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Local polynomial regression (LPR) is applied to solve the partial differential equations (PDEs).
Usually, the solutions of the problems are separation of variables and eigenfunction expansion
methods, so we are rarely able to find analytical solutions. Consequently, we must try to find
numerical solutions. In this paper, two test problems are considered for the numerical illustration
of the method. Comparisons are made between the exact solutions and the results of the LPR.
The results of applying this theory to the PDEs reveal that LPR method possesses very high
accuracy, adaptability, and efficiency; more importantly, numerical illustrations indicate that the
new method is much more efficient than B-splines and AGE methods derived for the same
purpose.

1. Introduction

There are some effective and convenient numerical methods for partial differential equations
problems with initial and boundary values;for example, the radial basis functions are used
to solve two-dimensional sine-Gordon equation in [1], a family of second-order methods
are used to solve variable coefficient fourth-order parabolic partial differential equations
in [2], and fifth-degree B-spline solution is available for a fourth-order parabolic partial
differential equations in [3]. Recently, H. Caglar andN. Caglar [4] have used local polynomial
regression (LPR) method for the numerical solution of fifth-order boundary value problems
[4]. Moreover, they manage to solve linear Fredholm and Volterra integral equations by
using LPR method [5]. Consequently, we can consider LPR method is applied to some PDEs
with initial and boundary values, and numerical results demonstrate that local polynomial
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fitting method is more accurate, simple, and efficient. First, we consider the numerical
approximation for the simple nonhomogeneous PDE with initial values with the use of local
polynomial regression:

∂2u

∂t2
− ∂2u

∂x2
= g(x, t),

u|t=0 = ϕ(x),
∂u

∂t

∣
∣
∣
∣
t=0

= ψ(x).

(1.1)

2. Bivariate Local Polynomial Regression

Bivariate local polynomial regression is an attractive method both from theoretical and
practical point of view. Multivariate local polynomial method has a small mean squared error
compared with the Nadaraya-Watson estimator which leads to an undesirable form of the
bias and the Gasser-Muller estimator which has to pay a price in variance when dealing with
a random design model. Multivariate local polynomial fitting also has other advantages. The
method adapts to various types of designs such as random and fixed designs and highly
clustered and nearly uniform designs. Furthermore, there is an absence of boundary effects:
the bias at the boundary stays automatically of the same order as the interior, without the
use of specific boundary kernels. The local polynomial approximation approach is appealing
on general scientific grounds; the least squares principle to be applied opens the way to
a wealth of statistical knowledge and thus easy generalizations. All the above-mentioned
assertions or advantages can be found in literatures [6–10]. The basic idea of multivariate
local polynomial regression is also proposed in [11–14]. In this section, we briefly outline the
idea of the extension of bivariate local polynomial fitting to bivariate regression.

Suppose that the state vector at point T is XT :

yi,T = fi(XT ). (2.1)

Our purpose is to obtain the estimation ŷi,T = f̂i(XT ). In this paper, we use the dth order
multivariate local polynomial fi(X) to predict the value of the fixed-pointXT . The polynomial
function can be described as

fi(X) ≈
∑

0≤|j|≤d

1
j!
D(j)fi(XT )(X −XT )j =

∑

0≤|j|≤d
bj(XT )(X −XT )j , (2.2)

where

j =
(

j1, j2
)

, j! = j1!j2!,
∣
∣j
∣
∣ =

2∑

l=1

jl,

∑

0≤|j|≤d
=

d∑

|j|=0

⎛

⎝

|j|
∑

j1=0

|j|
∑

j2=0

⎞

⎠, Xj = xj11 x
j2
2 .

(2.3)
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d is the order of the expansion:

D(j)fi(XT ) =
∂|j|fi(X)

∂x
j1
1 ∂x

j2
2 · · · ∂xjmm

| X = XT,

bj(XT ) =
1
j!
D(j)fi(XT ).

