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This work concerns the modeling of evolvement of trading behavior in stock markets which can
cause significant impact on the movements of prices and volatilities. Based on the assumption
of the investors’ limited rationality, the evolution mechanism of trading behavior is modeled
according to peer effect in network, that investors are prone to imitate their neighbors’
activity through comprehensive analysis on the neighboring preferred degree, self-psychological
preference, and the network topology of the relationship among them. We investigate by mean-
field analysis and extensive simulations the evolution of investors’ trading behavior in various
typical networks under different characteristics of peer effect. Our results indicate that the
evolution of investors’ behavior is affected by the network structure of stock market and the effect
of neighboring preferred degree; the stability of equilibrium states of investors’ behavior dynamics
is directly related with the concavity and convexity of the peer effect function; connectivity and
heterogeneity of the network play an important role in the evolution of the investment behavior in
stock market.

1. Introduction

In the behavioral finance literature, investors are considered to be limited rational, especially
for the less sophisticated ones, who always attempt to mimic financial gurus or follow the
activities of successful investors, since using their own information/knowledge might incur
a higher cost [1]. The most typical example is that in the financial crisis of 2008, agents’
were rushed to sell shares in the same direction, leading the market behavior to herding
critically. More imitation behavior among the investors is probe to result in herding behavior
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in stock market, as Nofsinger and Sias [2] note, “a group of investors trading in the same
direction over a period of time,” and introducing big fluctuations easily, particularly in bull
or bear states. Empirically, this may lead to observed behavior patterns that are correlated
across individuals and that bring about systematic, erroneous decision-making by entire
populations [3]. Therefore, mechanism of dynamic and herding behavior of stock markets
has attracted much academic and industrial attention.

In recent years, the literature about dynamic or herding behavior of stock markets can
be classified into two categories. One category studies focus on examining the existence of
herding behavior in stock market, which the investors’ trading behavior evolves into. Griffin
et al. [4] conclude, the nature of herding is not universal and differs across exchanges and
countries. Specifically, investors in emerging markets might exert herding patterns different
from those observed in developed countries. In [5], the authors find evidence of intentional
herding in China among both domestic accesses to information and expertise between these
two cohorts. Zhou and Lai [6] discover that herding activity in Hong Kong’s market tends to
be more prevalent with small stocks and that investors are more likely to herd when selling
rather than buying stocks. In [7], Chiang and Zheng extend the investigation of herding
behavior from domestic markets to global markets and find evidence of herding in advanced
stockmarkets (except the USA) and in Asianmarkets. In all cases, herding behavior is proved
to be a common state of stock behavior’s evolving into.

The other studies concentrate on using various methods to study the evolution process
of trading behavior in stock market. Wei et al. [8] propose that instability in the stock market
is partly due to social influences impacting investors’ decision to buy, sell, or hold stock.
By developing a Cellular Automata model of investment behavior in the stock market they
show that increased imitation among investors leads to a less stable market. In [9], Liang and
Han construct artificial stock market models by multiagent method based on small-world
relationship network and find that evolvement of investors’ trading behavior in stock market
emerges most of stylized facts, such as clustered volatility, bubbles, and crashes. Based on
incorporating stock price into investor decisions, Bakker et al. construct a social network
model of investment behavior in stock market and find that real life trust networks can
significantly delay the stabilization of a market [10]. Chen et al. use experimental platform to
study the correlation between herd behavior and earnings volatility in stock market and find
that stock price bubbles or crashes are caused by synergy herding behavior through imitation
agent and market sentiment signals [11]. Liu et al. study herding behavior by designing
an artificial stock market model analyzing its results through computational experiment.
They find that, in the short run, herding interacts with the returns, and destabilizing the
market; in the long run, it is not the traders’ herding behavior but the traders’ disregard
of discovering their own information, the low proportion of informed traders and the lack
of market liquidity that are to blame for the anomalies in stock markets [12]. Hassan et
al. integrates agent computational modes and fuzzy set theory, to study how to simulate
friendship dynamics in an agent-based model, based on the principle that social relationships
are ruled by proximity [13]. Falbo and Grassi proposes a market with two kinds of agents:
speculators and rational investors to analyze the dynamics of a financial market when agents
anticipate the occurrence of a correlation breakdown and finds that the market equilibrium
results depend on the prevalence of one of the two types of agents [14]. Consequently, it has
a great important chance to study the evolvement of the trading behavior, for it affects the
market critically and vice versa.

