every ε > 0,

∞∑

n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)

< ∞. (1.5)

Theorem D. Let r ≥ 1, 1 ≤ p < 2, rp < 2 and 0 < q < 2. Assume that {Xn, n ≥ 1} is a moving
average process defined in (1.1), where {Yi,Fi,−∞ < i < ∞} is a martingale difference related to an
increasing sequence of σ-fields Fi and stochastically dominated by a nonnegative random variable Y .
If

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E
[
Yrp + Y log(1 + Y )

]
< ∞, if q < rp,

E
[
Yrp log (1 + Y ) + Y log2 (1 + Y )

]
< ∞, if q = rp,

EYq < ∞, if q > rp,

(1.6)
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then for every ε > 0,

∞∑

n=1

nr−2−q/pE
(
max
1≤k≤n

|Sk| − εn1/p
)q

+
< ∞, (1.7)

where x+ = x when x > 0 and x+ = 0 when x ≤ 0 and x
q
+ = (x+)

q.

Inspired by Chen and Li [14], Chen et al. [7], Sung [13] and other papers above,
we go on to investigate the limit behavior of moving process under martingale difference
sequence and obtain some similar results of Theorems C and D, but we only need some
simple conditions. Our results extend some results of Chen and Li [14] (see Remark 3.3 in
Section 3). Two lemmas and two theorems are given in Sections 2 and 3, respectively. The
proofs of theorems are presented in Section 4.

For various results of martingales, one can refer to Chow [15], Hall and Heyde [16],
Yu [17], Ghosal and Chandra [18], and so forth. As an application of moving average
process based on martingale differences, we can refer to [19–22] and the references therein.
Throughout the paper, I(A) is the indicator function of set A, x+ = max{x, 0} and C, C1,
C2, . . . denote some positive constants not depending on n, which may be different in various
places.

2. Two Lemmas

The following lemmas are our basic techniques to prove our results.

Lemma 2.1 (cf. Hall and Heyde [16, Theorem 2.11]). If {Xi,Fi, 1 ≤ i ≤ n} is a martingale
difference and p > 0, then there exists a constant C depending only on p such that

E

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣

p)
≤ C

⎧
⎨

⎩E

(
n∑

i=1

E
(
X2

i | Fi−1
))p/2

+ E

(
max
1≤i≤n

|Xi|p
)⎫⎬

⎭. (2.1)

Lemma 2.2 (cf. Wu [23, Lemma 4.1.6]). Let {Xn, n ≥ 1} be a sequence of random variables, which
is stochastically dominated by a nonnegative random variable X. Then for any a > 0 and b > 0, the
following two statements hold:

E
[|Xn|aI(|Xn| ≤ b)

] ≤ C1{E[XaI(X ≤ b)] + baP(X > b)},
E
[|Xn|aI(|Xn| > b)

] ≤ C2E[XaI(X > b)],
(2.2)

where C1 and C2 are positive constants.

3. Main Results

Theorem 3.1. Let r > 1 and 1 ≤ p < 2. Assume that {Xn, n ≥ 1} is a moving average processes
defined in (1.1), where {Yi,Fi,−∞ < i < ∞} is a martingale difference related to an increasing
sequence of σ-fields Fi and stochastically dominated by a nonnegative random variable Y . Let K be a
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constant. Suppose that EYrp < ∞ for rp > 1 and supi E(|Yi|rp | Fi−1) ≤ K almost surely (a.s.), if
rp ≥ 2. Then for every ε > 0,

∞∑

n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)

< ∞, (3.1)

∞∑

n=1

nr−2P

(
sup
k≥n

∣∣∣∣
Sk

k1/p

∣∣∣∣ > ε

)
< ∞. (3.2)

Theorem 3.2. Let the conditions of Theorem 3.1 hold. Then for every ε > 0,

∞∑

n=1

nr−2−1/pE
(
max
1≤k≤n

|Sk| − εn1/p
)+

< ∞, (3.3)

∞∑

n=1

nr−2E

(
sup
k≥n

∣∣∣∣
Sk

k1/p

∣∣∣∣ − ε

)+

< ∞. (3.4)

Remark 3.3. Let F0 ⊂ F1 ⊂ . . . be an increasing family of σ-algebras and {(Xn,Fn), n ≥ 1} be a
sequence of martingale differences. Assume that for some p ≥ 2,

