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This paper is devoted to exponential synchronization for complex dynamical networks with
delay and impulsive effects. The coupling configuration matrix is assumed to be irreducible. By
using impulsive differential inequality and the Kronecker product techniques, some criteria are
obtained to guarantee the exponential synchronization for dynamical networks. We also extend
the delay fractioning approach to the dynamical networks by constructing a Lyapunov-Krasovskii
functional and comparing to a linear discrete system. Meanwhile, numerical examples are given
to demonstrate the theoretical results.

1. Introduction

In the past two decades, complex dynamical networks have attracted lot of attention in
different areas, such as physical science, engineering, mathematics, biology, and sociology
[1–3]. The synchronization of all dynamical nodes is an important and interesting
phenomena mostly because the synchronization can well explain many natural phenomena.
Consequently, the synchronization has been actively investigated due to past physics and
potential engineering applications. Recently, there has been an increasing interest in the
investigation of synchronization of complex dynamical networks, thenmany synchronization
results have been derived for complex dynamical networks [4–9].

Impulsive effects widely exist in the networks. Such systems are described by
impulsive differential systems which have been used efficiently in modelling many practical
problems that arise in the fields of engineering, physics, and science as well. So the theory
of impulsive differential equations is also attracting much attention in recent years [10–
13]. Correspondingly, based on the theory of impulsive differential equations, a lot of
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synchronization results of dynamical networks with impulsive effects have been obtained
[13–20].

As is well known, two kinds of impulses in terms of synchronization in complex
dynamical networks are considered. One is desynchronizing impulse, the other is syn-
chronizing impulse. An impulsive sequence is said to be desynchronizing if the impulsive
effect can suppress the synchronization of complex dynamical networks. An impulsive
sequence is said to be synchronizing if a corresponding impulsive effect can enhance the
synchronization of the complex dynamical networks. According to the previous literature,
complex dynamical networks with delay and impulses can reach synchronization provided
that delayed dynamical networks are synchronized. In this paper, by impulsive differential
inequality [21], the Lyapunov functional method and the Kronecker product techniques,
some sufficient conditions are derived for the globally exponential synchronization of
dynamical networks. We also extend the delay fractioning method [22, 23] to dynamical
networks by constructing Lyapunov-Krasovskii functional and comparing to a linear discrete
system. Meanwhile, numerical simulations are given to show that our derived criteria
can easily be used to make judgements on synchronization for the delayed dynamical
networks with impulsive effects and show that impulsive effects play an important role in
the delay dynamical networks. The rest of this paper is organized as follows. In Section 2,
the network model is presented, together with some definitions and lemmas. In Section 3,
some synchronization criteria are derived for general dynamical networks with delay and
impulsive effects. In Section 4, two numerical examples are given to demonstrate that our
results are relevant to not only linear coupling but also delay and impulsive effects. Finally,
some conclusions are given in Section 5.

Notations. Throughout this paper, the superscript T represents the transpose. In stands for
the identity matrix of order n. For x = (x1, x2, . . . , xn)

T ∈ Rn, the norm is defined as
‖x‖ = (

∑n
i=1 x

2
i )

1/2. For matrix A, λmax(A) and λmin(A) denote the maximum and minimum
eigenvalues of matrix A, respectively. For real symmetric matrices X and Y , the notation
X ≤ Y (resp., X < Y ) means that the matrix X − Y is negative semidefinite (resp., negative
definite). For a sequence {tk, k = 0, 1, . . .} satisfying 0 = t0 < t1 < · · · < tk < tk+1 < · · · , let
Δk � tk+1 − tk, Δsup = supk≥0{Δk}, Δinf = infk≥0{Δk}.

2. Model Description and Preliminaries

We consider a delayed complex dynamical network consisting ofN-coupled identical nodes.
Each node is an n-dimensional dynamical system composed of linear term and nonlinear
term. The ith node can be described as follows:

ẋi = Cxi + B1f(xi(t)) + B2g(xi(t − τ(t))), i = 1, 2, . . . ,N, (2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T is the state vector of the ith node at

time t, C, B1, B2 ∈ Rn×n; 0 < τ(t) ≤ τ , τ ′(t) ≤ σ < 1, τ > 0,
f(x), g(x) ∈ C(Rn, Rn), f(xi(t)) = (f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))

T , g(xi(t − τ(t))) =
(g1(xi1(t − τ(t))), g2(xi2(t − τ(t))), . . . , gn(xin(t − τ(t))))T .
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The dynamical behavior of the dynamical network with delay can be described by the
following linearly coupled systems:

ẋi = Cxi + B1f(xi(t)) + B2g(xi(t − τ(t)))

+ c
N∑

j=1,j /= i

aijΓ
(
xj(t) − xi(t)

)
, i = 1, 2, . . . ,N,

(2.2)

where Γ = diag{γ1, γ2, . . . , γn} is the inner coupling positive definite matrix between two
connected nodes i and j, c is the coupling strength, and aij is defined as follows: if there
is a connection from node j to node i(j /= i), then aij > 0; otherwise, aij = 0.

