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The problem on global exponential stability of antiperiodic solution is investigated for a class
of impulsive discrete-time neural networks with time-varying discrete delays and distributed
delays. By constructing an appropriate Lyapunov-Krasovskii functional, and using the contraction
mapping principle and the matrix inequality techniques, a new delay-dependent criterion for
checking the existence, uniqueness, and global exponential stability of anti-periodic solution is
derived in linear matrix inequalities (LMIs). Two simulation examples are given to show the
effectiveness of the proposed result.

1. Introduction

Over the past decades, delayed neural networks have found successful applications in many
areas such as signal processing, pattern recognition, associative memories, and optimization
solvers. In such applications, the qualitative analysis of the dynamical behaviors is a
necessary step for the practical design of neural networks [1]. Many important results
on the dynamical behaviors have been reported for delayed neural networks, see [1–5]
and the references therein for some recent publications. Although neural networks are
mostly studied in the continuous-time setting, they are often discretized for experimental or
computational purposes. The dynamic characteristics of discrete-time neural networks have
been extensively investigated, for example, see [6–10] and the references cited therein.

Impulsive differential equations are mathematical apparatus for simulation of process
and phenomena observed in control theory, physics, chemistry, population dynamics,
biotechnologies, industrial robotics, economics, and so forth [11, 12]. Consequently, many
neural networks with impulses have been studied extensively, and a great deal of the
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literature is focused on the existence and stability of an equilibrium point [13–17]. In [18, 19],
the authors discussed the existence and global exponential stability of periodic solution of a
class of neural networks with impulse.

The study of antiperiodic solutions for nonlinear differential equations is closely
related to the study of periodic solutions, and it was initiated by Okochi in 1988 [20].
Arising from problems in applied sciences, it is well-known that the existence and stability of
antiperiodic solutions plays a key role in characterizing the behavior of nonlinear differential
equations as a special periodic solution [21, 22]. As pointed out in [23], antiperiodic
solutions arise naturally in the mathematical modeling of various physical processes. For
example, antiperiodic trigonometric polynomials are often studied in interpolation problems
[24, 25], the signal transmission process of neural networks can often be described as an
antiperiodic process [26], and antiperiodic wavelets are discussed in [27]. During the past
twenty years antiperiodic problems of nonlinear differential equations have been extensively
studied by many authors, for example, see [28–30] and references therein. Recently, the
problem of antiperiodic solutions for neural networks with or without time delays has
received considerable research interest, see for example [26, 31–38] and references therein.
In [31, 32], using some analysis skills and Lyapunov method, the authors studied the
existence and exponential stability of antiperiodic solutions for shunting inhibitory cellular
neural networks with time-varying discrete delays or distributed delays. In [33], some
sufficient conditions have been established for checking the existence and exponential
stability of antiperiodic solutions of high-order Hopfield neural networks with time-varying
delays. In [34], the recurrent neural networks with time-varying delays and continuously
distributed delays have been considered, and some sufficient conditions for the existence and
exponential stability of the antiperiodic solutions have been given. In [35, 36], the existence
and exponential stability of antiperiodic solutions have been studied for Cohen-Grossberg
neural networks with time-varying delays and continuously distributed delays. In [37], the
authors obtained some sufficient conditions to ensure existence and exponential stability of
the antiperiodic solutions for a class of Hopfield neural networks with periodic impulses.
In [38], several sufficient conditions are established for the existence and global exponential
stability of antiperiodic solutions to impulsive shunting inhibitory cellular neural networks
with distributed delays on time scale.

However, to the best of our knowledge, there are few papers published on the
existence and exponential stability of antiperiodic solutions for discrete-time neural networks
with mixed delays and impulses. Motivated by the above discussion, the objective of this
paper is to study the existence and exponential stability of antiperiodic solutions for
impulsive discrete-time recurrent neural networks with time-varying discrete delays and
distributed delays. Under more general description on the activation functions, we obtain
a new criterion for checking the existence, uniqueness, and global exponential stability of
antiperiodic solution, which can be checked numerically using the effective LMI toolbox in
MATLAB. Two simulation examples are given to show the effectiveness and less conserva-
tism of the proposed criteria.

Notations

The notation used here is quite standard. Rn and R
m×n denote, respectively, the n-dimensional

Euclidean space and the set of all m × n real matrices. The superscript “T” denotes matrix
transposition. The notation X ≥ Y (resp., X > Y ) means that X and Y are symmetric
matrices, and thatX−Y is positive semidefinite (resp., positive definite). ‖ · ‖ is the Euclidean
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norm in R
n. If A is a matrix, denote by λmax(A) (resp., λmin(A)) the largest (resp., smallest)

eigenvalue of A. For integers a, b, and a < b, N[a, b] denotes the discrete interval given by
N[a, b] = {a, a + 1, . . . , b}. C(N[−τ, 0],Rn) denotes the set of all functions φ :N[−τ, 0] → R

n.
In symmetric block matrices, the symbol ∗ is used as an ellipsis for terms induced by
symmetry. Sometimes, the arguments of a function or a matrix will be omitted in the analysis
when no confusion can arise.

2. Model Description and Preliminaries

In this paper, we consider the following impulsive discrete-time neural networks with time-
varying discrete delays and distributed delays

xi(k + 1) = aixi(k) +
n∑

j=1

bijgj
(
xj(k)

)
+

n∑

j=1

cijgj
(
xj(k − τ1(k))

)

+
n∑

j=1

dij

k+τ2−1∑

m=k

gj
(
xj(m − τ2)

)
+ Ii(k), k /= kr

xi(kr + 1) = xi(kr) + eir(xi(kr)), r = 1, 2, . . .

(2.1)

or, in an equivalent vector form

x(k + 1) = Ax(k) + Bg(x(k)) + Cg(x(k − τ1(k)))

+D
k+τ2−1∑

m=k

g(x(m − τ2)) + I(k), k /= kr

x(kr + 1) = x(kr) + er(x(kr)), r = 1, 2, . . .