(2.4)

In the bivariate regression method, the change of XT on the attractor is assumed to
be the same as those of nearby points, XTa(a = 1, 2, . . . , A) according to the distance order.
Using A pairs of (XTa, yi,Ta), for which the values are already known, the coefficients of fi are
determined by minimizing

A∑

a=1

⎡

⎣yi,Ta −
∑

0≤|j|≤d
bj(XT )(XTa −XT )j

⎤

⎦

2

·KH(XTa −XT ). (2.5)

For the weighted least squared problem, when XTWX is inverse, the solution can be
described by

B̂ =
(

XTWX
)−1

XTWΥ, (2.6)

where

Υ =
(

yi,T1 , yi,T2 , . . . , yi,TA
)T
,

B̂ = (b0(XT ), b1(XT ), . . . , bd(XT ))
T ,

W = diag{KH(XT1 −XT ), KH(XT2 −XT ), . . . , KH(XTA −XT )},

(2.7)

and X is the A × S (S =
∑

0≤|j|≤d |j|/j!),

X =

⎛

⎜
⎜
⎜
⎜
⎝

1 (XT1 −XT )1 · · · (XT1 −XT )d

1 (XT2 −XT )1 · · · (XT2 −XT )d

...
...

. . .
...

1 (XTA −XT )1 · · · (XT2 −XT )d

⎞

⎟
⎟
⎟
⎟
⎠

. (2.8)

Then we can get the estimation ŷi,T = f̂i(XT ):

ŷi,T = f̂i(XT ) = Ei
(

XTWX
)−1

XTWΥ, (2.9)

where Ei = (1, 0, 0, . . . , 0)1×S. There are several important issues about the bandwidth, the
order of multivariate local polynomial function, and the kernel function which have to be
discussed.



4 Discrete Dynamics in Nature and Society

2.1. Parameters Estimations and Selections

There are many of the embedding dimensions algorithms [15, 16]. In univariate series
{yi,n}Nn=1, i = 1, 2, . . . ,M, a popular method that is used for finding the embedding dimensions
mi is the so-called false nearest-neighbor method [17, 18]. Here, we apply this method to the
bivariate case.

For the multivariate local polynomial estimator, there are three important problems
which have significant influence on the prediction accuracy and computational complexity.
First of all, there is the choice of the bandwidth matrix, which plays a rather crucial role.
The bandwidth matrixH is taken to be a diagonal matrix. For simplification, the bandwidth
matrix is designed intoH = hI2, where I2 is a unit matrix of two orders. In theory, there exists
an optimal bandwidth hopt in the meaning of mean squared error, such that

hopt = arg min
h

∫
(

fi(x) − f̂i(x)
)2
dx. (2.10)

But the optimal bandwidth cannot be solved directly. So we discuss how to get the
asymptotically optimal bandwidth. We make use of searching method to select bandwidth.
When the bandwidth h varies from small to big, compared with the values of the objective
function, we can choose the smallest bandwidth to ensure theminimum value of the objective
function. So the smallest bandwidth is the optimal bandwidth.

Given hl = Clhmin, where hmin is minimum, Cl is efficient of expansion. We search the
bandwidth h to ensure the objective function value of minimum in district [hmin, hmax], where
the objective function stands for the mean square error (MSE).

First, we assume h = hmin and then increase h by making use of efficient of expansion
Cl. When h > hmax stops, the minimum h is the optimal bandwidth if EMS(h) obtains the
minimum.. EMS(h) can be taken place of

eMS =
1
I

I∑

i=1

(

fi(x) − f̂i(x)
)2
, (2.11)

where I is the number predicted. In this paper, we choose

hmin =
2hm
n

, hmax =
hm
2
, (2.12)

where hm = max ‖Xi − Xj‖,Cl = 1.1. Compared to other methods, this method is more
convenient.

