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We study the predator-prey model proposed by Aziz-Alaoui and Okiye (Appl. Math. Lett. 16
(2003) 1069–1075) First, the structure of equilibria and their linearized stability is investigated.
Then, we provide two sufficient conditions on the global asymptotic stability of a positive
equilibrium by employing the Fluctuation Lemma and Lyapunov direct method, respectively. The
obtained results not only improve but also supplement existing ones.

1. Introduction

One of the important interactions among species is the predator-prey relationship and it has
been extensively studied because of its universal existence. There are many factors affecting
the dynamics of predator-prey models. One of the familiar factors is the functional response,
referring to the change in the density of prey attached per unit time per predator as the prey
density changes. In the classical Lotka-Volterramodel, the functional response is linear, which
is valid first-order approximations ofmore general interaction. To buildmore realistic models,
Holling [1] suggested three different kinds of functional responses, and Leslie and Gower [2]
introduced the so-called Leslie-Gower functional response.

Recently, Aziz-Alaoui and Daher Okiye [3] proposed and studied the following
predator-prey model with modified Leslie-Gower and Holling-type II schemes,

dx

dt
=
(
r1 − b1x − a1y

x + k1

)
x,

dy

dt
=
(
r2 −

a2y

x + k2

)
y.

(1.1)
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Here, all the parameters are positive, and we refer to Aziz-Alaoui and Daher Okiye [3] for
their biological meanings. System (1.1) can be considered as a representation of an insect
pest-spider food chain, nature abounds in systems which exemplify this model; see [3].

Since then, system (1.1) and its nonautonomous versions have been studied by
incorporating delay, impulses, harvesting, and so on (see, e.g., [4–11]). In spite of this
extensive study, the dynamics of (1.1) is not fully understood and some existing results
are not true. For example, the main result (Theorem 6 on global stability of a positive
equilibrium) of Aziz-Alaoui andDaher Okiye [3] is not true as the condition (i) and condition
(iii) cannot hold simultaneously. In fact, it follows from condition (i), (1/4a2b1)(a2r1(r1 + 4) +
(r2 + 1)2(r1 + b1k2)) < r1k1/2a1, that 2a1a2r1 < a2b1r1k1. On the other hand, condition (iii),
4(r1 + b1k1) < a1, implies that a1 > 4b1k1. Then, one can have 8a2b1r1k1 < a2b1r1k1, which
is impossible. One purpose of this paper is to establish several sufficient conditions on the
global asymptotic stability of a positive equilibrium.

Let Ω0 = {(x, y) : x ≥ 0, y ≥ 0}. As a result of biological meaning, we only consider
solutions (x(t), y(t)) of (1.1) with (x(0), y(0)) ∈ Ω0. Moreover, solutions (x(t), y(t)) of (1.1)
with (x(0), y(0)) ∈ Ω0 are called positive solutions. An equilibrium E∗ = (x∗, y∗) of (1.1) is
called globally asymptotically stable if x(t) → x∗ and y(t) → y∗ as t → ∞ for any positive
solution (x(t), y(t)) of (1.1). System (1.1) is permanent if there exists 0 < α < β such that, for
any positive solution (x(t), y(t)) of (1.1),

α ≤ min
{
lim inf
t→∞

x(t), lim inf
t→∞

y(t)
}

≤ max
{
lim sup

t→∞
x(t), lim sup

t→∞
y(t)
}

≤ β. (1.2)

The remaining part of this paper is organized as follows. In Section 2, we discuss the structure
of nonnegative equilibria to (1.1) and their linearized stability. This has not been done yet,
and the results will motivate us to study global asymptotic stability of (1.1) in Section 3. The
obtained results not only improve but also supplement existing ones.