(2.2)

for k = 1, 2, . . ., where x(k) = (x1(k), x2(k), . . . , xn(k))
T ∈ R

n, xi(k) is the state of the ith
neuron at time k; g(x(k)) = (g1(x1(k)), g2(x2(k)), . . . , gn(xn(k)))

T ∈ R
n, gj(xj(k)) denotes

the activation function of the jth neuron at time k; I(k) = (I1(k), I2(k), . . . , In(k))
T ∈ R

n,
Ii(k) represents the external input on the ith neuron at time k; the positive integer τ1(k)
corresponds to the transmission delay and satisfies τ̌ ≤ τ1(k) ≤ τ̂ (τ̌ and τ̂ are known
integers such that τ̂ > τ̌ ≥ 0); the positive integer τ2 describes the distributed time delay;
A = diag(a1, a2, . . . , cn), ai (0 ≤ ai < 1) describes the rate with which the ith neuron will
reset its potential to the resting state in isolation when disconnected from the networks and
external inputs; B = (bij)n×n is the connection weight matrix, C = (cij)n×n andD = (dij)n×n are
the delayed connection weight matrices; kr are the impulse instants satisfying 0 = k0 < k1 <
· · · < kr < kr+1 < · · · and kr+1 − kr > 1; er : R

n → R
n (r = 1, 2, . . .) denotes a sequence of jump

operators.

Remark 2.1. The delay term
∑k+τ2−1

m=k g(x(m−τ2)) in the system (2.2) is the so-called distributed
delay in the discrete-time setting, which can be regarded as the discretization of the integral
form

∫ t
t−τ2 g(x(s))ds for the continuous-time system.
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The initial condition associated with system (2.2) is given by

x(s) = φ(s), φ ∈ C(N[−τ, 0],Rn), (2.3)

where τ = max{τ̂ , τ2}.
Throughout this paper, we make the following assumptions.

(H1) g(u) and er(u) are odd functions, τ1(k) and I(k) are ω-periodic function and ω-
antiperiodic function, respectively, that is,

g(−u) = −g(u), er(−u) = −er(u), u ∈ R
n, r = 1, 2, . . . ,

τ1(k) = τ1(k +ω), I(k) = −I(k +ω), k = 1, 2, . . . .
(2.4)

And there exists a positive integer p such that

kr+p = kr +ω, er+p(u) = er(u), u ∈ R
n, r = 1, 2, . . . . (2.5)

(H2) There exist constants ľj and l̂j (j = 1, 2, . . . , n) such that

ľj ≤
gj(α1) − gj(α2)

α1 − α2
≤ l̂j , ∀α1, α2 ∈ R, α1 /=α2. (2.6)

(H3) There exist constants ȟi and ĥi (i = 1, 2, . . . , n) such that

ȟi ≤
eir(α1) − eir(α2)

α1 − α2
≤ ĥi, ∀α1, α2 ∈ R, α1 /=α2, r = 1, 2, . . . . (2.7)

Definition 2.2. The antiperiodic solution x∗(k) of system (2.2) with (2.3) is said to be globally
exponentially stable if there exist two positive constantsM > 0 and 0 < ε < 1 such that

‖x(k) − x∗(k)‖ ≤Mεk sup
k∈N[−τ,0]

‖φ(k) − φ∗(k)‖, (2.8)

for all k = 1, 2, . . ., where x(k) is any solution of system (2.2) with (2.3), φ(k) and φ∗(k) are
the initial functions of solutions x(k) and x∗(k), respectively.

Lemma 2.3. LetM ∈ R
n×n be positive definite matrix, αi ∈ R

n(i = 1, 2, . . . , m). Then the following
inequality holds:

[
m∑

i=1

αi

]T
M

[
m∑

i=1

αi

]
≤ m

m∑

i=1

αTi Mαi. (2.9)

The proof of Lemma 2.3 can be carried out by following a similar line as in [10], and
hence it is omitted.
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3. Main Result

The main objective of this section is to obtain sufficient conditions on the existence, unique-
ness, and exponential stability of antiperiodic solution for system (2.2). For presentation
convenience, in the following, we denote

τ =
[
τ̌ + τ̂
2

]

L1 = diag
(
ľ1, ľ2, . . . , ľn

)
,

L2 = diag
(
l̂1, l̂2, . . . , l̂n

)
,

L3 = diag
(
ľ1 l̂1, ľ2 l̂2, . . . , ľnl̂n

)
,

L4 = diag

(
ľ1 + l̂1
2

,
ľ2 + l̂2
2

, . . . ,
ľn + l̂n

2

)
,

H1 = diag
(
ĥ1, ĥ2, . . . , ĥn

)
,

H2 = diag
(
max
{∣∣∣ȟ1
∣∣∣,
∣∣∣ĥ1
∣∣∣
}
,max

{∣∣∣ȟ2
∣∣∣,
∣∣∣ĥ2
∣∣∣
}
, . . . ,max

{∣∣∣ȟn
∣∣∣,
∣∣∣ĥn
∣∣∣
})
.

(3.1)

Theorem 3.1. Under assumptions (H1), (H2), and (H3), there exit exactly one ω-antiperiodic
solution of system (2.2) with (2.3) and all other solutions of system (2.2) with (2.3) converge
exponentially to it as k → +∞, if there exist ten n × n symmetric positive define matrices P,
Ri(i = 1, 2, 3),Qi, (i = 1, 2, 3, 4, 5, 6), and four n×n positive diagonal matrixTi(i = 1, 2), Si(i = 1, 2)
such that the following LMIs