In order to get closer to the ideal optimal bandwidth, we search once again by
narrowing the interval on the basis of the previous searching process. Suppose j is the
bandwidth which makes Cj

l hmin optimal in the above searching process. Now, small interval

[Cj−1
l
hmin, C

j+1
l
hmin] is divided into n equal intervals again. Suppose

hi = hminC
j−1
l

(

1 +
i

n

(

Clx
2 − 1

))

(i = 1, . . . , n − 1). (2.13)

Among n−1 bandwidth, the bandwidth that makes eMS minimized is the optimal bandwidth.
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Another issue in multivariate local polynomial fitting is the choice of the order of the
polynomial. Since the modeling bias is primarily controlled by the bandwidth, this issue is
less crucial, however. For a given bandwidth h, a large value of d would expectedly reduce
the modeling bias but would cause a large variance and a considerable computational cost.
Since the bandwidth is used to control the modeling complexity, and due to the sparsity of
local data in multidimensional space, a higher-order polynomial is rarely used. So, we apply
the local quadratic regression to fit the model (i.e., p = 2, 3). The third issue is the selection
of the kernel function. In this paper, we choose the optimal spherical Epanechnikov kernel
function [6, 7] which minimizes the asymptotic mean square error (MSE) of the resulting
multivariate local polynomial estimators, as our kernel function.

3. LPR Solutions for PDE

For the following nonhomogeneous PDE with boundary values:

∂2u

∂t2
− ∂2u

∂x2
= g(x, t),

u|t=0 = ϕ(x),
∂u

∂t

∣
∣
∣
∣
t=0

= ψ(x), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

(3.1)

Suppose XT = (xT , tT ), so our purpose is to obtain estimation ŷi,T given n2 pairs of
points XTi = (xTi , tTi), where ŷi,T = f̂i(XT ), xT1 = 0 < xT2 < · · · < xTn = 1, tT1 = 0 < tT2 < · · · <
tTn = 1; then we can get

utt(XT ) − uxx(XT ) ≈ gi(XT ), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (3.2)

that is described by

[

β0 + β1(x − x0) + β2(t − t0) + β3(x − x0)2 + β4(x − x0)(t − t0) + β5(t − t0)2 + · · ·
]

tt

−
[

β0 + β1(x − x0) + β2(t − t0) + β3(x − x0)2 + β4(x − x0)(t − t0) + β5(t − t0)2 + · · ·
]

xx

≈ gi(XT ).

(3.3)

Consequently, the corresponding minimization function is

[
n∑

T1=1

[

ϕ(xT1 , 0) − u(xT1 , 0)
]2 ·KH(XT1 −XT ) +

n∑

T2=1

[

ψ(xT2 , 0) − ut(xT2 , 0)
]2

]

·KH(XT2 −XT ) +

⎡

⎣

n−1∑

i=2

n∑

j=1

[

g
(

xTi , tTj

)

−
[

utt
(

xTi , tTj

)

− uxx
(

xTi , tTj

)]]2 ·KH(XTi −XT )

⎤

⎦.

(3.4)
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In order to find expression of X, we need to find the elements of X at first.
Since binary function’s p-order Taylor expansion has (p2 +3p+2)/2 items, then we can

get expressions (3.5), (3.6), and (3.7):

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 a13 a14 a15 a16 · · ·
a21 a22 a23 a24 a25 a26 · · ·
...

...
...

...
...

...
...

an1 an2 an3 an4 an5 an6 · · ·
d(n+1),1 d(n+1),2 d(n+1),3 d(n+1),4 d(n+1),5 d(n+1),6 · · ·

...
...

...
...

...
... · · ·

dn(n−1),1 dn(n−1),2 dn(n−1),3 dn(n−1),4 dn(n−1),5 dn(n−1),6 · · ·
g[n(n−1)+1],1 g[n(n−1)+1],2 g[n(n−1)+1],3 g[n(n−1)+1],4 g[n(n−1)+1],5 g[n(n−1)+1],6 · · ·
g[n(n−1)+2],1 g[n(n−1)+2],2 g[n(n−1)+2],3 g[n(n−1)+2],4 g[n(n−1)+2],5 g[n(n−1)+2],6 · · ·

...
...