2. Nonnegative Equilibria and Their Linearized Stability

The Jacobian matrix of (1.1) is

J
(
x, y
)
=

⎛
⎜⎜⎜⎜⎝

r1 − 2b1x − a1k1y

(x + k1)
2

− a1x

x + k1

a2y
2

(x + k2)
2

r2 −
2a2y

x + k2

⎞
⎟⎟⎟⎟⎠. (2.1)

An equilibrium E of (1.1) is (linearly) stable if the real parts of both eigenvalues of J(E) are
negative and therefore a sufficient condition for stability is

tr(J(E)) < 0, det(J(E)) > 0. (2.2)
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Obviously, (1.1) has three boundary equilibria, E0 = (0, 0), E1 = (r1/b1, 0), and E2 =
(0, r2k2/a2), whose Jacobian matrices are

(
r1 0
0 r2

)
,

⎛
⎝−r1 − a1r1

r1 + b1k1
0 r2

⎞
⎠,

⎛
⎜⎜⎜⎝

r1 − a1r2k2
a2k1

0

r22
a2

−r2

⎞
⎟⎟⎟⎠, (2.3)

respectively. As a direct consequence of (2.2), we have the following result.

Proposition 2.1. (i) Both E0 and E1 are unstable.
(ii) E2 is stable if a1r2k2 > a2r1k1, while it is unstable if a1r2k2 < a2r1k1.

Besides the three boundary equilibria, (1.1) may have (componentwise) positive
equilibria. Suppose that Ê = (x̂, ŷ) is such an equilibrium. Then,

r1 − b1x̂ − a1ŷ

x̂ + k1
= 0,

r2 −
a2ŷ

x̂ + k2
= 0.

(2.4)

One can easily see that x̂ satisfies

a2b1x̂
2 + Bx̂ + (a1r2k2 − a2r1k1) = 0, (2.5)

where B � a1r2−a2r1+a2b1k1. Moreover, for convenience, we denoteΔ � B2−4a2b1(a1r2k2−
a2r1k1). Equation (2.5) can have at most two positive solutions, and hence (1.1) can have at
most two positive equilibria. Precisely, we have the following three cases.

Case 1. Suppose one of the following conditions holds.

(i) a1r2k2 < a2r1k1.

(ii) a1r2k2 = a2r1k1 and B < 0.

(iii) a1r2k2 > a2r1k1, B < 0, and Δ = 0.

Then, (1.1) has a unique positive equilibrium E3,1 = (x3,1, y3,1) with x3,1 = (−B +√
Δ)/2a2b1 and y3,1 = r2(x3,1 + k2)/a2.

Case 2. If a1r2k2 > a2r1k1, B < 0, and Δ > 0, then (1.1) has two positive equilibria E3,± =
(x3,±, y3,±), where x3,± = (−B ±

√
Δ)/2a2b1 and y3,± = r2(x3,± + k2)/a2.

Case 3. If no condition in Case 1 or Case 2 holds, then (1.1) has no positive equilibrium.
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For a positive equilibrium Ê = (x̂, ŷ), J(Ê) can be simplified to

J
(
Ê
)
=

⎛
⎜⎜⎜⎝

x̂(r1 − b1k1 − 2b1x̂)
x̂ + k1

− a1x̂

x̂ + k1

r22
a2

−r2

⎞
⎟⎟⎟⎠ (2.6)

by using (2.4). By simple computation, tr(J(Ê)) = (−2b1x̂2 + (r1 − r2 − b1k1)x̂ − k1r2)/(x̂ +
k1), det(J(Ê)) = (r2x̂(2a2b1x̂ + B))/a2(x̂ + k1).

Then, one can easily see that det(J(E3,1)) > 0 for Case 1(i)-(ii), det(J(E3,1)) = 0 for Case
1(iii), det(J(E3,+)) > 0, and det(J(E3,−)) < 0. Therefore, we obtain the following.

Proposition 2.2. (i) The positive equilibrium E3,1 in Case 1(i)(ii) is stable if 2b1x2
3,1 − (r1 − r2 −

b1k1)x3,1 + k1r2 > 0.
(ii) The positive equilibrium E3,− is unstable, while the positive equilibrium E3,+ = (x3,+, y3,+)

is stable if 2b1x2
3,+ − (r1 − r2 − b1k1)x3,+ + k1r2 > 0.