E
(|Xn|p | Fn−1

) ≤ K, a.s., (3.5)

where K is a constant not depending on n, and other conditions are satisfied, Yu [17]
investigated the complete convergence of weighted sums of martingale differences. On the
other hand, under the condition

sup
n,k

E
(
X2

n,k | Fn,k−1
)
≤ K, a.s., (3.6)

and other conditions, Ghosal and Chandra [18] obtained the complete convergence of
martingale arrays. Thus, if rp ≥ 2, our assumption supi E(|Yi|rp | Fi−1) ≤ K, a.s., is reasonable.
Chen and Li [14] obtained Theorems C and D for the case 1 ≤ rp < 2. We go on to investigate
this moving average process for the case rp > 1, especially for the case rp ≥ 2 and get the
results of (3.1)–(3.4). If E[Yrp + Y log(1 + Y )] < ∞ for r > 1, 1 ≤ p < 2 and rp < 2, result
(3.1) follows from Theorem C (see Theorem 1.1 of Chen and Li), but we can obtain results
(3.1) and (3.2) under weaker condition EYrp < ∞. On the other hand, comparing with the
conditions of Theorem D, our conditions of Theorem 3.2 are relatively simple.

4. The Proofs of Main Results

Proof of Theorem 3.1. First, we show that the moving average process (1.1) converges a.s.
under the conditions of Theorem 3.1. Since rp > 1, it has EY < ∞, following from EYrp < ∞.
On the other hand, applying Lemma 2.2 with a = 1 and b = 1, one has

E|Yi| ≤ 1 + C2E[YI(Y > 1)] ≤ 1 + C2EY < ∞, −∞ < i < ∞. (4.1)
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Consequently, we have by
∑∞

i=−∞ |ai| < ∞ that

∞∑

i=−∞
E|aiYi+n| ≤ C3

∞∑

i=−∞
|ai| < ∞, (4.2)

which implies
∑∞

i=−∞ aiYi+n converges a.s.
Note that

Sn =
n∑

k=1

Xk =
n∑

k=1

∞∑

i=−∞
aiYi+k =

∞∑

i=−∞
ai

i+n∑

k=i+1

Yk. (4.3)

Let

Ynj = YjI
(∣∣Yj

∣∣ ≤ n1/p
)
− E
[
YjI
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
, −∞ < j < ∞. (4.4)

Since Yj = YjI(|Yj | > n1/p) + Ynj + E[YjI(|Yj | ≤ n1/p) | Fj−1], we can see that

∞∑

n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)

≤
∞∑

n=1

nr−2P

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

YjI
(∣∣Yj

∣∣ > n1/p
)
∣∣∣∣∣∣
>

εn1/p

2

⎞

⎠

+
∞∑

n=1

nr−2P

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

E
[
YjI
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
∣∣∣∣∣∣
>

εn1/p

4

⎞

⎠

+
∞∑

n=1

nr−2P

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

Ynj

∣∣∣∣∣∣
>

εn1/p

4

⎞

⎠

=: H + I + J.

(4.5)

For H, by Markov’s inequality, Lemma 2.2,
∑∞

i=−∞ |ai| < ∞ and EYrp < ∞, one has

H ≤ 2
ε

∞∑

n=1

nr−2n−1/pE

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

YjI
(∣∣Yj

∣∣ > n1/p
)
∣∣∣∣∣∣

⎞

⎠

≤ C1

∞∑

n=1

nr−2n−1/p
∞∑

i=−∞
|ai|E

⎛

⎝max
1≤k≤n

i+k∑

j=i+1

∣∣Yj

∣∣I
(∣∣Yj

∣∣ > n1/p
)
⎞

⎠
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≤ C2

∞∑

n=1

nr−1−1/pE
[
YI
(
Y > n1/p

)]

= C2

∞∑

n=1

nr−1−1/p
∞∑

m=n
E[YI(m < Yp ≤ m + 1)]

= C2

∞∑

m=1

E[YI(m < Yp ≤ m + 1)]
m∑

n=1

nr−1−1/p

≤ C3

∞∑

m=1

mr−1/pE[YI(m < Yp ≤ m + 1)] ≤ C4E|Y |rp < ∞.