In the process of signal transmission, due to the impulsive effects, the states xi(t), i =
1, 2, . . . ,N are suddenly changed in the form of impulses at discrete times tk. That is, xi(t+k) =
dkxi(tk). Let aii = −

∑N
j=1,j /= i aij . Thus, the dynamical network with delay and impulsive

effects can be obtained by the following form:

ẋi = Cxi + B1f(xi(t)) + B2g(xi(t − τ(t))) + c
N∑

j=1

aijΓxj(t), t ≥ t0, t /= tk,

xi

(
t+k
)
= dkxi(tk), k = 1, 2, . . . ,

xi(t) = ϕi(t), t ∈ [t0 − τ, t0], i = 1, 2, . . . ,N,

(2.3)

where xi(t+k) = limh→ 0+xi(tk + h), xi(tk) = limh→ 0−xi(tk + h), tk ≥ 0 are impulsive moments
satisfying tk < tk+1 and limk→+∞tk = +∞, dk, k = 1, 2, . . . are the impulsive gains at tk for ith
unit, A = (aij)N×N is the Laplacian matrix of the corresponding network.

By a solution xi = xi(t) of system (2.3), we mean a real function on [t0 − τ,∞) such
that xi(t0) = ϕi(t) for t ∈ [t0 − τ, t0], and xi(t) satisfies system (2.3) for t ≥ t0, and xi(t) is
continuous everywhere except for some tk and left continuous at t = tk, and the right limit
x(t+k) k = 1, 2, . . . exists. Here, we always assume that system (2.3) has a unique solution.

Remark 2.1. If |dk| < 1, the impulsive sequence is of synchronizing impulse, which may
enhance the synchronization of the networks. But if |dk| > 1, the impulsive sequence can
suppress the synchronization, which is said to be desynchronizing impulse.

Definition 2.2. The dynamical networks (2.3) are said to be globally exponentially synchro-
nized if there exist η > 0 and M > 0 such that for any initial values ϕi(t) (i = 1, 2, . . . ,N):

∥
∥xi(t) − xj(t)

∥
∥ ≤ Me−η(t−t0) (2.4)

hold all t > t0, and for any i, j = 1, 2, . . . ,N.
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Definition 2.3. For A = (aij)m×n ∈ Rm×n, B = (bij)p×q ∈ Rp×q, the Kronecker product between
two matrices is defined by

A ⊗ B =

⎛

⎜
⎜
⎜
⎝

a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

... · · ·
...

am1B am2B · · · amnB

⎞

⎟
⎟
⎟
⎠

∈ Rmp×nq. (2.5)

Assumption 2.4. There exist constants li, l
′
i > 0 (i = 1, 2, . . . ,N) such that |fi(x1) − fi(x2)| ≤

li|x1 − x2| and |gi(x1) − gi(x2)| ≤ l′i|x1 − x2| hold for any x1, x2 ∈ R.

Assumption 2.5. The coupling configuration matrix A is irreducible, and the real parts of the
eigenvalues of A are all negative except an eigenvalue 0 with multiplicity 1.

To derive our main results, we need the following lemmas.

Lemma 2.6 (see [24]). If an irreducible matrix A with nonnegative offdiagonal elements satisfies
aii = −

∑N
j=1,j /= i aij , i = 1, 2, . . . ,N, then the following propositions are obtained:

(1) if λ is an eigenvalue of A and λ/= 0, then Re(λ) < 0;

(2) A has an eigenvalue 0 with multiplicity 1 and the right eigenvector (1, 1, . . . , 1)T ;

(3) suppose that ξ = (ξ1, ξ2, . . . , ξN)T ∈ RN satisfying
∑N

i=1 ξi = 1 is the normalized left
eigenvector of A corresponding to eigenvalue 0. Then, ξi > 0 hold for all i = 1, 2, . . . ,N;

(4) furthermore, if A is symmetric, then we have ξi = 1/N for i = 1, 2, . . . ,N.

Lemma 2.7 (see [21]). Let p, q, τ , dk, k = 1, 2, . . . be constants and q ≥ 0, τ > 0, dk ≥ 0 and assume
that u(t) is a piece continuous nonnegative function satisfying:

D+u(t) ≤ pu(t) + qu(t) t ≥ t0, t /= tk,

u
(
t+k
)
≤ dk(u(tk)), k = 1, 2, . . . ,

u(t) = φ(t), t ∈ [t0 − τ, t0].

(2.6)

If there exist α such that for k = 1, 2, . . .

lndk

tk − tk−1
≤ α,

p + dq + α < 0.

(2.7)

Then

u(t) ≤ d

(

sup
t0−τ≤t≤t0

∣
∣φ
∣
∣

)

e−λ(t−t0), (2.8)

where u(t) = supt−τ≤σ≤tx(σ), d = sup1≤k<+∞{eα(tk−tk−1), 1/eα(tk−tk−1)}, λ is an unique positive
solution of λ + p + dqeλτ + α = 0.
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Remark 2.8. The condition of Lemma 2.7 does not need −p > q due to the effects α, which
implies that the above inequality is less conservative than the results in [25].