All the above-mentioned models and methods may capture some mechanisms of
investor trading behavior and its impact on the market, but most of the studies mainly focus
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on the macroscopic features of trading behavior through quantitative analysis and only a few
articles explore the inner mechanism of trading behavior’s evolvement from the complexity
theory perspective. In this work, we attempt to fill this gap by investigating the evolution
of individual investors’ trading behavior through mean-field theory and complex networks
theory from microscopic perspective, so as to probe the collective dynamical evolution
mechanism of trading behavior. According to Johansen and Sornette [15], all traders around
the world can be seen as a network organized from family, friends, colleagues, incorporated
not only by the source of opinion but also the local influence among them. We consider a
network of interacting agents whose trading behavior is determined by the action of their
peer neighbors, according to peer effect evolvement rules. Using a mean-field approach, the
evolvement equilibrium of investors’ trading behavior is analyzed and it crucially depends
on two components: the connectivity distribution of the network and the concavity of peer
effect function. We show that, the stability of equilibrium states of investors’ behavior
dynamics is directly related with the concavity and convexity of the neighbors preference
function. These results and their analysis can be used to generate insights to understand the
evolution law of the collective dynamical behavior.

The rest of the paper is organized as follows. In Section 2, we introduce the model
and define the evolvement rules of investor’s trading behavior. In Section 3, the evolvement
characteristics of the trading behavior are presented by the method of mean-field equation.
In Section 4, the comparison between analytic and simulation results are conducted. And the
conclusion is drawn in Section 5.

2. The Model

2.1. The Network

Nature, society, and many technologies are sustained by numerous networks that are not
only too important to fail but paradoxically for decades have also proved too complicated
to understand Albert and Barabási [16]. Based on the viewpoint posted by Johansen and
Sornette [15] that all traders around the world can be seen as a network organized from
family, friends, colleagues, incorporated not only by the source of opinion but also the local
influence among them, the evolution system of investors’ behavior in stock markets can be
described as a network, while nodes represent investors, the edges between every two nodes
represent their relationship, such as, social relations and trade association.

Consider a finite but large population of individuals N = {1, 2, . . . , i, n}. Each investor
i ∈ N interacts with a subset of the population which form a complex network G = (N,V ),
where (i, j) ∈ V means that i and j are linked in network. We consider undirected networks,
that is, if (i, j) ∈ V then (j, i) ∈ V . Let Ni be the set of individuals with whom i is linked.
Formally, Ni = {j ∈ N, s.t. (i, j) ∈ L}, where ki = |Ni| is the number of neighbors of i, often
referred as his connectivity. The connectivity can differ across individuals in the population
and its distribution P(k) displays for each k ≥ 1 the fraction of nodes with connectivity k.
More precisely, P(k) = 1/n|{i ∈ N, s.t. ki = k}|.

2.2. The Evolvement Mechanism

Our model studies evolvement of trading behavior in a population of stock markets.
Normally, a trader i ∈ N can only exist in three discreet states: si ∈ {−1, 0, 1}, where si = −1
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if i select behavior “sell,” si = 1 if i select behavior “buy,” and si = 0 if i select the behavior
“hold.” Considering the following continuous dynamic process at time t, the state of the stock
market is a vector st = (s1t, s2t, . . . , sit, . . . , sNt) ∈ SN ≡ {−1, 0, 1}N , so, each investor can switch
their trading behavior among these three states.