...
...

...
... · · ·

gn2,1 gn2,2 gn2,3 gn2,4 gn2,5 gn2,6 · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.5)

where X is n2 × (p + 1)(p + 2)/2 matrix:

i = 1, 2, . . . , n, j = 1, aij = 1

j = 2, aij = (xTi − xT )
j = 3, aij = (tTi − tT )

j = 4, aij = (xTi − xT )2

j = 5, aij = (xTi − xT )(tTi − tT )

j = 6, aij = (tTi − tT )2,
i = n + 1, n + 2, . . . , 2n, . . . , n(n − 1), j = 1, 2, 3, 5, dij = 0

j = 4, 6 dij = 1,

i = n(n − 1) + 1, n(n − 2) + 2, . . . , n2, j = 1, 2, 4, gij = 0

j = 3 gij = 1

k = 1, 2, . . . , n j = 5 gij = (xTk − xT )
k = 1, 2, . . . , n j = 6 gij = 2(xTk − xT ),

(3.6)

ΥT =
[

ϕ(xT1) ϕ(xT2) · · · ϕ(xTn) g(xT1 , tT2) g(xT2 , tT2) · · · g(xTn , tT2)

· · · g(xT1 , tTn−1) g(xT2 , tTn−1) · · · g(xTn , tTn−1) ψ(xT1) ψ(xT2) · · · ψ(xTn)
]

1×n2 .
(3.7)

Substitute (3.6) and (3.7) into

B̂ =
(

XTWX
)−1

XTWΥ. (3.8)
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Now, we can get the estimation ŷi,T = f̂i(XT ), (i = 1, 2, . . . , n),

ŷi,T = f̂i(XT ) = Ei
(

XTWX
)−1

XTWΥ, (3.9)

where Ei = (1, 0, 0, . . . , 0)1×S (S =
∑

0≤|j|≤d |j|/j!).

4. Numerical Illustrations and Discussions

In this section we consider the numerical results obtained by the schemes discussed
previously by applying them to the following second-order and fourth-order initial boundary
value problems. All computations are carried out using MATLAB 7.0.

Furthermore, in order to evaluate the accuracy and effectiveness, we apply the
following indices, namely, the mean squared prediction error (MSE):

MSE =
1
n

n∑

i=1

(

fi(x) − f̂i(x)
)2

(4.1)

and the absolute error

AEi = f(xi) − f̂(xi). (4.2)

Example 4.1. First, we consider the following second-order nonhomogeneous PDEs:

∂2u

∂t2
− ∂2u

∂x2
= t sinx

u|t=0 = 0,
∂u

∂t

∣
∣
∣
∣
t=0

= sinx.

(4.3)

The exact solution for problems (4.3) is u(x, t) = t sinx. We solve Example 4.1 with
n = 20, 30, 50 by choosing p = 3, 4 and various values of parameters Hi presented in Table 1.
The errors in the solutions are computed by our method (3.9). In Table 1, p = 3, 4. Given
n = 20, p = 3, 4, it is found that the magnitude of MSE is between 10 to the power of −3 and
10 to the power of −4. Given n = 30, p = 3, 4, it can be seen that the magnitude of MSE is
between 10 to the power of −4 and 10 to the power of −7. However, by setting up n = 50,
p = 3, 4, it is obvious that the magnitude of MSE is between 10 to the power of −5 and 10
to the power of −8. We conclude that MSE decreases with the increase of the value of n the
value of order p has no much influence on MSE for a large value of β. Consider parameterH;
specifically, MSEs get up to minimum for p = 3, n = 20 when H3 = 1/25, for p = 3, n = 30
whenH4 = 3/100, for p = 3, n = 50 whenH5 = 1/40. We can find that the optimal bandwidth
H locates in district [0.025I2, 0.04I2] by using method (2.12)-(2.13) for n = 20, 30, 50. For
p = 4, there exists the same situation with p = 3. Here, I2 is a unit matrix of two orders. The
fitting figure is depicted in Figure 1 using matlab 7.0.
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Table 1: Mean square errors (MSEs) with different values of p, H given n = 20, 30, 50 in Example 4.1, I2:
unit matrix of two orders.