Lemma 2.9. For any vectors x, y ∈ Rn, scalar ε > 0, and positive definite matrix Q ∈ Rn×n, the
following inequality holds:

2xTy ≤ εxTQx + ε−1yTQ−1y. (2.9)

Lemma 2.10. Let A ∈ Rn×n be a positive definite matrix, then for x ∈ Rn,

λmin(A)xTx ≤ xTAx ≤ λmax(A)xTx. (2.10)

3. Synchronization Analysis

In this section, the globally exponential synchronization will be analyzed for delayed
dynamical networks with impulsive effects. We assume that the network topology is strongly
connected, then the corresponding Laplacian coupling matrix A is irreducible.

Let x(t) = (xT
1 (t), x

T
2 (t), . . . , x

T
N(t))T , F(x(t)) = (fT (x1(t)), fT (x2(t)), . . . , fT (xN(t)))T ,

G(x(t)) = (gT (x1(t)), gT (x2(t)), . . . , gT (xN(t)))T and ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕN(t))T . Then,
the delayed dynamical network (2.3) can be rewritten in the following Kronecker product
form:

ẋ = (IN ⊗ C)x(t) + (IN ⊗ B1)F(x(t))

+ (IN ⊗ B2)G(x(t − τ(t))) + c(A ⊗ Γ)x(t), t ≥ t0, t /= tk,

x
(
t+k
)
= dkx(tk), k = 1, 2, . . . ,

x(t) = ϕ(t), t ∈ [t0 − τ, t0].

(3.1)

Suppose that ξ = (ξ1, ξ2, . . . , ξN)T is the left eigenvector of the configuration coupling
matrix A with respect to eigenvalue 0 satisfying

∑N
i=1 ξi = 1. Since the coupling configuration

matrix A is irreducible, by Lemma 2.6, we can see that ξi > 0 for i = 1, 2, . . . ,N. Let Ξ =
diag{ξ1, ξ2, . . . , ξN} > 0, L = diag{l1, l2, . . . , ln}, L′ = diag{l′1, l

′
2, . . . , l

′
n}, W = Ξ − ξξT and A =

ΞA +ATΞ.

Theorem 3.1. Suppose that Assumptions 2.4 and 2.5 hold. Also suppose that there exist a diagonal
positive-definite matrix P and scalars η > 0, ε > 0, γ > 0, μ2 ≥ 0, μ1, δ such that

(H1) Θ1 = PC + CTP + εPB1B
T
1 P + γPB2B

T
2 P + ε−1L2 − cηPΓ − μ1P ≤ 0;

(H2) Θ2 = γ−1L
′2 − μ2P ≤ 0;

(H3) for all k = 1, 2, . . ., 2 ln |dk|/(tk − tk−1) ≤ δ;

(H4) μ1 + dμ2 + δ < 0;

(H5) ηλmax(W) + λ2(A) ≤ 0.

Then the complex dynamical networks (3.1) are exponentially synchronized, where d =
sup1≤k<+∞{eδ(tk−tk−1), 1/eδ(tk−tk−1)}, λ2(A) is defined to be the second largest eigenvalue of A.
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Proof. We define a Lyapunov function V (t) = xT (t)(W ⊗ P)x(t). Since W = Ξ −
ξξT , we have wij = −ξiξj for i /= j and wii = ξi − ξ2i . In view of

∑N
j=1 ξj = 1, it

follows that
∑N

j=1 wij = ξi −
∑N

j=1 ξiξj = 0. Therefore, we can conclude that V (t) =
∑N

i=1
∑N

j=1,j /= i −(1/2)wij(xi(t) − xj(t))
TP(xi(t) − xj(t)). Calculating the Dini derivative of V (t)

along the trajectories of the systems (3.1), we have for t /= tk, k = 1, 2, . . .:

D+V (t) = 2xT (t)(W ⊗ P) × (IN ⊗ C)x(t)

+ 2xT (W ⊗ P) × (IN ⊗ B1)F(x(t))

+ 2xT (W ⊗ P) × (IN ⊗ B2)G(x(t − τ(t)))

+ 2cxT (t)(W ⊗ P) × (A ⊗ Γ)x(t).

(3.2)

By adding −cxT(t)(W ⊗ ηPΓ)x(t) + cxT(t)(W ⊗ ηPΓ)x(t) to (3.2) and noting that WA = (Ξ −
ξξT )A = ΞA − ξ(ξTA) = ΞA, we can obtain that

D+V (t) ≤ −
N∑

i=1

N∑

j=1,j /= i

wij

[
(
xi(t) − xj(t)

)T
(

PC − 1
2
cηPΓ

)
(
xi(t) − xj(t)

)

+
(
xi(t) − xj(t)

)T
PB1
(
f(xi(t)) − f

(
xj(t)

))

+
(
xi − xj

)T
PB2
(
g(xi(t − τ(t))) − g

(
xj(t − τ(t))

))
]

+ cxT(t) ×
[(

ΞA +ATΞ
)
⊗ PΓ +W ⊗ ηPΓ

]
x(t).

