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We investigate the stability property for the predator-free equilibrium point of predator-
prey systems with a class of functional response and prey refuges by using the analytical
approach. Under some very weakly assumption, we show that conditions that ensure the locally
asymptotically stable of the predator-free equilibrium point are consistent with that of the globally
asymptotically stable ones. Our result supplements the corresponding result of Ma et al., 2009.

1. Introduction

Stability analysis of a predator-prey system incorporating a given functional response
becomes a popular issue in mathematical ecology during the last decade [1–10]. Ma et al.
[10] considered the effects of prey refuges on a predator-prey model with a class of functional
response, for example,
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where X(t) and Y (t) denote the density of prey and predator populations at time t,
respectively. The term ϕ(X) represents the functional response of the predator population
and satisfies the following assumption:

ϕ(0) = 0, ϕ′(X) > 0 (X > 0). (1.2)
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By using the change of variables:
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system (1.1) is equivalent to the following model:
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(1.4)

Concerned with the stability property of the predator-free equilibrium, by analysing
the Jacobian matrix, the authors obtained the following conclusions.

Conclusion 1. E1((1−β)K, 0) is locally asymptotically stable if and only if qϕ((1−β)K)−d < 0.
Based on this conclusion, without any other deduction, they declared (see [10,

Theorems 4.1(3) and 4.2(3)]).

Conclusion 2. If 1 − ϕ−1(d/q)/K < β < 1, then predator goes extinct while prey population
reaches its maximum environment carrying capacity.

Note that Conclusion 1 is local one while Conclusion 2 reflects the globally property
of the system (1.4). Obviously there is a gap between these two conclusions. To show the
Conclusion 1 implies Conclusion 2, some more detail analysis is needed. The aim of this
paper is try to show that under some very weakly assumption on ϕ, the local asymptotical
stability of the predator-free equilibrium point do implies the global ones. More precisely, we
obtain the following result.

Theorem 1.1. Assume that ϕ(x) = ϕ1(x)x and there exists a positive constant L such that ϕ1(x) ≤ L
for all x > 0 holds, assume further that 1 − ϕ−1(d/q)/K < β < 1 holds. Then predator species will be
extinct while prey population reaches its maximum environment carrying capacity.

Remark 1.2. Many explicit forms for the predator functional response that have been used are
satisfy above assumption. For example,
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(1.5)

2. Proof of the Main Result

Proof. We first show that under the assumption of Conclusion 2, predator species will be
driven to extinction.
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It follows from 1 − ϕ−1(d/q)/K < β < 1 and the continuity of ϕ, for enough small
positive constant ε, the following inequality holds:

β > 1 − ϕ−1((d − ε)/q
)

K + ε
, (2.1)

that is,

ϕ−1
(
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q

)
>
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)
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Since ϕ′(X) > 0, X > 0, inequality (2.2) is equal to the following inequality:
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From the first equation of system (1.4), we have
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)
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Therefore,

lim sup
t→+∞

x(t) ≤ (
1 − β

)
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For ε defined by (2.1), inequality (2.5) shows that there exists an enough large T such that

x(t) <
(
1 − β

)
(K + ε), ∀t ≥ T. (2.6)

And so, for t ≥ T , from the second equation of system (1.4) and (2.3), one has
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That is,

y(t) ≤ y(T) exp{−ε(t − T)} −→ 0, as t −→ +∞. (2.8)

For any small positive constant ε1 > 0 which satisfies ε1 ≤ r/2pL, there exists a T1 > T such
that

y(t) ≤ ε1, ∀t > T1. (2.9)
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On the other hand, since ϕ(x) = ϕ1(x)x and ϕ1(x) ≤ L for all x > 0. Equation (2.9)
together with the first equation of (1.4) leads to
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for all t ≥ T1. From this different inequality, one could easily obtain that,
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Now we introducing a transformation z = x − (1 − β)k, then the first equation of system (1.4)
is equivalent to
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From (2.5), (2.11), and (2.12) we know that z(t) is bounded differentiable on (0,∞), Let
z = lim supt→+∞z(t), z = lim inft→+∞z(t), According to Fluctuation lemma [11], there exists
sequences τn → ∞, σn → ∞ such that ż(τn) → 0, ż(σn) → 0, z(ξn) → z and z(σn) → z.
Also, it follows from (2.12) that
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Since (2.11) implies that

lim
n→+∞
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Taking limit in (2.13) and (2.14), it follows from (2.8) and (2.16) that

0 = z = z, (2.15)

that is

lim
t→+∞

z(t) = 0, (2.16)



Discrete Dynamics in Nature and Society 5

which is equivalent to say that

lim
t→+∞

x(t) =
(
1 − β

)
K. (2.17)

This ends the proof of Theorem 1.1.
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