For investors’ limited rationality and there incomplete knowledge about the market
information, the factors affecting the investors’ behavior can be roughly divided into two
categories which are self-psychological preference and peer effect. Self-psychological pre-
ference is a comprehensive judgment of the macroeconomic environment, individual psycho-
logical and other random factors which have influence on the investors’ recognition. Peer
effect means the direct effect of neighbors’ behavior; therefore, the evolvement mechanism of
investors’ trading behavior can be addressed as follows.

(1) Self-psychological preference: for each trader i, let δi,1, δi,0, and δi,−1 be preference
probabilities of trading behavior “buy,” “hold,” and “sell,” respectively, where δi,1+
δi,0 + δi,−1 = 1.

(2) Peer effect: affected by neighbors’ trading behavior, at time t, trader i switches his
behavior at a rate of peer effect function F(vi, ki, ai), which depends on neighboring
preferred rate vi, connectivity ki, and the number of neighbors who select the
certain behavior at time t(ai =

∑
j∈ki sj), where vi,1+vi,0+vi,−1 = 1. Assuming that the

neighboring preferred rate and the effect of neighbors’ behavior are independent,
we can configure the peer effect function as F(vi, ki, ai) = vi ·f(ki, ai), where f(ki, ai)
is nonnegative function which represents the effect of neighbors’ behavior and
declines for ai. As ki ≥ 1, f(ki, 0) = 0 obviously shows no peer effect.

According to the above statement, the evolvement mechanism of trading behavior
can be expressed as M = m(δ, F(v, f)) = δ + F(v, f(·)), where δ, v, and f(·) represent self-
psychological preference factor, neighboring preferred degree, and the factor of neighbors’
behavior effect, respectively.

Supposing that the investors’ initial status of trading behavior is “hold,” so that the
default state vector of the stock market can be described as St0 = {s1t0 , s2t0 , . . . , snt0} ≡ 0. In
addition, we assume that the traders whose trading behavior states have already changed
can only switch trading behavior between “buy” and “sell,” while the ones whose trading
behaviors has not changed yet can select behavior among three states above mentioned.

Notice that, since the switch rates only depend on the properties of the present state,
the dynamics, induced by the connectivity distribution P(k) and evolvement mechanism
M, determines a continuous Markov chain over the space of possible states SN . The analytic
results of this dynamic are extremely complicated and thus will not be addressed. We con-
centrate instead on the study of a mean-field described below.

3. Mean-Field Analysis

The mean-field approximation allows us to address questions that otherwise would be in-
tractable. For instance, given a certain peer effect function of evolvement mechanism, how
does the connectivity distribution of the network affect the evolution of trading behavior?
Furthermore, given a certain network, how do the collective dynamics depend on the pro-
perties of the peer effect function? All these questions will be discussed below.

Consequently, in what follows, we will assume that the population of investors is
infinite. More precisely, let ρk(t) be the relative density of traders who show trading behavior
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“buy” at time t with connectivity k. So, ρ(t) =
∑

k P(k)ρk(t) will be the relative density of
traders with behavior “buy” at time t. Denote by ϕ(t) and φ(t) the probabilities that any
given link points to a trader with behavior “buy” or “sell,” respectively, at time t. Therefore,
the probability that a “nonbuy” behavior trader with k neighbors has exactly a neighbors
with “buy” behavior at time t is

(
k
a

)
ϕ(t)a(1 − ϕ(t))(k−a). In the same, the probability that a

“nonsell” behavior trader with k neighbors has exactly a neighbors with “sell” behavior at
time t is

(
k
a

)
φ(t)a(1 − φ(t))(k−a). Hence, the transition rate from “nonbuy” behavior to “buy”

behavior, for a trader with connectivity k, is given by

gF
(
ϕ(t)

)
=

k∑

a=0

F
(
v, f(k, a)