(3.3)

Since the matrix A = ΞA +ATΞ has the following property:

A =
(
Aij

)

N×N
, Aii = 2ξiAii < 0, i = 1, 2, . . . ,N,

Aij = ξiAij + ξjAji = Aji, i /= j,
N∑

j=1

Aij = ξi
N∑

j=1

Aij +
N∑

j=1

ξjAji = 0.
(3.4)

By Perron-Frobenius theorem (see [24]), we can arrange the eigenvalues of matrix A as
follows: 0 = λ1(A) > λ2(A) ≥ · · · ≥ λN(A). Applying matrix decomposition theory (see [24]),
there exists unitary matrix U, such that A = UΛUT , where Λ = diag{0, λ2(A), . . . , λN(A)}
and U = {u1, u2, . . . , uN}with u1 = (1/

√
N, 1/

√
N, . . . , 1/

√
N)

T
and UTU = IN .

Let y(t) = (UT ⊗ In)x(t), where y(t) = (yT
1 (t), y

T
2 (t), . . . , y

T
N(t))T , yi(t) ∈ Rn, i =

1, 2, . . . ,N. Then we have x(t) = (U ⊗ In)y(t). Thus, we have

xT (t)
[(

ΞA +ATΞ
)
⊗ PΓ

]
x(t) = yT (t)

(
UT ⊗ In

)(
A ⊗ PΓ

)
(U ⊗ In)y(t)

=
N∑

i=2

λi
(
A
)
yT
i (t)PΓyi(t) ≤ λ2

(
A
) N∑

i=2

yT
i (t)PΓyi(t).

(3.5)



Discrete Dynamics in Nature and Society 7

In view of matrix W is a zero row sum irreducible symmetric matrix with negative off-
diagonal elements, we see that λmax(W) > 0 andWu1 = (0, 0, . . . , 0))T . Hence by Lemma 2.10,
we have

xT (t)
(
W ⊗ ηPΓ

)
x(t) = ηyT (t)

(
UTWU ⊗ PΓ

)
y(t)

≤ ηλmax(W)
N∑

i=2

yT
i (t)PΓyi(t).

(3.6)

It follows from condition λ2(A) + ηλmax(W) ≤ 0 that

cxT (t)
[(

ΞA +ATΞ
)
⊗ PΓ +W ⊗ ηPΓ

]
x(t)

≤ c
(
λ2
(
A
)
+ ηλmax(W)

) N∑

i=2

yT
i (t)Pyi(t) ≤ 0.

(3.7)

By Assumption 2.4 and Lemma 2.10, there exists ε > 0 such that

2
(
xi(t) − xj(t)

)T
PB1
(
f(xi(t)) − f

(
xj(t)

))

≤ ε
(
xi(t) − xj(t)

)T
PB1B

T
1 P
(
xi(t) − xj(t)

)

+ ε−1
(
f(xi(t)) − f

(
xj(t)

))T(
f(xi(t)) − f

(
xj(t)

))

≤ ε
(
xi(t) − xj(t)

)T
PB1B

T
1 P
(
xi(t) − xj(t)

)

+ ε−1
(
xi(t) − xj(t)

)T
L2(xi(t) − xj(t)

)

=
(
xi(t) − xj(t)

)T
(
εPB1B

T
1 P + ε−1L2

)(
xi(t) − xj(t)

)
.

(3.8)

Similarly, we have the following estimation:

2
(
xi(t) − xj(t)

)T
B2
(
g(xi(t − τ(t))) − g

(
xj(t − τ(t))

))

≤
(
xi(t) − xj(t)

)T
γPB2B

T
2 P
(
xi(t) − xj(t)

)

+
(
xi(t − τ(t)) − xj(t − τ(t))

)T
(
γ−1L

′2
)(

xi(t − τ(t)) − xj(t − τ(t))
)
,

(3.9)
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where γ > 0. Substituting these into (3.3), we have for t /= tk

V̇ (t) ≤ −
N∑

i=1

N∑

j=1,j /= i

1
2
wij

×
[(
xi(t) − xj(t)

)T
(
PC + CTP + εPB1B

T
1 P + γPB2B

T
2 P + ε−1L2 − cηPΓ

)(
xi(t) − xj(t)

)]

−
N∑

i=1

N∑

j=1,j /= i

1
2
wij

×
[(
xi(t − τ(t)) − xj(t − τ(t))

)T
(
γ−1L

′2
)(

xi(t − τ(t)) − xj(t − τ(t))
)]

= −
N∑

i=1

N∑

j=1,j /= i

1
2
wij

×
[(
xi(t) − xj(t)

)T
(
PC + CTP + εPB1B

T
1 P + γPB2B

T
2 P + ε−1L2 − cηPΓ − μ1P

)

×
(
xi(t) − xj(t)

)]

− μ1

N∑

i=1

N∑

j=1,j /= i

1
2
wij

(
xi(t) − xj(t)

)T
P
(
xi(t) − xj(t)

)

−
N∑

i=1

N∑

j=1,j /= i

1
2
wij

×
[(
xi(t − τ(t)) − xj(t − τ(t))

)T
(
γ−1L

′2 − μ2P
)(

xi(t − τ(t)) − xj(t − τ(t))
)]

− μ2

N∑

i=1

N∑

j=1,j /= i

1
2
wij

[(
xi(t − τ(t)) − xj(t − τ(t))

)T
P
(
xi(t − τ(t)) − xj(t − τ(t))

)]

≤ μ1V (t) + μ2V (t − τ(t)).
(3.10)

For t = tk, we have

V
(
t+k
)
= −1

2

N∑

i=1

N∑

j=1,j /= i

wij

(
xi

(
t+k
)
− xj

(
t+k
))T

P
(
xi

(
t+k
)
− xj

(
t+k
))

= −
d2
k

2

N∑

i=1

N∑

j=1,j /= i

wij

(
xi(tk) − xj(tk)

)T
P
(
xi(tk) − xj(tk)

)

= d2
kV (tk).

