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Based on linear feedback control technique, a projective synchronization scheme ofN-dimensional
chaotic fractional-order systems is proposed, which consists of master and slave fractional-order
financial systems coupled by linear state error variables. It is shown that the slave system can
be projectively synchronized with the master system constructed by state transformation. Based
on the stability theory of linear fractional order systems, a suitable controller for achieving
synchronization is designed. The given scheme is applied to achieve projective synchronization
of chaotic fractional-order financial systems. Numerical simulations are given to verify the
effectiveness of the proposed projective synchronization scheme.

1. Introduction

The fractional calculus, as a very old mathematical topic, has been in existence for more
than 300 years [1], but it has not been widely used in the science and engineering for many
years, because its geometrical or physical interpretation has been not widely accepted [2, 3].
However, due to the long memory advantage, in the recent past, the fractional calculus has
been widely applied to diffusion processes [4], Sprott chaotic systems [5], happiness and love
[6], economics and finances [7, 8], and so on.

Chaos synchronization has been widely investigated in science and engineering such
as humanistic community [9], physical science [10], and secure communications [11]. The
chaos projective synchronization was first reported by Mainieri and Rehacek [12]. This type
of projective synchronization is interesting due to its property of proportionally diminished
or enlarged synchronizing responses, but the early work was limited to a certain kind of
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nonlinear systems with partly linear properties. Chaos projective synchronization has been
an active research topic in nonlinear science until Wen and Xu [13, 14] proposed an observer-
based control method and showed “no special limitation” to nonlinear systems themselves to
achieve this type of chaos synchronization. Wen and coauthors tried to explore the potential
applications of projective synchronization to noise reduction in mechanical engineering
[15, 16] or design bifurcation solutions based on the property of projective synchronization
[17]. Synchronization of fractional-order chaotic systems was first presented by Deng and
Li [18]. There has been an increasing interest in fractional-order chaos synchronization
during the last few years because of its potentials in both theory and applications [19].
Peng et al. [20] proposed the generalized projective synchronization scheme of fractional
order chaotic systems via a transmitted signal. Shao [21] proposed a method to achieve
general projective synchronization of two fractional order Rossler systems. Odibat et al. [22]
studied synchronization of 3-dimensional chaotic fractional-order systems via linear control.
The advantage of the linear feedback controller is that it is robust and linear, and moreover,
it is easier to be designed and implemented for chaos synchronization than standard PID
feedback controller, sliding mode controller, nonlinear feedback controller, and so on [23–
25].

Huang and Li [26] reported an integer order financial model as follows:

ẋ = z +
(
y − a

)
x,

ẏ = 1 − by − x2,

ż = −x − cz,

(1.1)

where x is the interest rate, y is the investment demand, z is the price index, a is the saving
amount, b is the cost per investment, c is the demand elasticity of commercial markets, and
all three constants a, b, c ≥ 0.

Chen [7] considered the generalization of system (1.1) for the fractional-order model
which takes the following form:

dq1x

dtq1
= z +

(
y − a

)
x,

dq2y

dtq2
= 1 − by − x2,

dq3z

dtq3
= −x − cz,

(1.2)

where the qith-order fractional derivative is given by the following Caputo definition, i =
1, 2, 3.

Definition 1.1 (see [27]). The qth-order fractional derivative of function f(t) with respect to t
and the terminal value 0 is written as

dqf(t)
dtq

=
1

Γ
(
m − q

)
∫ t

0

fm(τ)

(t − τ)q−m+1
dτ, (1.3)

where m is an integer and satisfies m − 1 ≤ q < m.
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Remark 1.2. If q1 = q2 = q3 = 1, the system (1.2) degenerates into the system (1.1).
The remainder of this paper is organized as follows. In Section 2, a projective

synchronization scheme of n-dimensional chaotic fractional-order systems is proposed. In
Section 3, a projective synchronization scheme of chaotic fractional-order financial systems
is studied. In Section 4, the Adams-Bashforth-Moulton predictor-corrector scheme of a
fractional-order system is described. Numerical simulations are given in Section 5 to show
the effectiveness of the proposed synchronization scheme. Finally, the paper is concluded in
Section 6.