Remark 2.3. In [3, 7, 8], only existence of the positive equilibrium of (1.1) for Case 1(i) was
considered, which is stable if either (a) r1 ≤ r2 and k1 ≥ k2 [3] or (b) a1r2k2 < a2r1k1 and
r1 < b1k1 [7, 8]. Obviously, Proposition 2.2 greatly improves these results.

Propositions 2.1 and 2.2 naturally motivate us to seek sufficient conditions on global
asymptotic stability of equilibrium to (1.1) and permanence of (1.1).

Nindjin et al. [5] showed that if

a1r1r2 + a1b1r2k2 < a2b1r1k1, (H1)

then

lim sup
t→∞

x(t) ≤ K � r1
b1

, lim sup
t→∞

y(t) ≤ L � r1r2 + b1r2k2
a2b1

, (2.7)

lim inf
t→∞

x(t) ≥ M � r1k1 − a1L

b1k1
, lim inf

t→∞
y(t) ≥ N � r2(M + k2)

a2
(2.8)

for a positive solution (x(t), y(t)) of (1.1). Therefore, system (1.1) is permanent if (H1) holds.
With the help of these bounds, it was shown that E2 is globally asymptotically stable if r1(k1+
K) < a1N holds (see [5]).

In the coming section, we present two results on the global asymptotic stability of a
positive equilibrium, which not only supplement Theorem 7 of Nindjin et al. [5] but also
improve it by including more situations.

3. Global Asymptotic Stability of a Positive Equilibrium

The first result is established by employing the Fluctuation Lemma, and we refer to [12–16]
for details.
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Theorem 3.1. In addition to (H1) , further suppose that

2a2b1M + (a2b1k1 − a2r1 − a1r2) > 0, (H2)

where M is defined in (2.8). Then, system (1.1) has a unique positive equilibrium which is globally
asymptotically stable.

Proof. Obviously, (H1) implies a1r2k2 < a2r1k1, that is, condition (i) of Case 1 holds. Thus,
(1.1) has a unique positive equilibrium. Let (x(t), y(t)) be any positive solution of (1.1). By
the results at the end of Section 2, x � lim supt→∞ x(t) ≥ x � lim inft→∞ x(t) ≥ M, y �
lim supt→∞y(t) ≥ y � lim inft→∞y(t) > 0.

We claim x = x. Otherwise, x > x. According to the Fluctuation lemma, there exist
sequences ξn → ∞, ηn → ∞, τn → ∞, and σn → ∞ as n → ∞ such that ẋ(ξn) → 0,
ẋ(ηn) → 0, x(ξn) → x, x(ηn) → x, ẏ(τn) → 0, ẏ(σn) → 0, y(τn) → y, and y(σn) → y as
n → ∞. First, from the second equation of (1.1),

ẏ(τn) ≤
(
r2 −

a2y(τn)
supt≥τnx(t) + k2

)
y(τn), ẏ(τn) ≥

(
r2 −

a2y(τn)
inft≥τnx(t) + k2

)
y(τn). (3.1)

Letting n → ∞, we obtain that 0 ≤ (r2 − a2y/(x + k2))y and 0 ≥ (r2 − a2y/(x + k2))y. Hence,

r2
(
x + k2

)
a2

≤ y ≤ r2(x + k2)
a2

. (3.2)

Similar arguments as above also produce

r2
(
x + k2

)
a2

≤ y ≤ r2(x + k2)
a2

. (3.3)

Second, from the first equation of (1.1),

ẋ(ξn) =
(
r1 − b1x(ξn) −

a1y(ξn)
x(ξn) + k1

)
x(ξn). (3.4)

Equation (3.4) implies ẋ(ξn) ≤ (r1 − b1x(ξn) − (a1inft≥ξny(t)/(x(ξn) + k1)))x(ξn).
Taking limit as n → ∞, one obtains 0 ≤ (r1−b1x−a1y/(x+k1))x. This, combined with