(4.6)

Meanwhile, by the martingale property, Lemma 2.2 and the proof of (4.6), it follows that

I ≤ 4
ε

∞∑

n=1

nr−2n−1/pE

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

E
[
YjI
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
∣∣∣∣∣∣

⎞

⎠

=
4
ε

∞∑

n=1

nr−2n−1/pE

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

E
[
YjI
(∣∣Yj

∣∣ > n1/p
)
| Fj−1

]
∣∣∣∣∣∣

⎞

⎠

≤ C1

∞∑

n=1

nr−2n−1/p
∞∑

i=−∞
|ai|

i+n∑

j=i+1

E
[∣∣Yj

∣∣I
(∣∣Yj

∣∣ > n1/p
)]

≤ C2

∞∑

n=1

nr−1−1/pE
[
YI
(
Y > n1/p

)]
≤ C3E|Y |rp < ∞.

(4.7)

Obviously, one can find that {Ynj ,Fj−1,−∞ < j < ∞} is a martingale difference. So, by
Markov’s inequality, Hölder’s inequality, and Lemma 2.1, we get that for any q ≥ 2,

J ≤
(
4
ε

)q ∞∑

n=1

nr−2n−q/pE

⎧
⎨

⎩max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

Ynj

∣∣∣∣∣∣

q⎫⎬

⎭

≤
(
4
ε

)q ∞∑

n=1

nr−2n−q/pE

⎧
⎨

⎩

∞∑

i=−∞

(
|ai|1−1/q

)
⎛

⎝|ai|1/qmax
1≤k≤n

∣∣∣∣∣∣

i+k∑

j=i+1

Ynj

∣∣∣∣∣∣

⎞

⎠

⎫
⎬

⎭

q

≤
(
4
ε

)q ∞∑

n=1

nr−2n−q/p
( ∞∑

i=−∞
|ai|
)q−1 ∞∑

i=−∞
|ai|E

⎧
⎨

⎩max
1≤k≤n

∣∣∣∣∣∣

i+k∑

j=i+1

Ynj

∣∣∣∣∣∣

q⎫⎬

⎭
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≤ C1

∞∑

n=1

nr−2n−q/p
∞∑

i=−∞
|ai|E

⎛

⎝
i+n∑

j=i+1

E
(
Y 2
nj | Fj−1

)
⎞

⎠
q/2

+ C1

∞∑

n=1

nr−2n−q/p
∞∑

i=−∞
|ai|

i+n∑

j=i+1

E
∣∣Ynj

∣∣q

=: C1J1 + C1J2.

(4.8)

If rp ≥ 2, then we take q large enough such that q > max{(r − 1)/(1/p − 1/2), rp}. From
supj E(|Yj |rp | Fj−1) ≤ K, a.s. and Jensen’s inequality for conditional expectation, we have
supj E(Y

2
j | Fj−1) ≤ K2/(rp), a.s. On the other hand,

E
(
Y 2
nj | Fj−1

)
= E
[
Y 2
j I
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
−
[
E
(∣∣Yj

∣∣I
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

)]2

≤ E
[
Y 2
j I
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
, a.s., −∞ < j < ∞.

(4.9)

Consequently, we obtain by
∑∞

i=−∞ |ai| < ∞ that

J1 ≤ C1

∞∑

n=1

nr−2n−q/p
∞∑

i=−∞
|ai|E

⎛

⎝
i+n∑

j=i+1

E
[
Y 2
j I
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
⎞

⎠
q/2

≤ C2

∞∑

n=1

nr−2−q/p+q/2 < ∞,

(4.10)

following from the fact that q > (r − 1)/(1/p − 1/2). Meanwhile, by Cr inequality, Lemma 2.2
and

∑∞
i=−∞ |ai| < ∞,

J2 ≤ C4

∞∑

n=1

nr−2n−q/p
∞∑

i=−∞
|ai|

i+n∑

j=i+1

E
[∣∣Yj

∣∣qI
(∣∣Yj

∣∣ ≤ n1/p
)]

≤ C5

∞∑

n=1

nr−1−q/pE
[
YqI
(
Y ≤ n1/p

)]
+ C6

∞∑

n=1

nr−1P
(
Y > n1/p

)

≤ C5

∞∑

n=1

nr−1−q/pE
[
YqI
(
Y ≤ n1/p

)]
+ C6

∞∑

n=1

nr−1−1/pE
[
YI
(
Y > n1/p

)]

=: C5J21 + C6J22.