2. A Projective Synchronization Scheme of
n-Dimensional Chaotic Fractional-Order Systems

Definition 2.1. The projective synchronization discussed in this paper is defined as two
relative chaotic dynamical systems can be synchronous with a desired scaling factor.

Consider a fractional-order chaotic system as follows:

dqx(t)
dtq

= Ax(t) + C + f(x(t)), 0 < q < 1, (2.1)

where x = (x1, x2, . . . , xn)
T ∈ R

n is an n-dimensional state vector of the system, A is an n × n
linear constant matrix, C is an n × 1 linear constant matrix, f : R

n → R
n is a continuous

nonlinear vector function.
For the given system (2.1), one can construct the following new system

dqy(t)
dtq

= Ay(t) + α
(
C + f(x(t))

)
+ u(t), 0 < q < 1, (2.2)

where y = (y1, y2, . . . , yn)
T ∈ R

n is an n-dimensional state vector of the system, f : R
n → R

n is
a continuous nonlinear vector function, A,C are linear constant matrix, α is a desired scaling
factor, u(t) is a linear state error feedback controller.

The synchronization error between the master system (2.1) and the slave system (2.2)
is defined as

e(t) = y(t) − αx(t), i = 1, 2, . . . , n. (2.3)

The linear state error feedback controller is defined as

u(t) = Âe(t), (2.4)

where Â is an n × n linear constant matrix.
Then the error system can be written as

dqe(t)
dtq

=
dqy(t)
dtq

− α
dqx(t)
dtq

= Ae(t) + u(t) = Be(t), (2.5)
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where B = A + Â is an n × n linear constant matrix. Obviously the orginal point is the
equilibrium point of system (2.5).

According to the stability criterion of linear fractional-order dynamical system, one
can directly obtain the following theorem.

Theorem 2.2. If B is an upper or lower triangular matrix and all eigenvalues λI, λ2, . . . , λn satisfy
λi, λ2, . . . , λn < 0, then the equilibrium point of synchronization error e(t) is asymptotically stable
and limt→∞ e(t) = 0 , that is, the master system (2.1) and the slave system (2.2) achieve projective
synchronization.

Remark 2.3. If α = 1 and n = 3, the above synchronization scheme is similar to the
synchronization scheme in [28].

Remark 2.4. If α = 1 and n = 3, the above synchronization scheme degenerates into the
synchronization scheme proposed by Odibat et al. [22].

Remark 2.5. If n = 3, the above synchronization scheme degenerates into the synchronization
scheme proposed by Xin et al. [29].

3. A Projective Synchronization Scheme of Chaotic Fractional-Order
Financial Systems

In order to investigate the synchronization behaviors of two chaotic fractional-order financial
systems, one can set a master-slave configuration with a master system given by the
fractional-order financial systems (1.2) and with a slave system (denoted by the subscript
s) as follows:

dq1xs

dtq1
= −axs + zs + αxy + u1,

dq2ys

dtq2
= −bys + α

(
1 − x2

)
+ u2,

dq3zs
dtq3

= −xs − czs + u3,

(3.1)

where xs, ys, zs ∈ R
n have the same meanings as x, y, z of system (1.2), α is a desired scaling

factor, u1, u2, u3 are linear state error feedback controllers.

Proposition 3.1. The drive system (1.2) and the slave system (3.1) will approach global
synchronization for any initial condition if anyone of the following control laws holds:

(1) u1 = au(xs − αx) − zs + αz, u2 = bu
(
ys − αy

)
, u3 = cu(zs − αz), (3.2)

(2) u1 = au(zs − αz), u2 = bu
(
ys − αy

)
, u3 = xs − αx + cu(zs − αz), (3.3)

where au < a, bu < b and cu < c.
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Figure 1: Synchronization errors between the master system (1.2) and the slave system (3.1) with a = 1,
b = 0.1, c = 1.2, q1 = 0.88, q2 = 0.98, q3 = 0.96, a = 0.5, x(0) = 3, y(0) = 4, z(0) = 1, xs(0) = 0.5, ys(0) = 0,
zs(0) = 2.5.