Π +Ωi < 0, Ξ + Ωi < 0, i = 1, 2 (3.2)

hold or

Π +Ωi < 0, Ξ + Ωi < 0, i = 3, 4 (3.3)

hold, where

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π14 0 0 R1 0

∗ Π22 Π23 Π24 0 0 0 0

∗ ∗ Π33 Π34 Π35 0 0 0

∗ ∗ ∗ Π44 0 0 0 0

∗ ∗ ∗ ∗ Π55 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 0 0 0 0 R1 0

∗ Ξ22 0 0 0 0 0 0

∗ ∗ Ξ33 0 Ξ35 0 0 0

∗ ∗ ∗ Ξ44 0 0 0 0

∗ ∗ ∗ ∗ Ξ55 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ω1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ −3R2 2R2 R2 0

∗ ∗ ∗ ∗ ∗ −2R2 − R3 0 R3

∗ ∗ ∗ ∗ ∗ ∗ −R1 − R2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −R3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ω2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ −3R2 R2 2R2 0

∗ ∗ ∗ ∗ ∗ −R2 − R3 0 R3

∗ ∗ ∗ ∗ ∗ ∗ −R1 − 2R2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −R3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ω3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ −3R3 R3 0 2R3

∗ ∗ ∗ ∗ ∗ −R2 − R3 R2 0

∗ ∗ ∗ ∗ ∗ ∗ −R1 − R2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2R3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Ω4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ −3R3 2R3 0 R3

∗ ∗ ∗ ∗ ∗ −R2 − 2R3 R2 0

∗ ∗ ∗ ∗ ∗ ∗ −R1 − R2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −R3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.4)

with

Π11 = APA − P +Q1 +Q2 +Q3

+ (1 + τ̂ − τ̌)(Q4 − 2L1S1 + 2L2S2)

+ (A − E)R(A − E) − R1 − L3T1,

Π12 = APB + (1 + τ̂ − τ̌)(S1 − S2) + (A − E)RB + L4T1,

Π13 = APC + (A − E)RC,

Π14 = APD + (A − E)RD,

Π22 = BTPB + BTRB + (1 + τ̂ − τ̌)Q5 + τ2Q6 − T1,

Π23 = BTPC + BTRC,

Π24 = BTPD + BTRD,

Π33 = CTPC + CTRC − Q5 − T2,

Π34 = CTPD + CTRD,

Π35 = S2 − S1 + L4T2,

Π44 = DTPD +DTRD − 1
τ2
Q6,

Π55 = −Q4 + 2L1S1 − 2L2S2 − L3T2,

Ξ11 = H1P + PTH1 +H2PH2 +Q1 +Q2 +Q3

+ (1 + τ̂ − τ̌)(Q4 − 2L1S1 + 2L2S2)

+H2RH2 − R1 − L3T1,

Ξ12 = (1 + τ̂ − τ̌)(S1 − S2) + L4T1,

Ξ22 = (1 + τ̂ − τ̌)Q5 + τ2Q6 − T1,
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Ξ33 = −Q5 − T2,

Ξ35 = Π35,

Ξ44 = − 1
τ2
Q6,

Ξ55 = Π55,

R = τ̌2R1 + (τ − τ̌)2R2 + (τ̂ − τ)2R3.

(3.5)

Proof. Let X = {φ | φ ∈ C(N[−τ, 0],Rn)}. For φ ∈ X, define

∥∥φ
∥∥ = sup

s∈[−τ,0]

∥∥φ(s)
∥∥, (3.6)

thenX is a Banach space with the topology of uniform convergence.
For φ, ψ ∈ X, let x(k, φ) and x(k, ψ) be the solutions of system (2.2)with initial values

φ and ψ, respectively. Define

x(k)(φ
)
(t) = x

(
k + t, φ

)
, ∀t ∈N[−τ, 0], k = 1, 2, . . . , (3.7)

and then x(k)(φ) ∈ X for all k = 1, 2, . . .. It follows from system (2.2) that

x
(
k + 1, φ

)
− x
(
k + 1, ψ

)
= A
[
x
(
k, φ
)
− x
(
k, ψ
)]

+ B
[
g
(
x
(
k, φ
))

− g
(
x
(
k, ψ
))]

+ C
[
g
(
x
(
k − τ1(k), φ

))
− g
(
x
(
k − τ1(k), ψ

))]

+D
τ2∑

m=1

[
g
(
x
(
k −m,φ

))
− g
(
x
(
k −m,ψ

))]
, k /= kr

x
(
kr + 1, φ

)
− x
(
kr + 1, ψ

)
= x
(
kr, φ
)
− x
(
kr, ψ
)

+ er
(
x
(
kr, φ
))

− er
(
x
(
kr, ψ
))
, r = 1, 2, . . . .

(3.8)

Letting

y(k) = x
(
k, φ
)
− x
(
k, ψ
)
,

f(k) = g
(
x
(
k, φ
))

− g
(
x
(
k, ψ
))
,

ur
(
y(kr)

)
= er
(
x
(
kr, φ
))

− er
(
x
(
kr, ψ
))
,

(3.9)



Discrete Dynamics in Nature and Society 9

system (3.8) can then be simplified as

y(k + 1) = Ay(k) + Bf(k) + Cf(k − τ1(k))

+D
τ2∑

m=1

f(k −m), k /= kr

y(kr + 1) = y(kr) + ur
(
y(kr)

)
, r = 1, 2, . . . .

(3.10)

Defining η(k) = y(k + 1) − y(k), we consider the following Lyapunov-Krasovskii
functional candidate for system (3.10) as

V (k) =
8∑

i=1

Vi(k), (3.11)

where

V1(k) = yT (k)Py(k),

V2(k) =
k−1∑

j=k−τ
yT
(
j
)
Q1y
(
j
)
+

k−1∑

j=k−τ̌
yT
(
j
)
Q2y
(
j
)
+

k−1∑

j=k−τ̂
yT
(
j
)
Q3y
(
j
)
,

V3(k) =
k−1∑

j=k−τ1(k)
yT
(
j
)
Q4y
(
j
)
+

k−τ̌∑

m=k−τ̂+1

k−1∑

j=m

yT
(
j
)
Q4y
(
j
)
,

V4(k) =
k−1∑

j=k−τ1(k)
fT
(
j
)
Q5f
(
j
)
+

k−τ̌∑

m=k−τ̂+1

k−1∑

j=m

fT
(
j
)
Q5f
(
j
)
,

V5(k) =
τ2∑

m=1

k−1∑

j=k−m
fT
(
j
)
Q6f
(
j
)
,

V6(k) = 2
k−1∑

j=k−τ1(k)