(3.11)
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By Lemma 2.7, there exist M > 0 such that

V (t) ≤ M

(

sup
−τ≤s≤0

V (t0 + s)

)

e−η(t−t0), (3.12)

which implies that

1
2
ξiξjλmin(P)

∥
∥xi(t) − xj(t)

∥
∥2 ≤ 1

2

N∑

i=1,j=1

ξiξj
(
xi(t) − xj(t)

)T
P
(
xi(t) − xj(t)

)

= V (t) = O
(
e−η(t−t0)

)
.

(3.13)

Consequently, the complex dynamical network (3.1) can reach globally exponential
synchronization.

Remark 3.2. When the impulsive effects are desynchronizing, that is, |dk| > 1, the condition
(H4) in Theorem 3.1 yields −μ1 > μ2, which means that the delayed complex networks
without impulsive effects of (2.2) is exponentially synchronized. But when the impulsive
effects are synchronizing, that is, |dk| < 1, we do not need the condition −μ1 > μ2 due to the
effect of impulses.

Theorem 3.3. Suppose that Assumptions 2.4 and 2.5 hold and Δsup < ∞. Also suppose that there
exist a diagonal positive definite matrix P and scalars η > 0, ε > 0, γ > 0, μ1 > 0, μ2 ≥ 0 such that

(H1) Θ1 = PC + CTP + εPB1B
T
1 P + γPB2B

T
2 P + ε−1L2 − cηPΓ − μ1P ≤ 0;

(H2) Θ2 = γ−1L
′2 − μ2P ≤ 0;

(H3) for all k = 1, 2, . . ., |dk| < 1;

(H4) there exists a integerm ≥ 1 such that tk−m ≤ tk − τ ≤ tk+1−m for all k ≥ m, and the discrete
system:

θ(k + 1) = Jk(m)θ(k) (3.14)

is globally exponentially stable with decay λ > 0, where

Jk(m) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1
βk+1−m βk+2−m βk+3−m · · · βk−1 αk−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.15)

ζ = μ1+μ2/(1−σ), αk = d2
k
eζΔk−1 +βk−1, βk−j = (β/(1−σ))Δk−je

ζΔk−j , j = 1, 2, . . . , m−1;
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(H5) there exists a constant T0 such that the average dwell time Ta satisfies

N[t0, t] ≥ −T0 +
t − t0
Ta

, t ≥ t0, (3.16)

where N[t0, t] is the number of impulsive times of the impulsive sequence on the interval
[t0, t];

(H6) ηλmax(W) + λ2(A) ≤ 0.

Then the complex dynamical networks (3.1) are exponentially synchronized with decay rate
λ/2Ta.

Proof. Consider a Lyapunov-Krasovskii functional:

V (t) = V1(t) + V2(t), (3.17)

with

V1(t) = xT (t)(W ⊗ P)x(t), V2(t) =
μ2

1 − σ

∫ t

t−τ(t)
xT (s)(W ⊗ P)x(s)ds. (3.18)

Similar to the proof of Theorem 3.1, for t ∈ (tk, tk+1], we get

D+V1(t) ≤ μ1x
T (t)(W ⊗ P)x(t) + μ2x

T (t − τ(t))(W ⊗ P)x(t − τ(t)). (3.19)

For t ∈ (tk, tk+1], we have

D+V2(t) ≤
μ2

1 − σ
xT (t)(W ⊗ P)x(t) − μ2x

T (t − τ(t))(W ⊗ P)x(t − τ(t)). (3.20)

Then

D+V (t) = D+V1(t, x(t)) +D+V2(t) ≤
(

μ1 +
μ2

1 − σ

)

V1(t) ≤ ζV (t). (3.21)

Thus

V (t) ≤ V
(
t+k
)
eζ(t−tk), t ∈ (tk, tk+1]. (3.22)

By (3.11), for t = tk, we have

V1
(
t+k
)
≤ d2

kV1(tk). (3.23)
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It follows from condition (iii) that there exists some t̂k−j+1 ∈ (tk−j , tk−j+1] such that

V2
(
t+k
)
≤

μ2

1 − σ

∫ tk

tk−τ(tk)
V1(s)ds ≤

μ2

1 − σ

∫ tk

tk−m

V1(s)ds

=
μ2

1 − σ

m∑

j=1

∫ tk−j+1

t+
k−j

V1(s)ds =
μ2

1 − σ

m∑

j=1

Δk−jV1

(
t̂k−j+1

)
.