Proof. The synchronization errors between the master system (1.2) and the slave system (3.1)
are defined as ex = xs − αx, ey = ys − αy, ez = zs − αz. Subtracting (1.2) from (3.1) yields the
error system as follows.

dq1ex
dtq1

= ez − aex + u1,

dq2ey

dtq2
= −bey + u2,

dq3 ez
dtq3

= −ex − cez + u3.

(3.4)

For the first control law in Proposition 3.1, substituting (3.2) into the error system (3.4), the
system (3.4) can be rewritten as follows:

dq1ex
dtq1

= (au − a)ex,

dq2ey

dtq2
= (bu − b)ey,

dq3 ez
dtq3

= −ex + (cu − c)ez,

(3.5)
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which has one equilibrium point at E∗ = (0, 0, 0). Its Jacobian matrix evaluated at equilibrium
point E∗ is given by

J(E∗) =

⎛

⎝
au − a 0 0

0 bu − b 0
−1 0 cu − c

⎞

⎠, (3.6)

which is a lower triangular matrix and its eigenvalues satisfy λ1, λ2, λ3 < 0.
For the second control law in Proposition 3.1, substituting (3.3) into the error system

(3.4), the system (3.4) can be rewritten as follows:

dq1ex
dtq1

= (au − a)ex + ez,

dq2ey

dtq2
= (bu − b)ey,

dq3 ez
dtq3

= (cu − c)ez,

(3.7)

which has one equilibrium point at E∗ = (0, 0, 0). Its Jacobian matrix evaluated at equilibrium
point E∗ is given by

J(E∗) =

⎛

⎝
au − a 0 1

0 bu − b 0
0 0 cu − c

⎞

⎠, (3.8)

which is an upper triangular matrix and its eigenvalues satisfy λ1, λ2, λ3 < 0.
It follows from Theorem 2.2 that system (3.4) is asymptotically stable, that is, the

master system (1.2) and the slave system (3.1) are synchronized finally.
The Proposition 3.1 is proved.

4. Numerical Method for Solving System (1.2)

An improved Adams-Bashforth-Moulton predictor-corrector scheme [30] can be employed
to solve fractional-order ordinary differential equations. The improved predictor-corrector
scheme of system (1.2) can be described as follows.

With the initial value (x(k)
0 , y

(k)
0 , z

(k)
0 ), k = 0, 1, . . . , [m] − 1, system (1.2) is equivalent to

the Volterra integral equations as follows:

x(t) =
[m]−1∑

k=0

x(k)
0

tk

k!
+

1
Γ
(
q1
)
∫ t

0
(t − τ)q1−1

(
z(τ) +

(
y(τ) − a

)
x(τ)

)
dτ,

y(t) =
[m]−1∑

k=0

y(k)
0

tk

k!
+

1
Γ
(
q2
)
∫ t

0
(t − τ)q2−1

(
1 − by(τ) − x2(τ)

)
dτ,

z(t) =
[m]−1∑

k=0

z(k)
0

tk

k!
+

1
Γ
(
q3
)
∫ t

0
(t − τ)q3−1(−x(τ) − cz(τ))dτ.

(4.1)
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Figure 2: Synchronization errors between the master system (1.2) and the slave system (3.1) with a = 1,
b = 0.1, c = 1.2, q1 = 0.88, q2 = 0.98, q3 = 0.96, a = 0.5, x(0) = 3, y(0) = 4, z(0) = 1, xs(0) = 0.5, ys(0) = 0,
zs(0) = 2.5.