(4.11)
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Since q > rp and EYrp < ∞, one has

J21 =
∞∑

n=1

nr−1−q/p
n∑

i=1

E
[
YqI
(
(i − 1)1/p < Y ≤ i1/p

)]

=
∞∑

i=1

E
[
YqI
(
(i − 1)1/p < Y ≤ i1/p

)] ∞∑

n=i

nr−1−q/p

≤ C1

∞∑

i=1

E
[
YrpYq−rpI

(
(i − 1)1/p < Y ≤ i1/p

)]
ir−q/p ≤ C1EY

rp < ∞.

(4.12)

By the proof of (4.6),

J22 =
∞∑

n=1

nr−1−1/pE
[
YI
(
Y > n1/p

)]
≤ CEYrp < ∞. (4.13)

If rp < 2, then we take q = 2. Similar to the proofs of (4.8), and (4.11), it has

J ≤ C1

∞∑

n=1

nr−2n−2/p
∞∑

i=−∞
|ai|

i+n∑

j=i+1

EY 2
nj

≤ C2

∞∑

n=1

nr−2n−2/p
∞∑

i=−∞
|ai|

i+n∑

j=i+1

E
[
Y 2
j I
(∣∣Yj

∣∣ ≤ n1/p
)]

≤ C3EY
rp < ∞,

(4.14)

following from q > rp, (4.12), and (4.13). Therefore, (3.1) follows from (4.5)–(4.13) and the
inequality above.

Inspired by the proof of Theorem 12.1 of Gut [24], it can be checked that

∞∑

n=1

nr−2P

(
sup
k≥n

∣∣∣∣
Sk

k1/p

∣∣∣∣ > 22/pε

)
=

∞∑

m=1

2m−1∑

n=2m−1
nr−2P

(
sup
k≥n

∣∣∣∣
Sk

k1/p

∣∣∣∣ > 22/pε

)

≤ 22−r
∞∑

m=1

P

(
sup
k≥2m−1

∣∣∣∣
Sk

k1/p

∣∣∣∣ > 22/pε

)
2m−1∑

n=2m−1
2m(r−2)

≤ 22−r
∞∑

m=1

2m(r−1)P

(
sup
k≥2m−1

∣∣∣∣
Sk

k1/p

∣∣∣∣ > 22/pε

)

= 22−r
∞∑

m=1

2m(r−1)P

(
sup
l≥m

max
2l−1≤k<2l

∣∣∣∣
Sk

k1/p

∣∣∣∣ > 22/pε

)
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≤ 22−r
∞∑

m=1

2m(r−1)
∞∑

l=m

P

(
max
1≤k≤2l

|Sk| > ε2(l+1)/p
)

= 22−r
∞∑

l=1

P

(
max
1≤k≤2l

|Sk| > ε2(l+1)/p
) l∑

m=1

2m(r−1)

≤ C1

∞∑

l=1

2l(r−1)P
(
max
1≤k≤2l

|Sk| > ε2(l+1)/p
)

:= D.

(4.15)

If r < 2, then

D = 22−rC1

∞∑

l=1

2l+1−1∑

n=2l
2(l+1)(r−2)P

(
max
1≤k≤2l

|Sk| > ε2(l+1)/p
)

≤ 22−rC1

∞∑

l=1

2l+1−1∑

n=2l
nr−2P

(
max
1≤k≤n

|Sk| > εn1/p
)

≤ 22−rC1

∞∑

n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)
.

(4.16)

Otherwise,

D = C1

∞∑

l=1

2l+1−1∑

n=2l
2l(r−2)P

(
max
1≤k≤2l

|Sk| > ε2(l+1)/p
)

≤ C1

∞∑

l=1

2l+1−1∑

n=2l
nr−2P

(
max
1≤k≤n

|Sk| > εn1/p
)

≤ C1

∞∑

n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)
.

(4.17)

Combining (3.1) with these inequalities above, we obtain (3.2) immediately.