)
(
k

a

)

ϕ(t)a
(
1 − ϕ(t)

)(k−a)
. (3.1)

The transition rate from “buy” behavior to “sell” behavior, for a trader with connecti-
vity k, is given by

gF
(
φ(t)

)
=

k∑

a=0

F
(
v′, f(k, a)

)
(
k

a

)

φ(t)a
(
1 − φ(t)

)(k−a)
. (3.2)

So, for each k ≥ 1 the dynamic mean-field equation of trading behaviors’ evolvement
can be written as

dρk(t)
dt

= −ρk(t)
(
δ−1 + gF

(
φ(t)

))
+
(
1 − ρk(t)

)(
δ1 + gF

(
ϕ(t)

))
. (3.3)

Equation (3.3) shows the following: the variation of the relative density of “buy”
behavior traders with k links at time t equals the proportion of “non-buy” behavior traders
with k neighbors at time twho change their behavior minus the proportion of “buy” behavior
traders with k neighbors at time t who become “non-buy” behavior ones.

Consequently, for all k ≥ 1, the stationary condition of behavior “buy” is equivalent to
dρk(t)/dt = 0. Therefore, the stationary state must satisfy that

ρk =
δ1 + gF

(
ϕ
)

δ1 + gF
(
ϕ
)
+ δ−1 + gF

(
φ
) . (3.4)

Let 〈k〉 denote the average connectivity of the network, that is, 〈k〉 =
∑

k kP(k). The
probability that a trader links to another one with connectivity k equals kP(k)/〈k〉. Thus, the
value of ϕ can be computed as

ϕ =
∑

k≥1 kP(k)ρk
〈k〉 . (3.5)
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Equations (3.4) and (3.5) determine the stationary values for ϕ and ρk of the stock
markets. On submitting (3.3) into (3.4) we can obtain that

ϕ = E
(
ϕ
)
=

1
〈k〉

∑

k≥1
kP(k)

δ1 + gF
(
ϕ
)

δ1 + gF
(
ϕ
)
+ δ−1 + gF

(
φ
) . (3.6)

The solutions of (3.6) are the stationary values of ϕ. Therefore, given a specific con-
nectivity distribution P(k), peer effect f(k, a), and traders’ self-psychological preference δ,
the stationary values ρk of trading behavior “buy” in stock markets can be computed. So do
the trading behaviors “sell” and “hold.”

4. Comparison between Analytic and Simulation Results

Johansen and Sornette [15] point that the market collapse is the mutual influence of the
continuous decline process, associated with the characteristics of psychology, especially
depends on the investors’ conception of loss and their selection of reference. Therefore, the
evolution of trading behavior will be subjected to investors’ psychological impact on the peer
effect function, reflecting the essential characteristics of traders’ limited rationality. When the
degree of investors’ rationality is high, marginal utility of peer effect increases with a high
investors’ rationality. While the degree of investors’ rationality is low, marginal utility of peer
effect will decreases. In this section wewill present the analytic and simulation results so as to
study how the connectivity distribution and the evolvement mechanism affect the mean-field
equilibrium outcomes of the trading behavior in stock markets.

4.1. Marginal Utility Decreasing

4.1.1. Theoretical Analysis

Normally, when investors’ rationality is high, there is marginal utility decreasing of peer
effect function. Therefore, let f(k, a) be a weekly convex function. More precisely, for all 0 <
a < k, the function shows the following characteristic:

f(k, a) − f(k, a − 1) ≥ f(k, a + 1) − f(k, a). (4.1)

The interpretation for (4.1) is that, for any given investor, adding one more “buy”
behavior trader has an impact on her probability of selecting this action, which is weakly
decreasing with respect to the existing number of “buy” behavior traders.