Consider the uniform grid {tn = nh, n = 0, 1, . . . ,N} for some integers N ∈ Z+ and
h = T/N, system (4.1) can be approximated to the following difference equations:

xn+1 = x0 +
hq1

Γ
(
q1 + 2

)
(
z
p

n+1 +
(
y
p

n+1 − a
)
x
p

n+1

)
+

hq1

Γ
(
q1 + 2

)
n∑

j=0

α1,j,n+1
(
zj +

(
yj − a

)
xj

)
,

yn+1 = y0 +
hq2

Γ
(
q2 + 2

)
(
1 − by

p

n+1 − x
2p
n+1

)
+

hq2

Γ
(
q2 + 2

)
n∑

j=0

α2,j,n+1

(
1 − byj − x2

j

)
,

zn+1 = z0 +
hq3

Γ
(
q3 + 2

)
(
−xp

n+1 − cz
p

n+1

)
+

hq3

Γ
(
q3 + 2

)
n∑

j=0

α3,j,n+1
(−xj − czj

)
,

(4.2)
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where

x
p

n+1 = x0 +
1

Γ
(
q1
)

n∑

j=0

β1,j,n+1
(
zj +

(
yj − a

)
xj

)
,

y
p

n+1 = y0 +
1

Γ
(
q2
)

n∑

j=0

β2,j,n+1
(
1 − byj − x2

j

)
,

z
p

n+1 = z0 +
1

Γ
(
q3
)

n∑

j=0

β3,j,n+1
(−xj − czj

)
,

αi,j,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

nqi+1 − (
n − qi

)
(n + 1)qi , j = 0,

(
n − j + 2

)qi+1 +
(
n − j

)qi+1 − 2
(
n − j + 1

)qi+1, 1 ≤ j ≤ n,

1, j = n + 1,

βi,j,n+1 =
hqi

qi

(
n − j + 1

)qi − hqi

qi

(
n − j

)qi , 0 ≤ j ≤ n, i = 1, 2, 3.

(4.3)

Errors of the above method are

Δx = max
j=0,1,...,N

∣∣x
(
tj
) − xh

(
tj
)∣∣ = O(hp1),

Δy = max
j=0,1,...,N

∣∣y
(
tj
) − yh

(
tj
)∣∣ = O(hp2),

Δz = max
j=0,1,...,N

∣∣z
(
tj
) − zh

(
tj
)∣∣ = O(hp3),

(4.4)

where pi = min(2, 1 + qi).

5. Numerical Simulations

Based on the Adams-Bashforth-Moulton predictor-corrector scheme, one can let the master
system (1.2) and the slave system (3.1) with parameters a = 1, b = 0.1, c = 1.2, q1 = 0.88,
q2 = 0.98, q3 = 0.96, a = 0.5, initial values x(0) = 3, y(0) = 4, z(0) = 1, xs(0) = 0.5, ys(0) = 0,
zs(0) = 2.5. The following numerical simulations are carried out to illustrate the main results.

From the first control law of Proposition 3.1, the linear controllers have the following
form: u1 = z−αzs, u2 = 0, u3 = 0. The chaotic attractors of themaster system (1.2) and the slave
system (3.1) are shown in Figure 1(a). Synchronization errors between systems (1.2) and (3.1)
are shown in Figure 1(b). Time evolutions of x, xs, y, ys, z and zs are shown in Figures 1(c)–
1(e), respectively. From Figures 1(a)–1(e), it is clear that the projective synchronization is
achieved for all these values.

From the second control law of Proposition 3.1, the linear controllers have the
following form: u1 = 0, u2 = 0, u3 = xs − αx. The chaotic attractors of the master system
(1.2) and the slave system (3.1) are shown in Figure 2(a). Synchronization errors between
systems (1.2) and (3.1) are shown in Figure 2(b). Time evolutions of x, xs, y, ys, z, and zs are
shown in Figures 2(c)–2(e), respectively. From Figures 2(a)–2(e), it is clear that the projective
synchronization is achieved for all these values.
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6. Conclusions

In this paper, we propose a projective synchronization scheme of n-dimensional chaotic
fractional-order systems via line error feedback control, and apply the scheme to achieve
synchronization of the chaotic fractional-order financial systems. Numerical simulations
validate the main results of this work.
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