Proof of Theorem 3.2. For all ε > 0, it has

∞∑

n=1

nr−2−1/pE
(
max
1≤k≤n

|Sk| − εn1/p
)+

=
∞∑

n=1

nr−2−1/p
∫∞

0
P

(
max
1≤k≤n

|Sk| − εn1/p > t

)
dt

=
∞∑

n=1

nr−2−1/p
∫n1/p

0
P

(
max
1≤k≤n

|Sk| − εn1/p > t

)
dt

+
∞∑

n=1

nr−2−1/p
∫∞

n1/p
P

(
max
1≤k≤n

|Sk| − εn1/p > t

)
dt
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≤
∞∑

n=1

nr−2P
(
max
1≤k≤n

|Sk| > εn1/p
)

+
∞∑

n=1

nr−2−1/p
∫∞

n1/p
P

(
max
1≤k≤n

|Sk| > t

)
dt.

(4.18)

By Theorem 3.1, in order to proof (3.3), we only have to show that

∞∑

n=1

nr−2−1/p
∫∞

n1/p
P

(
max
1≤k≤n

|Sk| > t

)
dt < ∞. (4.19)

For t > 0, denote

Ytj = YjI
(∣∣Yj

∣∣ ≤ t
) − E

[
YjI
(∣∣Yj

∣∣ ≤ t
) | Fj−1

]
, −∞ < j < ∞. (4.20)

Since Yj = YjI(|Yj | > t) + Ytj + E[YjI(|Yj | ≤ t) | Fj−1], it is easy to see that

∞∑

n=1

nr−2−1/p
∫∞

n1/p
P

(
max
1≤k≤n

|Sk| > t

)
dt

≤
∞∑

n=1

nr−2−1/p
∫∞

n1/p
P

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

YjI
(∣∣Yj

∣∣ > t
)
∣∣∣∣∣∣
>

t

2

⎞

⎠dt

+
∞∑

n=1

nr−2−1/p
∫∞

n1/p
P

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

Ytj

∣∣∣∣∣∣
>

t

4

⎞

⎠dt

+
∞∑

n=1

nr−2−1/p
∫∞

n1/p
P

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

E
[
YjI
(∣∣Yj

∣∣ ≤ t
) | Fj−1

]
∣∣∣∣∣∣
>

t

4

⎞

⎠dt

=: I1 + I2 + I3.

(4.21)

By Markov’s inequality, Lemma 2.2 and EYrp < ∞,

I1 ≤ 2
∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−1E

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

YjI
(∣∣Yj

∣∣ > t
)
∣∣∣∣∣∣

⎞

⎠dt

≤ 2
∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−1

∞∑

i=−∞
|ai|E

⎛

⎝max
1≤k≤n

i+k∑

j=i+1

∣∣Yj

∣∣I
(∣∣Yj

∣∣ > t
)
⎞

⎠dt

≤ C1

∞∑

n=1

nr−1−1/p
∫∞

n1/p
t−1E[YI(Y > t)]dt
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= C1

∞∑

n=1

nr−1−1/p
∞∑

m=n

∫ (m+1)1/p

m1/p
t−1E

[
YI
(
Y > m1/p

)]
dt

≤ C2

∞∑

n=1

nr−1−1/p
∞∑

m=n
m1/p−1−1/pE

[
YI
(
Y > m1/p

)]

= C2

∞∑

m=1

m−1E
[
YI
(
Y > m1/p

)] m∑

n=1

nr−1−1/p

≤ C3

∞∑

m=1

mr−1−1/pE
[
YI
(
Y > m1/p

)]
≤ C4EY

rp < ∞.

(4.22)

Since {Ytj ,Fj−1,−∞ < j < ∞} is a martingale difference, we have by Markov’s inequality,
Hölder’s inequality, and Lemma 2.1 that for any q ≥ 2,

I2 ≤ 4q
∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−qE

⎛

⎝max
1≤k≤n

∣∣∣∣∣∣

∞∑

i=−∞
ai

i+k∑

j=i+1

Ytj

∣∣∣∣∣∣

q⎞

⎠dt

≤ C
∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−qE

⎧
⎨

⎩

∞∑

i=−∞

(
|ai|1−1/q

)
⎛

⎝|ai|1/qmax
1≤k≤n

∣∣∣∣∣∣

i+k∑

j=i+1

Ytj

∣∣∣∣∣∣

⎞

⎠

⎫
⎬

⎭

q

dt

≤ C
∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−q
( ∞∑

i=−∞
|ai|
)q−1 ∞∑

i=−∞
|ai|E

⎧
⎨

⎩max
1≤k≤n

∣∣∣∣∣∣

i+k∑

j=i+1

Ytj

∣∣∣∣∣∣

q⎫⎬

⎭dt

≤ C1

∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−q

∞∑

i=−∞
|ai|E

⎛

⎝
i+n∑

j=i+1

E
(
Y 2
tj | Fj−1

)
⎞

⎠
q/2

dt

+ C1

∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−q

∞∑

i=−∞
|ai|

i+n∑

j=i+1

E
∣∣Ytj

∣∣qdt

=: C1I21 + C1I22.