(
f(j) − L1y(j)

)TS1y
(
j
)

+ 2
k−τ̌∑

m=k−τ̂+1

k−1∑

j=m

(
f(j) − L1y(j)

)TS1y
(
j
)
,

V7(k) = 2
k−1∑

j=k−τ1(k)

(
L2y
(
j
)
− f
(
j
))TS2y

(
j
)

+ 2
k−τ̌∑

m=k−τ̂+1

k−1∑

j=m

(
L2y
(
j
)
− f
(
j
))TS2y

(
j
)
,
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V8(k) = τ̌
k−1∑

m=k−τ̌

k−1∑

j=m

ηT
(
j
)
R1η
(
j
)
+ (τ − τ̌)

k−τ̌−1∑

m=k−τ

k−1∑

j=m

ηT
(
j
)
R2η
(
j
)

+ (τ̂ − τ)
k−τ−1∑

m=k−τ̂

k−1∑

j=m

ηT
(
j
)
R3η
(
j
)
.

(3.12)

We proceed by considering two possible cases of k /= kr and k = kr .

Case 1 (k /= kr (r = 1, 2, . . .)). Calculating the difference of Vi(k) (i = 1, 2, . . . , 8) along the
system (3.10), by Lemma 2.3 we have

ΔV1(k) = yT (k + 1)Py(k + 1) − yT (k)Py(k)

= yT (k)
(
ATPA − P

)
y(k) + 2yT (k)ATPBf(k)

+ 2yT (k)ATPCf(k − τ1(k)) + 2yT (k)ATPD
τ2∑

m=1

f(k −m)

+ fT (k)BTPBf(k) + 2fT (k)BTPCf(k − τ1(k))

+ 2fT (k)BTPD
τ2∑

m=1

f(k −m) + fT (k − τ1(k))CTPCf(k − τ1(k))

+ 2fT (k − τ1(k))CTPD
τ2∑

m=1

f(k −m)

+

[
τ2∑

m=1

f(k −m)

]T
DTPD

τ2∑

m=1

f(k −m),

(3.13)

ΔV2(k) = yT (k)(Q1 +Q2 +Q3)y(k) − yT (k − τ)Q1y(k − τ)

− yT (k − τ̌)Q2y(k − τ̌) − yT (k − τ̂)Q3y(k − τ̂),
(3.14)

ΔV3(k) =
k−τ̌∑

j=k+1−τ1(k+1)
yT
(
j
)
Q4y
(
j
)
+

k−1∑

j=k−τ̌+1
yT
(
j
)
Q4y
(
j
)
+ yT (k)Q4y(k)

−
k−1∑

j=k−τ1(k)+1
yT
(
j
)
Q4y
(
j
)
− yT (k − τ1(k))Q4y(k − τ1(k))

+ (τ̂ − τ̌)yT (k)Q4y(k) −
k−τ̌∑

j=k−τ̂+1
yT
(
j
)
Q4y
(
j
)

≤ (1 + τ̂ − τ̌)yT (k)Q4y(k) − yT (k − τ1(k))Q4y(k − τ1(k)),

(3.15)
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ΔV4(k) ≤ (1 + τ̂ − τ̌)fT (k)Q5f(k) − fT (k − τ1(k))Q5f(k − τ1(k)), (3.16)

ΔV5(k) =
τ2∑

m=1

[
fT (k)Q6f(k) − fT (k −m)Q6f(k −m)

]
,

≤ τ2fT (k)Q6f(k) −
1
τ2

[
τ2∑

m=1

f(k −m)

]T
Q6

[
τ2∑

m=1

f(k −m)

]
,

(3.17)

ΔV6(k) ≤ 2(1 + τ̂ − τ̌)
(
f(k) − L1y(k)

)TS1y(k)

− 2
(
f(k − τ1(k)) − L1y(k − τ1(k))

)TS1y(k − τ1(k)),
(3.18)

ΔV7(k) ≤ 2(1 + τ̂ − τ̌)
(
L2y(k) − f(k)

)TS2y(k)

− 2
(
L2y(k − τ1(k)) − f(k − τ1(k))

)TS2y(k − τ1(k)),
(3.19)

ΔV8(k) = ηT (k)Rη(k) − τ̌
k−1∑

j=k−τ̌
ηT
(
j
)
R1η
(
j
)

− (τ − τ̌)
k−τ̌−1∑

j=k−τ
ηT
(
j
)
R2η
(
j
)
− (τ̂ − τ)

k−τ−1∑

j=k−τ̂
ηT
(
j
)
R3η
(
j
)
.

(3.20)

From the definition of η(k) and (3.10), we have

ηT (k)Rη(k) = yT (k)(A − E)TR(A − E)y(k) + 2yT (k)(A − E)TRBf(k)

+ 2yT (k)(A − E)TRCf(k − τ1(k)) + 2yT (k)(A − E)TRD
τ2∑

m=1

f(k −m)

+ fT (k)BTRBf(k) + 2fT (k)BTRCf(k − τ1(k))

+ 2fT (k)BTRD
τ2∑

m=1

f(k −m) + fT (k − τ1(k))CTRCf(k − τ1(k))

+ 2fT (k − τ1(k))CTRD
τ2∑

m=1

f(k −m)

+

[
τ2∑

m=1

f(k −m)

]T
DTRD

τ2∑

m=1

f(k −m).

(3.21)

From Lemma 2.3, it can be shown that the following inequality holds:

−τ̌
k−1∑

j=k−τ̌
ηT
(
j
)
R1η
(
j
)
≤ −

⎡

⎣
k−1∑

j=k−τ̌
η
(
j
)
⎤

⎦
T

R1

⎡

⎣
k−1∑

j=k−τ̌
η
(
j
)
⎤

⎦

=

[
y(k)

y(k − τ̌)

]T[−R1 R1

∗ −R1

][
y(k)

y(k − τ̌)

]
.