(3.3), gives us 0 ≤ (r1 − b1x − a1r2(x + k2)/a2(x + k1))x. It follows that

(a2r1 − a2b1k1)x − a2b1x
2 + a2r1k1 ≥ a1r2

(
x + k2

)
. (3.5)

Similarly, one can show that

(a2r1 − a2b1k1)x − a2b1x
2 + a2r1k1 ≤ a1r2(x + k2). (3.6)
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Multiplying (3.5) by −1 and adding it to (3.6), we have

a2b1
(
x2 − x2

)
+ (a2b1k1 − a2r1 − a1r2)

(
x − x

) ≤ 0. (3.7)

Due to x > x, one gets a2b1(x+x)+(a2b1k1−a2r1−a1r2) ≤ 0 which contradicts (H2) . Therefore,
x = x, and the claim is proved.

The claim implies that limt→∞x(t) exists and we denote it by x∗. Then, it follows from
(3.2) and (3.3) that limt→∞y(t) exists and limt→∞y(t) � y∗ = r2(x∗ + k2)/a2 > 0. Letting
n → ∞ in (3.4) gives us r1−b1x∗ −a1r2(x∗+k2)/a2(x∗+k1) = 0. Then, one can see that (x∗, y∗)
satisfies (2.4), that is, (x∗, y∗) is a positive equilibrium of (1.1). This completes the proof as
the positive equilibrium is unique.

Theorem 3.2. Suppose that (1.1) has a unique positive equilibrium E∗ = (x∗, y∗). Further assume
that

(
2k2 + k1
2k1k2

)
a1L +

a1

2
< b1(x∗ + k1), L < k2, (H3)

where L is defined in (2.7). Then, E∗ is globally asymptotically stable.

Proof. Let (x(t), y(t)) be any positive solution of (1.1). From (H3) , we can choose an ε > 0
such that

(
2k2 + k1
2k1k2

)
a1(L + ε) +

a1

2
< b1(x∗ + k1), L + ε < k2. (3.8)

Moreover, it follows from (2.7) that there exists T > 0 such that

0 < y(t) ≤ L + ε for t ≥ T. (3.9)

According to the proof of Theorem 6 in [3], let

V
(
x, y
)
= (x∗ + k1)

(
x − x∗ − x∗ ln

( x

x∗
))

+
a1(x∗ + k2)

a2

(
y − y∗ − y∗ ln

(
y

y∗

))
. (3.10)



Discrete Dynamics in Nature and Society 7

Then, by the positivity of x, (3.8), and (3.9),

dV

dt
=
(
−b1(x∗ + k1) +

a1y

x + k1

)
(x − x∗)2 − a1

(
y − y∗)2 +

(
−a1 +

a1y

x + k2

)
(x − x∗)

(
y − y∗)

≤
(
−b1(x∗ + k1) +

a1y

k1

)
(x − x∗)2 − a1

(
y − y∗)2 +

(
a1 +

a1y

x + k2

) (x − x∗)2 +
(
y − y∗)2

2

≤
(
−b1(x∗ + k1) +

a1y

k1

)
(x − x∗)2 − a1

(
y − y∗)2 +

(
a1 +

a1y

k2

) (x − x∗)2 +
(
y − y∗)2

2

=
(
−b1(x∗ + k1) +

a1y

k1
+
a1y

2k2
+
a1

2

)
(x − x∗)2 +

(
a1y

2k2
− a1

2

)(
y − y∗)2

≤
(
−b1(x∗ + k1) +

(
2k2 + k1
2k1k2

)
a1(L + ε) +

a1

2

)
(x − x∗)2 +

a1

2

(
L + ε

k2
− 1
)(

y − y∗)2

< 0.
(3.11)

Therefore, E∗(x∗, y∗) is globally asymptotically stable, and this completes the proof.
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