(4.23)

If rp ≥ 2, then we take large enough q such that q > max{(r − 1)/(1/p − 1/2), rp}. By
supj E(|Yj |rp | Fj−1) ≤ K, a.s. and Jensen’s inequality for conditional expectation, it has
supj E(Y

2
j | Fj−1) ≤ K2/(rp), a.s.. Meanwhile,

E
(
Y 2
nj | Fj−1

)
= E
[
Y 2
j I
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
−
[
E
(∣∣Yj

∣∣I
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

)]2

≤ E
[
Y 2
j I
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
, a.s., −∞ < j < ∞.

(4.24)
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Thus, by
∑∞

i=−∞ |ai| < ∞, one has that

I21 = C1

∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−q

∞∑

i=−∞
|ai|E

⎛

⎝
i+n∑

j=i+1

Znj

⎞

⎠
q/2

dt

≤ C1

∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−q

∞∑

i=−∞
|ai|E

⎛

⎝
i+n∑

j=i+1

2E
[
Y 2
j I
(∣∣Yj

∣∣ ≤ n1/p
)
| Fj−1

]
⎞

⎠
q/2

dt

≤ C2

∞∑

n=1

nr−2−1/p+q/2
∫∞

n1/p
t−qdt ≤ C3

∞∑

n=1

nr−2−1/p+q/2 · n(−q+1)/p

= C3

∞∑

n=1

nr−2+q/2−q/p < ∞,

(4.25)

following from the fact that q > (r − 1)/(1/p − 1/2). We also have by Cr inequality and
Lemma 2.2 that

I22 ≤ C2

∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−q

∞∑

i=−∞
|ai|

i+n∑

j=i+1

E
[∣∣Yj

∣∣qI
(∣∣Yj

∣∣ ≤ t
)]
dt

≤ C3

∞∑

n=1

nr−1−1/p
∞∑

m=n

∫ (m+1)1/p

m1/p
t−qE[YqI(Y ≤ t)]dt

+ C4

∞∑

n=1

nr−1−1/p
∫∞

n1/p
P(Y > t)dt

=: C2I
∗
22 + C3I

∗∗
22 .

(4.26)

Since q > rp and EYrp < ∞, it follows that

I∗22 ≤ C1

∞∑

n=1

nr−1−1/p
∞∑

m=n
m1/p−1−q/pE

[
YqI
(
Y ≤ (m + 1)1/p

)]

= C1

∞∑

m=1

m1/p−1−q/pE
[
YqI
(
Y ≤ (m + 1)1/p

)] m∑

n=1

nr−1−1/p

≤ C2

∞∑

m=1

mr−1−q/pE
[
YqI
(
Y ≤ (m + 1)1/p

)]

= C2

∞∑

m=1

mr−1−q/p
m+1∑

i=1

E
[
YqI
(
(i − 1)1/p < Y ≤ i1/p

)]
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= C2

∞∑

m=1

mr−1−q/pE
[
YrpYq−rpI

(
m1/p < Y ≤ (m + 1)1/p

)]

+ C2

∞∑

m=1

mr−1−q/p
m∑

i=1

E
[
YqI
(
(i − 1)1/p < Y ≤ i1/p

)]

≤ 2(q−rp)/pC2

∞∑

m=1

m−1E
[
YrpI

(
m1/p < Y ≤ (m + 1)1/p

)]

+ C2

∞∑

i=1

E
[
YqI
(
(i − 1)1/p < Y ≤ i1/p

)] ∞∑

m=i

mr−1−q/p

≤ 2(q−rp)/pC2

∞∑

m=1

m−1E
[
YrpI

(
m1/p < Y ≤ (m + 1)1/p

)]

+ C2

∞∑

i=1

E
[
YrpYq−rpI

(
(i − 1)1/p < Y ≤ i1/p

)]
ir−q/p

≤ C3EY
rp < ∞.