(3.22)
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When τ̌ ≤ τ1(k) ≤ τ , let a(k) = (τ1(k) − τ̌)/(τ − τ̌). Then 0 ≤ a(k) ≤ 1. It is easy to get
that

−(τ − τ̌)
k−τ̌−1∑

j=k−τ
ηT
(
j
)
R2η
(
j
)
= −(τ − τ̌)

k−τ1(k)−1∑

j=k−τ
ηT
(
j
)
R2η
(
j
)
− (τ − τ̌)

k−τ̌−1∑

j=k−τ1(k)
ηT
(
j
)
R2η
(
j
)

≤ −(τ − τ1(k))
k−τ1(k)−1∑

j=k−τ
ηT
(
j
)
R2η
(
j
)

− a(k)(τ − τ1(k))
k−τ1(k)−1∑

j=k−τ
ηT
(
j
)
R2η
(
j
)

− (1 − a(k))(τ1(k) − τ̌)
k−τ̌−1∑

j=k−τ1(k)
ηT
(
j
)
R2η
(
j
)

− (τ1(k) − τ̌)
k−τ1(k)−1∑

j=k−τ
ηT
(
j
)
R2η
(
j
)

≤ −
k−τ1(k)−1∑

j=k−τ
ηT
(
j
)
R2

k−τ1(k)−1∑

j=k−τ
η
(
j
)

− a(k)
k−τ1(k)−1∑

j=k−τ
ηT
(
j
)
R2

k−τ1(k)−1∑

j=k−τ
η
(
j
)

− (1 − a(k))
k−τ̌−1∑

j=k−τ1(k)
ηT
(
j
)
R2

k−τ̌−1∑

j=k−τ1(k)
η
(
j
)

−
k−τ̌−1∑

j=k−τ1(k)
ηT
(
j
)
R2

k−τ̌−1∑

j=k−τ1(k)
η
(
j
)

=

⎡
⎢⎢⎣

y(k − τ1(k))
y(k − τ)
y(k − τ̌)

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

−2R2 R2 R2

∗ −R2 0

∗ ∗ −R2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y(k − τ1(k))
y(k − τ)
y(k − τ̌)

⎤
⎥⎥⎦

+ a(k)

[
y(k − τ1(k))
y(k − τ)

]T[−R2 R2

∗ −R2

][
y(k − τ1(k))
y(k − τ)

]

+ (1 − a(k))
[
y(k − τ1(k))
y(k − τ̌)

]T[−R2 R2

∗ −R2

][
y(k − τ1(k))
y(k − τ̌)

]
,

(3.23)

−(τ̂ − τ)
k−τ−1∑

j=k−τ̂
ηT
(
j
)
R3η
(
j
)
≤
[
y(k − τ)
y(k − τ̂)

]T[−R3 R3

∗ −R3

][
y(k − τ)
y(k − τ̂)

]
. (3.24)
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For positive diagonal matrices T1 > 0 and T2 > 0, we can get from assumption (H2)
that

0 ≤
[
y(k)

f(k)

]T[−L3T1 L4T1

∗ −T1

][
y(k)

f(k)

]
, (3.25)

0 ≤
[
y(k − τ1(k))
f(k − τ1(k))

]T[−L3T2 L4T2

∗ −T2

][
y(k − τ1(k))
f(k − τ1(k))

]
. (3.26)

Denoting

α(k) =

[
yT (k), fT (k), fT (k − τ1(k)),

τ2∑

m=1

fT (k −m),

yT (k − τ1(k)), yT (k − τ), yT (k − τ̌), yT (k − τ̂)
]T
,

(3.27)

it follows from (3.13)–(3.26) that

ΔV (k) =
8∑

i=1

ΔVi(k)

≤ yT (k)[APA − P +Q1 +Q2 +Q3

+ (1 + τ̂ − τ̌)(Q4 − 2L1S1 + 2L2S2)

+(A − E)R(A − E) − R1 − L3T1]y(k)

+ 2yT (k)[APB + (1 + τ̂ − τ̌)(S1 − S2) + (A − E)RB + L4T1]f(k)

+ 2yT (k)[APC + (A − E)RC]f(k − τ1(k))

+ 2yT (k)[APD + (A − E)RD]
τ2∑

m=1

f(k −m)

+ fT (k)
[
BTPB + BTRB + (1 + τ̂ − τ̌)Q5 + τ2Q6 − T1

]
f(k)

+ 2fT (k)
[
BTPC + BTRC

]
f(k − τ1(k))

+ 2fT (k)
[
BTPD + BTRD

] τ2∑

m=1

f(k −m)

+ fT (k − τ1(k))
[
CTPC + CTRC − Q5 − T2

]
f(k − τ1(k))

+ 2fT (k − τ1(k))
[
CTPD + CTRD

] τ2∑

m=1

f(k −m)
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+

[
τ2∑

m=1

f(k −m)

]T[
DTPD +DTRD − 1

τ2
Q6

][ τ2∑

m=1

f(k −m)

]

+ 2yT (k)R1y
T (k − τ̌)

+ 2fT (k − τ1(k))[S2 − S1 + L4T2]y(k − τ1(k))

+ yT (k − τ1(k))[−Q4 + 2L1S1 − 2L2S2 − L3T2 − 3R2]y(k − τ1(k))

+ 2yT (k − τ1(k))[R2 + a(k)R2]y(k − τ)

+ 2yT (k − τ1(k))[R2 + (1 − a(k))R2]y(k − τ̌)

− yT (k − τ)[Q1 + (1 + a(k))R2 + R3]y(k − τ)

+ 2yT (k − τ)R3y(k − τ̂)

− yT (k − τ̌)[Q2 + R1 + R2 + (1 − a(k))R2]y(k − τ̌)

− yT (k − τ̂)[Q3 + R3]y(k − τ̂)

= αT (k)[a(k)(Π + Ω1) + (1 − a(k))(Π + Ω2)]α(k).