Discrete Dynamics in Nature and Society 7

For

E
(
ϕ
)
=

1
〈k〉

∑

k≥1
kP(k)

δ1 + gF
(
ϕ
)

δ1 + gF
(
ϕ
)
+ δ−1 + gF

(
φ
) ,

gF
(
ϕ(t)

)
=

k∑

a=0

F
(
v, f(k, a)

)
(
k

a

)

ϕ(t)a
(
1 − ϕ(t)

)(k−a)
,

gF
(
φ(t)

)
=

k∑

a=0

F
(
v′, f(k, a)

)
(
k

a

)

φ(t)a
(
1 − φ(t)

)(k−a)

(4.2)

being all continuous and differentiable within their domain, we let λ0 = δ−1 + gF(φ) and can
obtain

E′(ϕ
)
=

1
〈k〉

∑

k≥1
kP(k)

g ′
F

(
ϕ
)(
δ−1 + gF

(
φ
))

(
δ1 + gF

(
ϕ
)
+ δ−1 + gF

(
φ
))2 , (4.3)

E′′(ϕ
)
=

1
〈k〉

∑

k≥1
kP(k)

g ′′
F

(
ϕ
)(
δ−1+gF

(
φ
))(

δ1+gF
(
ϕ
)
+δ−1 + gF

(
φ
)) − 2g ′

F

(
ϕ
)2(

δ−1+gF
(
φ
))

(
δ1+gF

(
ϕ
)
+δ−1+gF

(
φ
))3 .

(4.4)

Similarly,

g ′
F

(
ϕ
)
=

k∑

a=0

vf(k, a)

(
k

a

)
(
aϕa−1(1 − ϕ

)(k−a) − ϕa(k − a)
(
1 − ϕ

)(k−a−1))

=
k−1∑

a=0

(

v(a + 1)f(k, a + 1)

(
k

a + 1

)

− v(k − a)f(k, a)

(
k

a

))

ϕa(1 − ϕ
)(k−a−1)

=
k−1∑

a=0

k!
a!(k − a − 1)!

v
(
f(k, a + 1) − f(k, a)

)
ϕa(1 − ϕ

)(k−a−1)
,

(4.5)

g ′′
μ,k

(
ϕ
)
=

k−1∑

a=0

k!
a!(k−a−1)!v

(
f(k, a+1)−f(k, a))

(
aϕa−1(1−ϕ)(k−a−1)+ϕa(k−a−1)(1−ϕ)(k−a−2)

)

=
k−2∑

a=0

v
((
f(k, a+2) − f(k, a+1)

)−(f(k, a+1)−f(k, a)))
[

k!
a!(k − a−2)!ϕ

a(1−ϕ)(k−a−2)
]

◦ .

(4.6)

Considering that, function f(k, a) is nonnegative for (k, a) and is nondecreasing for
a, so it can be derived that g ′

F
(ϕ) ≥ 0 and E′(ϕ) ≥ 0. Meanwhile, based on the assumption

of concave characteristic of peer effect function, we can obtain that g ′′
F(ϕ) ≤ 0 and E′′(ϕ) ≤ 0.

Therefore, E(ϕ) is a nondecreasing concave function within its domain and has an only stable
solution.
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Figure 1: Logical equilibrium representation of peer effect function E(k, a, 1/2) satisfying (3.3).

Thus, we can present an example of a concave function and let f(k, a) = (a/k)1/2.
Based on this, we can see the logical equilibrium stable under the condition that peer effect
function is marginal utility decreasing, shown in Figure 1.

4.1.2. Simulation Analysis

Notice that, evolution of investors’ trading behavior not only depends on the peer effect
function f(k, a), but also on investors’ self-psychological preference factor δ, neighboring
preferred degree v, and network structure P(k). Particularly, due to the complexity of
network structure, it cannot be resolved directly by mathematical methods to describe its
impact on the evolution of investors’ behavior. In this section, we will analyze the influence
on the evolution of investors’ behavior from the network structure and investors’ neighboring
preferred degree through simulation analysis.