(4.27)

From the proof of (4.22),

I∗∗22 ≤
∞∑

n=1

nr−1−1/p
∫∞

n1/p
t−1EYI(Y > t)dt ≤ CEYrp < ∞. (4.28)

If rp < 2, then we take q = 2. Similar to the proofs of (4.23) and (4.26), we get that

I2 ≤ C1

∞∑

n=1

nr−2−1/p
∫∞

n1/p
t−2

∞∑

i=−∞
|ai|

i+n∑

j=i+1

EY 2
tjdt ≤ C2EY

rp < ∞, (4.29)

following from q > rp, (4.27) and (4.28). Consequently, by (4.18)–(4.28), Theorem 3.1 and
inequality above, (3.3) holds true.

Now, we turn to prove (3.4). Similar to the proof of (3.2), we have that

∞∑

n=1

nr−2E

(
sup
k≥n

∣∣∣∣
Sk

k1/p

∣∣∣∣ − ε22/p
)+

=
∞∑

n=1

nr−2
∫∞

0
P

(
sup
k≥n

∣∣∣∣
Sk

k1/p

∣∣∣∣ > ε22/p + t

)
dt

=
∞∑

m=1

2m−1∑

n=2m−1
nr−2

∫∞

0
P

(
sup
k≥n

∣∣∣∣
Sk

k1/p

∣∣∣∣ > ε22/p + t

)
dt
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≤ 22−r
∞∑

m=1

∫∞

0
P

(
sup
k≥2m−1

∣∣∣∣
Sk

k1/p

∣∣∣∣ > ε22/p + t

)
dt

2m−1∑

n=2m−1
2m(r−2)

≤ 22−r
∞∑

m=1

2m(r−1)
∫∞

0
P

(
sup
k≥2m−1

∣∣∣∣
Sk

k1/p

∣∣∣∣ > ε22/p + t

)
dt

= 22−r
∞∑

m=1

2m(r−1)
∫∞

0
P

(
sup
l≥m

max
2l−1≤k<2l

∣∣∣∣
Sk

k1/p

∣∣∣∣ > ε22/p + t

)
dt

≤ 22−r
∞∑

m=1

2m(r−1)
∞∑

l=m

∫∞

0
P

(
max
1≤k≤2l

|Sk| >
(
ε22/p + t

)
2(l−1)/p

)
dt

= 22−r
∞∑

l=1

∫∞

0
P

(
max
1≤k≤2l

|Sk| >
(
ε22/p + t

)
2(l−1)/p

)
dt

l∑

m=1

2m(r−1)

≤ 22−r
∞∑

l=1

2l(r−1)
∫∞

0
P

(
max
1≤k≤2l

|Sk| >
(
ε22/p + t

)
2(l−1)/p

)
dt

(
let s = 2(l−1)/pt

)

≤ C1

∞∑

l=1

2l(r−1−1/p)
∫∞

0
P

(
max
1≤k≤2l

|Sk| > ε2(l+1)/p + s

)
ds := F.

(4.30)

If r < 2 + 1/p, then

F = 2(2+1/p−r)C1

∞∑

l=1

2l+1−1∑

n=2l
2(l+1)(r−2−1/p)

∫∞

0
P

(
max
1≤k≤2l

|Sk| > ε2(l+1)/p + s

)
ds

≤ 2(2+1/p−r)C1

∞∑

l=1

2l+1−1∑

n=2l
nr−2−1/p

∫∞

0
P

(
max
1≤k≤n

|Sk| > εn1/p + s

)
ds

≤ 2(2+1/p−r)C1

∞∑

n=1

nr−2−1/pE
(
max
1≤k≤n

|Sk| − εn1/p
)+

< ∞.

(4.31)

Otherwise,

F = C1

∞∑

l=1

2l+1−1∑

n=2l
2l(r−2−1/p)

∫∞

0
P

(
max
1≤k≤2l

|Sk| > ε2(l+1)/p + s

)
ds

≤ C1

∞∑

l=1

2l+1−1∑

n=2l
nr−2−1/p

∫∞

0
P

(
max
1≤k≤n

|Sk| > εn1/p + s

)
ds

≤ C1

∞∑

n=1

nr−2−1/pE
(
max
1≤k≤n

|Sk| − εn1/p
)+

< ∞.

(4.32)

Therefore, (3.4) holds true following from (3.3).
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