(3.28)

When τ ≤ τ1(k) ≤ τ̂ , let b(k) = (τ̂ − τ1(k))/(τ̂ − τ). Then 0 ≤ b(k) ≤ 1. In the similitude
of the proof of inequality (3.23), we have

−(τ̂ − τ)
k−τ−1∑

j=k−τ̂
ηT
(
j
)
R3η
(
j
)
≤

⎡
⎢⎢⎣

y(k − τ1(k))
y(k − τ̂)
y(k − τ)

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

−2R3 R3 R3

∗ −R3 0

∗ ∗ −R3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y(k − τ1(k))
y(k − τ̂)
y(k − τ)

⎤
⎥⎥⎦

+ b(k)

[
y(k − τ1(k))
y(k − τ̂)

]T[−R3 R3

∗ −R3

][
y(k − τ1(k))
y(k − τ̂)

]

+ (1 − b(k))
[
y(k − τ1(k))
y(k − τ)

]T[−R3 R3

∗ −R3

][
y(k − τ1(k))
y(k − τ)

]
,

−(τ − τ̌)
k−τ̌−1∑

j=k−τ
ηT
(
j
)
R2η
(
j
)
≤
[
y(k − τ̌)
y(k − τ)

]T[−R2 R2

∗ −R2

][
y(k − τ̌)
y(k − τ)

]
.

(3.29)

By using similar method in (3.28), it follows from (3.13) to (3.22), and (3.25) to (3.26), and
(3.29) that

ΔV (k) ≤ αT (k)[b(k)(Π + Ω3) + (1 − b(k))(Π + Ω4)]α(k). (3.30)
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Case 2 (k = kr (r = 1, 2, . . .)). Note that the inequalities from (3.13) to (3.26) except (3.13)
and (3.21) hold for k = kr . Calculating ΔV1(kr) and ηT (kr)Rη(kr) along the system (3.10), we
have

ΔV1(kr) = yT (kr + 1)Py(kr + 1) − yT (kr)Py(kr)

=
[
y(kr) + ur

(
y(kr)

)]TP
[
y(kr) + ur

(
y(kr)

)]
− yT (kr)Py(kr)

≤ yT (kr)(2H1P +H2PH2)y(kr)

ηT (kr)Rη(kr) = uTr
(
y(kr)

)
Rur
(
y(kr)

)
≤ yT (kr)H2RH2y(kr).

(3.31)

By using similar method in Case 1, we can obtain that

ΔV (k) = αT (k)[a(k)(Ξ + Ω1) + (1 − a(k))(Ξ + Ω2)]α(k) (3.32)

or

ΔV (k) = αT (k)[b(k)(Ξ + Ω3) + (1 − b(k))(Ξ + Ω4)]α(k). (3.33)

Combining the above discussions in Case 1 and 2, we obtain from (3.2), (3.3), (3.28),
(3.30), (3.32), and (3.33) that

ΔV (k) ≤ −γ1‖α(k)‖2 ≤ −γ1‖y(k)‖2, (3.34)

where γ1 = mini=1,2,3,4{λmin(−Π −Ωi), λmin(−Ξ −Ωi)} > 0.
From the definition of V (k), it is easy to verify that

V (k) ≤ λmax(P)
∥∥y(k)

∥∥2 + γ2
k−1∑

j=k−τ

∥∥y
(
j
)∥∥2, (3.35)

where

γ2 = λmax(Q1) + λmax(Q2) + λmax(Q3) + (1 + τ̂ − τ̌)
[
λmax(Q4)

+λmax(Q5)λmax

(
LTL
)
+ 4λmax(LS1) + 4λmax(LS2)

]
+ τ2λmax(Q6)

+ 4τ̌2λmax(R1) + 4(τ − τ̌)2λmax(R2) + 4(τ̂ − τ)2λmax(R3),

(3.36)

where L = diag(max{|ľ1|, |l̂1|},max{|ľ2|, |l̂2|}, . . . ,max{|ľn|, |l̂n|}).
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For any scalar ρ ≥ 1, it follows from (3.34) and (3.35) that

ρi+1V (i + 1) − ρiV (i) = ρi+1ΔV (i) + ρi
(
ρ − 1
)
V (i)

≤
[
ρi
(
ρ − 1
)
λmax(P) − γ1ρi+1

]∥∥y(i)
∥∥2

+ γ2ρi
(
ρ − 1
) i−1∑

j=i−τ

∥∥y
(
j
)∥∥2.

(3.37)

Summing up both sides of (3.37) from 0 to k − 1 with respect to i, we have

ρkV (k) − V (0) ≤
[(
ρ − 1
)
λmax(P) − γ1ρ

]k−1∑

i=0

ρi
∥∥y(i)

∥∥2

+ γ2
(
ρ − 1
)k−1∑

i=0

i−1∑

j=i−τ
ρi
∥∥y
(
j
)∥∥2.

(3.38)

Note that

k−1∑

i=0

i−1∑

j=i−τ
ρi
∥∥y
(
j
)∥∥2 =

⎛

⎝
−1∑

j=−τ

j+τ∑

i=0

+
k−1−τ∑

j=0

j+τ∑

i=j+1

+
k−2∑

j=k−τ

k−1∑

i=j+1

⎞

⎠ρi
∥∥y
(
j
)∥∥2

≤ τρτ
−1∑

j=−τ

∥∥y
(
j
)∥∥2 + τρτ

k−1−τ∑

j=0

ρj
∥∥y
(
j
)∥∥2 + τρτ

k−2∑

j=k−τ
ρj
∥∥y
(
j
)∥∥2

≤ τ2ρτ sup
s∈N[−τ,0]

∥∥y(s)
∥∥2 + τρτ

k−2∑

j=0

ρj
∥∥y
(
j
)∥∥2.