Let N = 500 be the number of investor and SN = 0 be the initial state of investors’
behavior; simulation experiment will be done 100 times and each of them will go 100 time
steps. Degree 〈k〉 = 4 and 〈k〉 = 12 of ER Network [17], WS Network [18], BA Network [19],
and IN Network [20] are comparatively analyzed in the simulation, respectively. Noticing that
this paper focuses on the behavior “buy,” we assume that the psychological preference of
choosing behavior “buy” is stronger than behavior “sell.” It is saying that the stock market
being in good condition is assumed.

(i) Evolution of Trading Behavior Affected by Network Structure

Figure 2 shows the comparative analysis on evolution of trading behavior in ER Network,
WS Network, BA Network and IN Network, under the condition of marginal utility decreasing
of peer effect function, where 〈k〉 = 4 and 〈k〉 = 12 respectively. Overall, the volatility of
equilibrium of behavior’s evolvement in BA Network and IN Network is little stronger than in
ER Network andWS Network. In BA Network and IN Network, the proportion of investors who
select behavior “buy” at 〈k〉 = 4 is higher than at 〈k〉 = 12; while, the change magnitude in
IN Network is larger than in BA Network. From the graph, we can conclude that, when peer
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Figure 2: Simulation visualization for evolution of investor’s trading behavior in ER Network, WS
Network, BA Network, and IN Network, respectively, when peer effect function is marginal utility
decreasing, based on the benchmark of behavior “buy.” (The Red, Blue and Green lines represent “buy,”
“sell,” and “hold” when 〈k〉 = 4. The Black, Pink Red, and Yellow lines represent “buy”, “sell,” and “hold”
when 〈k〉 = 12.)

effect function is marginal utility decreasing, to some extent, network heterogeneity reduces
the proportion of investors who choose trading behavior “buy”, and increases the volatility of
the evolution state of the trading behavior, especially leading to the impact on the equilibrium
state from network degree.

(ii) Evolution of Trading Behavior Affected by Neighboring Preferred Degree

Figure 3 describes the evolution path of the proportion of investors who select behavior
“buy” as the neighboring preferred degree changes, under the condition of marginal
utility decrease of peer effect function, at different network degree. In BA Network and IN
Network, the proportion of investors who choose behavior “buy” increases as the investors’
neighboring preferred degree increases, while in ER Network andWS Network, the proportion
shows stable state. Overall, the proportion of investors who choose behavior “buy” presents
a linear evolvement. Meanwhile, the fluctuation range of the proportion equilibrium at
〈k〉 = 12 is larger than at 〈k〉 = 4.
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Figure 3: Simulation visualization for evolution of investor’s trading behavior in four network (ER
Network, WS Network, BA Network, and IN Network), with the change of neighboring preferred degree,
at different network degree (〈k〉 = 4 and 〈k〉 = 12), on the condition of peer effect function’s beingmarginal
utility decreasing.

4.2. Marginal Utility Increasing

4.2.1. Theoretical Analysis

In contrast with the elaboration in Section 4.1.1, when investors’ rationality is low, there is
marginal utility increase of peer effect function. Therefore, let f(k, a) be a weekly concave
function. More precisely, for all 0 < a < k,

f(k, a) − f(k, a − 1) ≤ f(k, a + 1) − f(k, a). (4.7)

The interpretation for (4.7) is that, for any given investor, adding one more “buy”
behavior trader has an impact on her probability of selecting this action, which is weakly
increasing with respect to the existing number of “buy” behavior traders.

Consequently, g ′′
F
(ϕ) ≥ 0. For E′′(ϕ)’s being positive or negative depends on the

parameters δ−1, δ1, gF(φ) and gF(ϕ); E(ϕ) is not second-order monotonic and is prone to
be multiple equilibrium. Considering that E(ϕ), E′(ϕ), and E′′(ϕ) are continuous and non-
decreasing functions, the requirement of E(ϕ)’s being multiple equilibrium is that it shows
the characteristics of both concave and convex, so we suppose that when ϕ = 0, E′′(0) > 0 and
when ϕ = 1, E′′(0) < 0.