(3.24)

Then from (3.22), we have

V2
(
t+k
)
≤

μ2

1 − σ

m∑

j=1

Δk−jV
(
t̂k−j+1

)
≤

μ2

1 − σ

m∑

j=1

Δk−je
ζΔk−j V

(
t+k−j

)
. (3.25)

Together with (3.22), (3.23) and the above inequality, we have

V
(
t+k
)
≤
(

d2
k +

μ2

1 − σ
Δk−1

)

eζΔk−1V
(
t+k−1
)
+

μ2

1 − σ

m∑

j=2

Δk−je
ζΔk−j V

(
t+k−j

)

� αk−1V
(
t+k−1
)
+

m−1∑

j=1

βk−j−1V
(
t+k−j−1

)
.

(3.26)

Set Z(k) = (z1(k), z2(k), . . . , zm(k))
T and z1(k) = V (t+

k+1), z2(k) = V (t+
k+2), . . . , zm(k) =

V (t+
k+m). Then

⎛

⎜
⎜
⎜
⎝

z1(k + 1 −m)
z2(k + 1 −m)

...
zm(k + 1 −m)

⎞

⎟
⎟
⎟
⎠

≤ Jk(m)

⎛

⎜
⎜
⎜
⎝

z1(k −m)
z2(k −m)

...
zm(k −m)

⎞

⎟
⎟
⎟
⎠

, (3.27)

that is,

Z(k −m + 1) ≤ Jk(m)Z(k −m). (3.28)

We consider the discrete system:

θ(k + 1) = Jk(m)θ(k), θ(m − 1) = Z(−1). (3.29)

Then, by the comparison principle, we see that for k ≥ m − 1

Z(k −m) ≤ θ(k). (3.30)
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Note that the system (3.29) is globally exponential stable with decay λ > 0, then there exists
constant M > 0 such that

‖Z(k −m)‖ ≤ Me−λ(k−m+1)‖Z(−1)‖, k ≥ m − 1, (3.31)

where ‖Z(−1)‖ = [
∑m−1

j=0 V 2(tj)]
1/2

, ‖Z(k −m)‖ = [
∑m

j=1 V
2(tj+k−m)]

1/2. From (3.17) and (3.22),
we have

V2

(
t+j

)
=

μ2

1 − σ

∫ tj

tj−τ(tj)
xT (s)(W ⊗ P)x(s)ds ≤

μ2

1 − σ

∫ tj

t0−τ
xT (s)(W ⊗ P)x(s)ds

=
μ2

1 − σ

∫ t0

t0−τ
xT (s)(W ⊗ P)x(s)ds +

μ2

1 − σ

j−1∑

s=0

∫ ts+1

t+s

xT (s)(W ⊗ P)x(s)ds

≤
μ2τ

1 − σ
sup

−τ≤s≤0
V (t0 + s) +

μ2

1 − σ

j−1∑

s=0

ΔsV (t+s )e
ζΔs , j = 0, 1, . . . , m − 1.

(3.32)

Furthermore, it follows that

V
(
t+j

)
= V1

(
t+j

)
+ V2

(
t+j

)

≤
μ2τ

1 − σ
sup

−τ≤s≤0
V (t0 + s) + d2

j e
ζΔj−1V

(
t+j−1

)
+

μ2

1 − σ

j−1∑

s=0

ΔsV (t+s )e
ζΔs−1

=
μ2τ

1 − σ
sup

−τ≤s≤0
V (t0 + s) + αjV

(
t+j−1

)
+

j−2∑

s=0

βsV (t+s ), j = 1, 2, . . . , m − 1,

V (t0) ≤
(

1 +
μ2τ

1 − σ

)

sup
−τ≤s≤0

V (t0 + s).

(3.33)

By induction, there exists a constant ϑ > 0, which is dependent on τ , σ, μ1, μ2, Δj , j =
0, 1, . . . , m − 1 such that

V
(
t+j

)
≤ ϑ‖ξ‖2, (3.34)

which yields that

‖Z(−1)‖ =

⎡

⎣
m−1∑

j=0

V 2
(
t+j

)
⎤

⎦

1/2

≤
√
mϑ sup

−τ≤s≤0
V (t0 + s). (3.35)

From (3.31) and the above inequality, we see that for all k = 0, 1, . . .,

V
(
t+k
)
≤ ‖Z(k −m)‖ ≤ M

√
mϑe−λ(k−m+1) sup

−τ≤s≤0
V (t0 + s). (3.36)
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Therefore, by (3.17), (3.22), and (3.36), we conclude that for t ∈ (tk, tk+1], k = 0, 1, . . .,

V (t) ≤ eζ(t−tk)V
(
t+k
)
≤ Υe−λk sup

−τ≤s≤0
V (t0 + s), (3.37)

where Υ = M
√
mϑeλ(m−1)+ζΔk . For all t ∈ (tk, tk+1], k = 0, 1, . . ., we obtain that N[t0, t] = k.

Then

V (t) ≤ ΥeλT0e−(λ/Ta)(t−t0) sup
−τ≤s≤0

V (t0 + s), (3.38)

which means that

1
2
ξiξjλmin(P)

∥
∥xi(t) − xj(t)

∥
∥2 ≤ 1

2

N∑

i=1,j=1

ξiξj
(
xi(t) − xj(t)

)T
P
(
xi(t) − xj(t)

)

= V (t) = O
(
e−(λ/Ta)(t−t0)

)
.