(3.39)

From (3.35), we have

V (0) ≤
[
λmax(P) + γ2τ

]
sup

s∈N[−τ,0]

∥∥y(s)
∥∥2. (3.40)

It follows from (3.38)–(3.40) that

ρkV (k) ≤ K1
(
ρ
)

sup
s∈N[−τ,0]

∥∥y(s)
∥∥2 +K2

(
ρ
)k−1∑

j=0

ρj
∥∥y
(
j
)∥∥2, (3.41)

where

K1
(
ρ
)
= λmax(P) + γ2τ + γ2

(
ρ − 1
)
τ2ρτ ,

K2
(
ρ
)
=
(
ρ − 1
)
λmax(P) − γ1ρ + γ2

(
ρ − 1
)
τρτ .

(3.42)
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Since K2(1) < 0, by the continuity of function K2(ρ), we can choose a scalar ξ > 1 such that
K2(ξ) < 0. Obviously, K1(ξ) > 0. From (3.41), we obtain

ξkV (k) ≤ K1(ξ) sup
s∈N[−τ,0]

∥∥y(s)
∥∥2. (3.43)

From the definition of V (k), we have

V (k) ≥ λmin(P)
∥∥y(k)

∥∥2. (3.44)

LetM =
√
K1(ξ)/λmin(P), ε =

√
1/ξ, thenM > 0, 0 < ε < 1. It follows form (3.43) and (3.44)

that

∥∥y(k)
∥∥ ≤Mεk sup

s∈N[−τ,0]

∥∥y(s)
∥∥. (3.45)

That is

∥∥x
(
k, φ
)
− x
(
k, ψ
)∥∥ ≤Mεk

∥∥φ − ψ
∥∥. (3.46)

We can choose a positive integerN such that

MεNω ≤ 1
4
. (3.47)

Define a Poincaré mapping Γ : X → X by

Γ
(
φ
)
= −x(ω)(φ

)
. (3.48)

Then, we can derive from (3.46) and (3.47) that

∥∥∥Γ(N)(φ
)
− Γ(N)(ψ

)∥∥∥ ≤
1
4
∥∥φ − ψ

∥∥, (3.49)

which shows that Γ(N) is a contraction mapping and therefore there exits a unique fixed point
φ∗ ∈ X of Γ(N), which is also the unique fixed point of Γ such that

Γ
(
φ∗) = φ∗. (3.50)

Therefore,

−x
(
w + k, φ∗) = φ∗(k), ∀k ∈N[−τ, 0]. (3.51)
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Let x(k, φ∗) be the solution of system (2.2) through (0, φ∗). From assumption (H1)
we know that −x(k + ω,φ∗) is also a solution of system (2.2). It follows from (3.51) that
−x(k +ω,φ∗) is also through (0, φ∗). By the uniqueness of solution we can know

x
(
k, φ∗) = −x

(
k +ω,φ∗), (3.52)

for k = 1, 2, . . ., which indicates that x(k, φ∗) is exactly one ω-antiperiodic solution of system
(2.2). To this end, it is easy to see that all other solutions converge exponentially to it as
k → +∞. The proof is completed.

Remark 3.2. The conditions are dependent on both the lower bound and upper bound of
delays. It has been shown that the delay-dependent stability conditions are generally less con-
servative than the delay-independent ones, especially when the size of the delay is small.

Remark 3.3. In this paper, the model includes both discrete and distributed delays simultane-
ously, and can be used to describe some well-known neural networks owing to its generality.
In [38], only one kind of delay has been considered, which is a special case of neural networks
with mixed delays. Furthermore, in [38], the activations were assumed to be bounded
functions, while the boundedness condition is removed in this paper.

4. Examples

In this section, some examples and numerical simulations are provided to illustrate our re-
sults.

Example 4.1. Consider a discrete-time neural networks (2.2) with two neurons, where

A =

[
0.2 0

0 0.3

]
, B =

[
0.06 0.01

−0.06 0.1

]
, C =

[
0.1 −0.05

−0.05 −0.02

]
, D =

[
−0.02 0.02

−0.05 0.07

]
,

g1(u) = arctan(2u), g2(u) = − arctan(4u), I1(k) = −3 sin
(
kπ

8

)
,

I2(k) = 4 cos
(
kπ

8

)
, τ1(k) = 3 + sin

(
kπ

4

)
, τ2 = 2,

kr = 8r − 3, e1r(u) = e2r(u) = 0.08 sin(u) − 0.68u, r = 1, 2, . . . .
(4.1)

It can be verified that assumptions (H1), (H2), and (H3) are satisfied with ľ1 = 0, l̂1 = 2,
ľ2 = −4, l̂2 = 0, τ̌ = 2, τ̂ = 4, ω = 8, ȟ1 = ȟ2 = −0.76, ĥ1 = ĥ2 = −0.6. Thus,
L1 = diag(0,−4), L2 = diag(2, 0), L3 = diag(0, 0), L4 = diag(1,−2), H1 = diag(−0.6,−0.6),
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H2 = diag(0.76, 76). By the MATLAB Control Toolbox, we find a solution to the LMI in (3.2)
as follows:

P =

[
3.5412 −0.8274
−0.8274 8.5025

]
, R1 =

[
0.0254 −0.0149
−0.0149 0.0106

]
, R2 =

[
0.1931 −0.0932
−0.0932 0.1155

]
,

R3 =

[
0.1941 −0.0937
−0.0937 0.1158

]
, Q1 =

[
0.1396 −0.0553
−0.0553 0.0807

]
, Q2 =

[
0.1762 −0.0693
−0.0693 0.0917

]
,

Q3 =

[
0.1877 −0.0771
−0.0771 0.0986

]
, Q4 =

[
0.0230 −0.0077
−0.0077 0.0222

]
, Q5 =

[
0.1197 0.0554

0.0554 0.0274

]
,

Q6 =

[
0.1370 −0.0709
−0.0709 0.1201

]
, T1 =

[
2.5687 0

0 0.8572

]
, T2 =

[
1.2461 0

0 0.0252

]
,

S1 =

[
0.0056 0

0 0.0102

]
, S2 =

[
0.0756 0

0 0.0034

]
.