Parameters (p,Hi) MSE (n = 20) MSE (n = 30) MSE (n = 50)

p = 3,H1 = (11/100) I2 8.5223 × 10−3 6.5223 × 10−4 6.3252 × 10−5

p = 3,H2 = (2/25)I2 3.0309 × 10−3 4.2541 × 10−4 9.7206 × 10−6

p = 3,H3 = (1/25)I2 1.1268 × 10−4 8.3418 × 10−5 6.0211 × 10−6

p = 3,H4 = (3/100)I2 5.3082 × 10−4 5.2087 × 10−5 1.1528 × 10−6

p = 3,H5 = (1/40)I2 6.9123 × 10−4 5.6021 × 10−5 3.9107 × 10−7

p = 3,H6 = (1/75)I2 3.3082 × 10−3 2.8339 × 10−5 1.8815 × 10−6

p = 4,H1 = (11/100)I2 4.1004 × 10−4 6.6033 × 10−6 5.8311 × 10−7

p = 4,H2 = (2/25)I2 1.8791 × 10−4 2.2416 × 10−6 3.4525 × 10−7

p = 4,H3 = (1/25)I2 6.6568 × 10−5 9.5066 × 10−7 3.0373 × 10−7

p = 4,H4 = (3/100)I2 9.0893 × 10−5 7.3137 × 10−6 9.7815 × 10−8

p = 4,H5 = (1/40)I2 5.9803 × 10−4 5.6401 × 10−6 4.1266 × 10−8

p = 4,H6 = (1/75)I2 5.7911 × 10−4 7.3452 × 10−6 2.3098 × 10−7

1

0.5

0

−0.5
1

0.5

0 0
0.2

0.4
0.6

0.8
1

t
x

Figure 1: LPR of Example 4.1.

Example 4.2. Next we consider the following fourth-order nonhomogeneous PDEs:

∂2u

∂t2
+
∂4u

∂x4
=
(

π4 − 1
)

sinπx cos t, 0 ≤ x ≤ 1, t > 0, (4.4)

with the initial conditions,

u(x, 0) = sinπx, ut(x, 0) = 0, 0 ≤ x ≤ 1, (4.5)

and the boundary conditions at x = 0 and x = 1 of the form

u(0, t) = u(1, t) =
∂2u

∂x2 (0, t) =
∂2u

∂x2 (1, t) = 0, t ≥ 0. (4.6)
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Table 2: Mean square errors (MSEs) with different values of p, H given n = 30 and absolute errors (AE)
given n = 30, 50 in Example 4.2, I2: unit matrix of two orders.

Parameters (h,Hi) MSE (n = 30) AE (x = 0.10, n = 30) AE (x = 0.20, n = 50)
p = 4,H1 = (11/100)I2, 2.3109 × 10−4 4.7882 × 10−3 9.4388 × 10−5