(3.39)

This completes the proof of the theorem.

Remark 3.4. Theorem 3.3 presents a new delay-dependent exponential synchronization
criterion for complex dynamical networks by using the Lyapunov-Krasovskii functional.
Note that, for dk < 1, σ = 0, the proposed result demonstrates its superiority to Theorem 3.1,
which will be well illustrated via an example in the next section.

Corollary 3.5. Suppose that Assumptions 2.4 and 2.5 hold and Δsup < ∞ and τ < tk − tk−1 for
all k = 1, 2, . . .. If there exist positive definite matrix P and scalars η > 0, ε > 0, γ > 0, μ1 > 0,
μ2 ≥ 0 such that (H1)–(H3) and (H5)-(H6) of Theorem 3.3 hold, and condition (H4) of Theorem 3.3
is replaced by the following condition:

(H ′
4) there exists a constant λ > 0 such that

ln
(

d2
k +

μ2τ

1 − σ

)

+ ζΔk−1 ≤ −λ, (3.40)

where ζ = μ1 + μ2/(1 − σ), then the complex dynamical networks (3.1) are exponentially
synchronized with decay rate λ/2Ta.

Proof. Choose a Lyapunov-Krasovskii functional candidate V (x(t)) as

V (x(t)) = V1(x(t)) + V2(x(t)), (3.41)

with

V1(x(t)) = xT (t)(W ⊗ P)x(t), V2(x(t)) =
μ2

1 − σ

∫ t

t−τ(t)
xT (s)(W ⊗ P)x(s)ds. (3.42)
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By the proof of Theorem 3.3, for t ∈ (tk, tk+1], we have

D+V (t) ≤ ζV (t),

V (t) ≤ V
(
t+k
)
eζ(t−tk), t ∈ (tk, tk+1].

(3.43)

Note that τ < tk − tk−1, then there exists some t̂k ∈ [tk − τ, tk] such that

V2
(
t+k
)
≤

μ2

1 − σ

∫ tk

tk−τ
V1(s)ds =

μ2τ

1 − σ
V1

(
t̂k
)
. (3.44)

Thus

V
(
t+k
)
≤ d2

kV1(tk) +
μ2τ

1 − σ
V1

(
t̂k
)
≤ d2

ke
ζΔk−1V1

(
t+k−1
)
+

μ2τ

1 − σ
eζΔk−1V1

(
t+k−1
)

= eln(d
2
k
+μ2τ/(1−σ))+ζΔk−1V

(
t+k−1
)
.

(3.45)

Then from condition (H ′
4), we obtain

V
(
t+k
)
≤ e−λV

(
t+k−1
)
≤ · · · ≤ e−λkV (t0), (3.46)

for all k = 1, 2, . . .. The remainder proof of the theorem is similar to Theorem 3.3.

Remark 3.6. By Corollary 3.5, under the case that τ < tk − tk−1 for all k = 1, 2, . . ., we see that
the estimations of maximal time-delay τ ′ and maximal dwell time Δsup as

τ ′ < sup
k≥1

{
(1 − σ)e−ζΔk−1 − λ − d2

k

ζ

}

, Δsup < sup
k≥1

{
−λ − ln

(
d2
k
+ μ2τ/(1 − σ)

)

ζ

}

. (3.47)

Remark 3.7. By Corollary 3.5, if we take the impulsive gains dk as

0 < dk <

√

e−ζΔk−1−λ −
μ2τ

1 − σ
, k = 1, 2, . . . , (3.48)

then network (3.1) achieves exponential synchronization.

Corollary 3.8. Suppose that Assumptions 2.4 and 2.5 hold and Δsup < ∞. If there exist positive
definite matrix P and scalars η > 0, ε > 0, γ > 0, μ1 > 0, μ2 ≥ 0 such that (H1)–(H3) and (H5)-
(H6) of Theorem 3.3 hold and condition (H4) of Theorem 3.3 is replaced by one of the following two
conditions:

(H ′′
4) there exists a constantm > 1 such that tk−m < tk−τ ≤ tk+1−m for all k ≥ m, and the matrix

J(m) satisfies the spectral radius condition for some λ > 0

ρ(J(m)) < e−λ, (3.49)
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where

J(m) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 0 0 1
ε1 ε1 ε1 · · · ε1 ε1 + ε2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.50)

ε1 = (μ2/(1 − σ))Δsupe
ζΔsup , ε2 = deζΔsup , d = supk≥1{d2

k
}, ζ = μ1 + μ2/(1 − σ);

(iii′′′) there exists a positive integer m ≥ 1 such that tk−m < tk − τ ≤ tk+1−m for all k ≥ m, and
there exists a constant 0 < � < 1 such that all roots λj (j = 1, 2, . . . , m) of the characteristic
polynomial:

Ψk(λ) � λm − μk−1λ
m−1 − νk−1λ

m−2 − · · · − νk+2−mλ − νk+1−m (3.51)

satisfy that |λj | ≤ � < 1,
then the complex dynamical networks (3.1) are exponentially synchronized.