(4.2)

Therefore, by Theorem 3.1, we know that system (2.2) with above given parameters
has exactly one 8-antiperiodic solution and all other solutions of the system converge
exponentially to it as k → +∞, which is further verified by the simulation given in Figure 1.

Example 4.2. Consider a discrete-time neural networks (2.2) with three neurons, where

A =

⎡
⎢⎢⎣

0.15 0 0

0 0.2 0

0 0 0.3

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0.05 0.04 −0.04
0.08 0.04 −0.04
−0.04 −0.08 0.04;

⎤
⎥⎥⎦,

C =

⎡
⎢⎢⎣

−0.04 −0.02 0.06

0.09 −0.02 0.02

0.06 0.01 0.01

⎤
⎥⎥⎦, D =

⎡
⎢⎢⎣

−0.02 0.05 0.02

−0.05 0.02 −0.01
0.02 −0.05 −0.02

⎤
⎥⎥⎦,

g1(u) = g2(u) = g3(u) = sin(2u) − u, I1(k) = −2 sin
(
kπ

12

)
,

I2(k) = I3(k) = cos
(
kπ

12

)
, τ1(k) = 2 + cos

(
kπ

6

)
, τ2 = 2,

kr = 12
[
r − 1
2

]
+ 3(−1)r + 7, e1r(u) = e2r(u) = e3r(u) = −u, r = 1, 2, . . . .

(4.3)

It can be verified that assumptions (H1), (H2), and (H3) are satisfied with ľ1 = ľ2 = ľ3 = −3,
l̂1 = l̂2 = l̂3 = 1, τ̌ = 1, τ̂ = 3, ω = 12, ȟ1 = ȟ2 = ȟ3 = −1, ĥ1 = ĥ2 = ĥ3 = −1.
Thus, L1 = diag(−3,−3,−3), L2 = diag(1, 1, 1), L3 = diag(−3,−3,−3), L4 = diag(−1,−1,−1),
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Figure 1: State responses of the discrete-time neural networks with initial conditions (x1(s), x2(s))
T =

(−1, 0)T , s ∈N[−4, 0].

H1 = diag(−1,−1,−1),H2 = diag(1, 1, 1). By the MATLAB Control Toolbox, we find a solution
to the LMI in (3.3) as follows:

P =

⎡
⎢⎢⎣

41.8020 −4.3473 4.5690

−4.3473 30.0757 0.2682

4.5690 0.2682 25.8887

⎤
⎥⎥⎦, R1 =

⎡
⎢⎢⎣

0.4005 −0.2958 0.1172

−0.2958 0.8118 0.2942

0.1172 0.2942 0.6825

⎤
⎥⎥⎦,

R2 =

⎡
⎢⎢⎣

0.5178 −0.2326 −0.1006
−0.2326 0.6843 0.2146

−0.1006 0.2146 0.6101

⎤
⎥⎥⎦, R3 =

⎡
⎢⎢⎣

0.4881 −0.2381 −0.1038
−0.2381 0.7032 0.2240

−0.1038 0.2240 0.6280

⎤
⎥⎥⎦,

Q1 =

⎡
⎢⎢⎣

1.0470 −0.1515 0.4772

−0.1515 0.6361 −0.1655
0.4772 −0.1655 1.0423

⎤
⎥⎥⎦, Q2 =

⎡
⎢⎢⎣

1.0644 −0.1626 0.4402

−0.1626 0.6310 −0.1597
0.4402 −0.1597 0.9820

⎤
⎥⎥⎦,

Q3 =

⎡
⎢⎢⎣

1.2250 −0.1486 0.6129

−0.1486 0.8285 −0.1864
0.6129 −0.1864 1.2586

⎤
⎥⎥⎦, Q4 =

⎡
⎢⎢⎣

1.7504 −0.3124 0.7392

−0.3124 0.3251 −0.4540
0.7392 −0.4540 0.9975

⎤
⎥⎥⎦,

Q5 =

⎡
⎢⎢⎣

0.2637 0.0305 −0.0300
0.0305 0.0846 −0.1291
−0.0300 −0.1291 0.2397

⎤
⎥⎥⎦, Q6 =

⎡
⎢⎢⎣

0.5803 −0.1963 0.1481

−0.1963 0.8232 0.3296

0.1481 0.3296 0.3495

⎤
⎥⎥⎦,

T1 =

⎡
⎢⎢⎣

3.4923 0 0

0 3.4632 0

0 0 2.3878

⎤
⎥⎥⎦, T2 =

⎡
⎢⎢⎣

0.9595 0 0

0 0.4567 0

0 0 0.3671

⎤
⎥⎥⎦,

S1 =

⎡
⎢⎢⎣

0.6575 0 0

0 0.4853 0

0 0 0.2337

⎤
⎥⎥⎦, S2 =

⎡
⎢⎢⎣

0.3709 0 0

0 0.0163 0

0 0 0.0507

⎤
⎥⎥⎦.

(4.4)
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Figure 2: State responses of the discrete-time neural networkswith initial conditions (x1(s), x2(s), x3(s))
T =

(−1, 0, 1)T , s ∈N[−3, 0].

Therefore, by Theorem 3.1, we know that system (2.2) with the above-given parame-
ters has exactly one 12-antiperiodic solution and all other solutions of the system converge
exponentially to it as k → +∞, which is further verified by the simulation given in Figure 2.

5. Conclusions

In this paper, the discrete-time neural networks with mixed delays and impulses have been
studied. A delay-dependent LMI criterion for the existence and global exponential stability
of antiperiodic solutions has been established by constructing an appropriate Lyapunov-
Krasovskii functional, and using the contraction mapping principle and the matrix inequality
techniques. Moreover, two examples are given to illustrate the effectiveness of the results.
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