When ϕ = 0, we can obtain that g ′
F
(0) = kvf(k, 1), g ′′

F
(0) = k(k−1)v(f(k, 2)−2f(k, 1))

and gF(0) = 0.
Based on the assumption of g ′′

F
(0) > 0 and upon substituting it into E′′

F(ϕ), we can
obtain that

E′′
F(0) =

1
〈k〉

∑

k≥1
kP(k)

[
k(k − 1)v

(
f(k, 2) − 2f(k, 1)

) − 2
(
kvf(k, 1)

)2
]

. (4.8)
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Letting

E′′(0) =
1

〈k〉
∑

k≥1
kP(k)

[
k(k − 1)v

(
f(k, 2) − 2f(k, 1)

) − 2
(
kvf(k, 1)

)2
]
> 0, (4.9)

we have the following results:

v <

∑
k≥1 k

2P(k)
[
f(k, 2) − 2f(k, 1)

]

2
∑

k≥1 k3P(k)f2(k, 1)
. (4.10)

When ϕ = 1, we can obtain that gF(1) = vf(k, k), g ′
F(1) = kv[f(k, k) − f(k, k − 1)] and

g ′′
F(1) = vk(k − 1)[f(k, k) + f(k, k − 2) − 2f(k, k − 1)]. Based on the assumption of g ′

F(1) > 0,
g ′′
F , (1) > 0 and upon substituting it into E′′

F(ϕ), we obtain

E′′(1) =
1

〈k〉
∑

k≥1
kP(k)

vk(k − 1)(M −N)
(
1 + vf(k, k)

) − 2v2k2M2

(
1 + vf(k, k)

)2 , (4.11)

where M = f(k, k) − f(k, k − 1), and N = f(k, k − 1) − f(k, k − 2).
Leting

E′′(1) =
1

〈k〉
∑

k≥1
kP(k)

vk(k − 1)(M −N)
(
1 + vf(k, k)

) − 2v2k2M2

(
1 + vf(k, k)

)2 < 0, (4.12)

we have the following result:

v >

∑
k≥1 kP(k)(k − 1)(M −N)

2
∑

k≥1 k2P(k)M2 −∑
k≥1 kP(k)(k − 1)f(k, k)(M −N)

. (4.13)

At this time, v satisfies the above two conditions both and it is prone to find multiple
equilibrium solutions of function E(ϕ).

Therefore, we can present an example of a convex function and let f(k, a) = (a/k)2.
Based on this, we can see the logical evolvement equilibrium stable under the condition that
peer effect function is marginal utility decreasing, shown in Figure 4.

4.2.2. Simulation Analysis

(i) Evolution of Trading Behavior Affected by Network Structure

Figure 5 shows the comparative analysis on evolution of trading behavior in ER Network,WS
Network, BA Network, and IN Network [15], under the condition of marginal utility increasing
of peer effect function, where 〈k〉 = 4 and 〈k〉 = 12, respectively.

In ER Network and WS Network, about at time t ≈ 10, evolvement of trading behavior
almost comes to the equilibrium. The equilibrium values of the two networks at 〈k〉 = 4
and 〈k〉 = 12 are basically the same, that is to say, network degree has little influence on
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Figure 4: Logical equilibrium representation of peer effect function E(k, a, 2) satisfying (4.7).

the evolvement equilibrium of trading behavior in ER Network and WS Network. Compared
with ER Network and WS Network, the stability of evolvement equilibrium is little weaker in
BA Network and IN Network. About at time t ≈ 50, equilibrium gradually stabilized. As time
goes, in contrast with the evolution state at 〈k〉 = 4, the proportion of investors who choose
behavior “buy” at 〈k〉 = 12 transforms from initially lower than at 〈k〉 = 4 to higher than at
〈k〉 = 4. The changes in IN Network are more obvious. Therefore, we can obtain that, when
peer effect function is marginal utility increasing, network heterogeneity delays the process
that the evolution of trading behavior reaches the equilibrium and strengthens the impact on
the equilibrium of trading behavior which network degree places.