p = 4,H2 = (2/25)I2, 4.1493 × 10−4 3.1431 × 10−3 4.6412 × 10−5

p = 4,H3 = (1/25)I2, 3.8981 × 10−5 6.9083 × 10−4 1.0603 × 10−5

p = 4,H4 = (3/100)I2, 9.2391 × 10−6 1.1425 × 10−4 7.5229 × 10−6

p = 4,H5 = (1/40)I2, 9.0117 × 10−6 6.8858 × 10−4 9.1029 × 10−7

p = 4,H6 = (3/100)I2, 7.3249 × 10−6 9.4551 × 10−5 2.1002 × 10−6

p = 5,H1 = (11/100)I2, 7.0113 × 10−7 8.9211 × 10−5 6.8564 × 10−6

p = 5,H2 = (2/25)I2, 4.5881 × 10−7 7.8423 × 10−5 5.0705 × 10−6

p = 5,H3 = (1/25)I2, 2.1062 × 10−7 2.6065 × 10−5 9.6552 × 10−7

p = 5,H4 = (3/100)I2, 9.7922 × 10−8 5.8232 × 10−6 8.2302 × 10−7

p = 5,H5 = (1/40)I2, 3.8717 × 10−6 4.2410 × 10−5 3.0671 × 10−7

p = 5,H6 = (1/75)I2, 8.9821 × 10−6 7.9102 × 10−5 6.3409 × 10−6

Aziz et al. [19] (p, q, s, σ, h) x = 0.10, steps = 10 x = 0.20, steps = 16
(0, 0, 1, 1/4, 1/20)

—
1.5000 × 10−4 5.1000 × 10−5

(0, 1/6, 2/3, 1/4, 1/20) 1.8000 × 10−5 8.0000 × 10−6

(1/144, 5/36, 17/24, 1/4, 1/20) 1.8000 × 10−5 7.9000 × 10−6

Evans and Yousif [20] — 2.2000 × 10−4 4.1000 × 10−4

2.5000 × 10−5 4.7000 × 10−5

The exact solution for problems (4.4), (4.5), and (4.6) is u(x, t) = sinπx cos t. This
problem has been solved by several authors [19, 20]. Here, we try to solve Example 4.2 with
n = 30, 50 by choosing p = 3, 4 and various values of parameters H presented in Table 2.
The errors in the solutions are computed by our method (3.9); the splines method for three
kinds of values of p, q, s, σ, h in [19], and the AGE method for two kinds of values of its
parameters in [20] have been presented in Table 2. In Table 1, p = 3, 4. Given n = 30, it is
found that the magnitude of MSE is between 10 to the power of −4 and 10 to the power of
−6 for p = 3, between 10 to the power of −6 and 10 to the power of −8 for p = 4. We can see
the value of order p has a little influence on MSE. Consider parameter H; specifically, MSEs
get up to minimum for p = 3, n = 20 when H3 = 1/25, for p = 3, n = 30 when H4 = 3/100,
for p = 3, n = 50 when H5 = 1/40. Similar to Example 4.1, we can also acknowledge the
optimal bandwidth H exists in district [0.025I2, 0.03I2] by using method (2.12)-(2.13), for
n = 30 and n = 50 given p = 4, 5. Furthermore, we have tabulated the absolute errors (AEs) at
x = 0.10, 0.20 for different combination of parameters p,H for n = 30 and n = 50, respectively.
Given n = 30, p = 4, 5, the magnitude of AE is between 10 to the power of −3 and 10 to the
power of −6 at point x = 0.1, and given n = 50, p = 4, 5, the magnitude of AE is between 10
to the power of −5 and 10 to the power of −7 at point x = 0.2. Here, I2 is a unit matrix of two
orders. The fitting figure is also illustrated in Figure 2 using matlab 7.0.

5. Conclusions

In this paper, LPR method can be applied for the numerical solution of some kinds of PDEs.
We can also see that LPR method has been exploited to solve fifth-order boundary value
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Figure 2: LPR of Example 4.2.

problems [4] and Fredholm and Volterra integral equations [5] whose maximum absolute
errors are very small and calculation processes are simple and feasible. Compared with the
splines method [19] and the AGE method [20], LPR method converges to solutions with
fewer number of nodes, and the maximum absolute errors are a little smaller. Moreover, it is
more flexible to resolve problems just only adjusting parameters h, p. However, LPRmethods
have shortcomings which need more computation time compared with splines method [19]
for the same problems, which can be tried to discuss and resolve afterward. In any case, it is
more important that we can conclude LPR solution is a powerful tool for numerical solutions
of differential equations with initial and boundary values.
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