(ii) Evolution of Trading Behavior Affected by Neighboring Preferred Degree

Figure 6 describes the evolution path of the proportion of investors who select behavior
“buy” as the neighboring preferred degree changes, at different network degrees, when
peer effect function shows the characteristic of marginal utility increasing. Overall, the
proportion of investors who choose behavior “buy” increases as the investors’ neighboring
preferred degree increases. In ER Network and WS Network, the evolution equilibrium of
trading behavior is not affected by the neighboring preferred degree, and the validity of the
equilibrium is a little strong at 〈k〉 = 4. In BA Network and IN Network, the validity at 〈k〉 = 12
is obviously stronger than at 〈k〉 = 4, especially in IN Network. When neighboring preferred
degree v ≈ 0.25, the proportion of investors who select behavior “buy” in BA Network and IN
Network at 〈k〉 = 12, gradually transform from lower to larger than at 〈k〉 = 4. By the way, at
〈k〉 = 12 in IN Network, there is multiequilibrium state of trading behavior evolvement.

5. Conclusion

In this paper, we introduce an evolution model of investors’ trading behavior in stock
market based on peer effect, represented by peer effect function, in networks, according to
the assumption of investors’ limited rationality in behavioral financial literature. The model
describes the evolution mechanism of investors’ trading behavior from the two aspects of
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Figure 5: Simulation visualization for evolution of investor’s trading behavior in ER Network, WS
Network, BA Network, and IN Network, respectively, when peer effect function is marginal utility
increasing, based on the benchmark of behavior “buy.” (The Red, Blue and Green lines represent “buy,”
“sell,” and “hold” when 〈k〉 = 4. The Black, Pink Red, and Yellow lines represent “buy,” “sell,” and “hold”
when 〈k〉 = 12).

self-psychological preference and peer effect. Letting the behavior “buy” be the benchmark,
we investigate by mean-field analysis and extensive simulations the evolution of investors’
trading behavior in various typical networks under different characteristics of peer effect
function. Our results indicate that the evolution of investors’ trading behavior is affected by
the network structure of stock market and the neighboring preferred degree of the investors.
Particularly, when peer effect function is marginal utility decreasing, to some extent, network
heterogeneity reduces the proportion of investors who choose trading behavior “buy,” and
increases the volatility of the evolution state of the trading behavior, especially leading to
the impact on the equilibrium state of trading behavior from network degree. When peer
effect function is marginal utility increasing, network heterogeneity delays the process that
the evolution of trading behavior reaches the equilibrium and strengthens the impact on
the equilibrium of trading behavior which network degree places, that there comes the
multiequilibrium of investors’ trading behavior. Meanwhile, the proportion of investors
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Figure 6: Simulation visualization for evolution of investor’s trading behavior in four networks (ER
Network, WS Network, BA Network, and IN Network), with the change of neighboring preferred degree,
at different network degree (〈k〉 = 4 and 〈k〉 = 12), on the condition of peer effect function’s beingmarginal
utility increasing.

who choose trading behavior “buy” increase with the network degree’s increasing in both
circumstance.

However, in this work, the evolution model is comparatively simple while that of
the investors’ trading behavior in real life is much more complex. Especially, investors’
preference to certain trading behavior being deterministic and stochastic [21], and beliefs
among investors’ being heterogeneous [22]; therefore, our future study will focus on the
models that are even closer to the ones in real life, which could include considering the
influence from the network structure based on social relationship, online network, and other
relationship among investors, adopting the strategic characteristics of the investors’ choosing
behavior, such as game learning strategy, and self-adapting learning strategy.
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