Remark 3.9. From Theorems 3.1 and 3.3, when the delayed network dynamics are desynchro-
nizing and the impulsive effects are synchronizing, in order to ensure synchronization, it
should be naturally assumed that the frequency of impulses should not be too low. Usually,
we always use condition tk−tk−1 ≤ T1 (T1 > 0) to ensure that the frequency of impulses should
not be too low. Conversely, when the delayed network dynamics are synchronizing but the
impulsive effects are desynchronizing, the impulses should not occur too frequently in order
to guarantee synchronization. To ensure that the impulses do not occur too frequently, we
always assume that tk − tk−1 ≥ T2 (T2 > 0).

4. Examples and Simulations

In this section, some examples and numerical simulations are provided to illustrate our
results.

Example 4.1. Consider the following delayed neural networks [26]:

x′(t) = Cx(t) + B1f(x(t)) + B2g(x(t − 1)), (4.1)

where x = (x1, x2)
T , f(x) = (f(x1), f(x2))

T , g(x) = (g(x1), g(x2))
T , f(x) = g(x) = tanh(x),

C =
(

−1 0
0 −1

)

, B1 =
(

2 −0.1
−5.0 1.5

)

, and B2 =
(

−1.5 −0.1
−0.2 −1

)

. These neural networks (4.1)

are chaotic, and chaotic attractor is shown in Figure 1.
We consider the following linear coupled delayed networks:

x′
i(t) = Cxi(t) + B1f(xi(t)) + B2g(xi(t − 1)) + c

4∑

j=1

aijΓxj(t), i = 1, 2, 3, 4, (4.2)

where xi(t) = (xi1(t), xi2(t))
T , c = 1.4, Γ =

(
4.18 0
0 4.9

)

and A =

⎛

⎜
⎜
⎝

−2 0.4 1 0.6
0.4 −3 0 2.6
1 0 −2.4 1.4
0.6 2.6 1.4 −4.6

⎞

⎟
⎟
⎠.
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Figure 2: The state variables xi1(t) and xi2(t) without impulsive effects.

Figure 2 shows the synchronization of networks of (4.3).
At last, we consider the following linear coupled delayed networks with impulsive

effects:

x′
i(t) = Cxi(t) + B1f(xi(t)) + B2g(xi(t − 1))

+ c
4∑

j=1

aijΓxj(t), t ≥ 0, t /= k, k = 1, 2, . . . ,

xi

(
t+k
)
= dkxi(tk), t = k, i = 1, 2, 3, 4,

(4.3)

where dk = 1.2, λmax(W) = 0.25, and λ2(A) = −1.0439. Letting L = L′ = (1/2)I, η = 4.1756, ε =
γ = μ2 = 1 and solving the LMIs in (i), (ii) in Theorem 3.1, we get that μ1 = −6.4461 and
P = diag{0.8432, 0.8774}. By Theorem 3.1, we see that the complex dynamical networks (4.3)
are exponentially synchronized. Figure 3 shows the synchronization of networks with delay
and impulsive effects.
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Figure 3: The state variables xi1(t) and xi2(t) with impulsive effects.

Example 4.2. Consider the following neural networks with delay and impulse:

x′
i(t) = Cxi(t) + B1f(xi(t)) + B2g(xi(t − τ(t)))

+ c
5∑

j=1

aijΓxj(t), t ≥ 0, t /= k, k = 1, 2, . . . ,

xi

(
t+k
)
= dkxi(tk), t = k, i = 1, 2, . . . , 5,

(4.4)

where xi(t) = (xi1(t), xi2(t), xi3(t))
T , τ(t) = 0.01, dk = 0.25, c = 0.8, C = diag{−0.3,−0.6,−1},

B1 =

⎛

⎝
0.4 −1.2 0.4
0.3 −1 −0.4
1.4 0.5 −0.8

⎞

⎠, B2 =

⎛

⎝
0.6 0.7 0.2
−0.3 −0.3 −0.4
1.1 0.5 0.4

⎞

⎠,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−0.6 0.3 0 0.2 0.1
0.3 −0.5 0 0.1 0.1
0 0 −0.3 0.1 0.2
0.2 0.1 0.1 −0.4 0
0.1 0.1 0.2 0 −0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Γ =

⎛

⎝
1.1 0 0
0 1.2 0
0 0 2.1

⎞

⎠,

(4.5)

f(xi(t)) = (f1(xi1(t)), f2(xi2(t)), f3(xi3(t)))
T , g(xi(t)) = (g1(xi1(t)), g2(xi2(t)), g3(xi3(t)))

T ,
fj(x) = x, gj(x) = (1/10)(|x + 1| − |x − 1|), j = 1, 2, 3. λmax(W) = 0.56, λ2(A) = −0.4693.
Letting L = I, L = (1/10)I, η = 0.838, ε = γ = μ2 = 1 and solving the LMIs in (i), (ii) in
Theorem 3.1, we get that μ1 = 1.5626 and P = diag{1.3782, 0.9991, 1.4307}. We can verify
that the synchronization criteria proposed by Theorem 3.1 are not satisfied. However, we
conclude that the complex dynamical networks (4.4) are exponentially synchronized by
Corollary 3.5. Figure 4 depicts the synchronization state variables xi1(t), xi2(t), and xi3(t)with
impulsive effects. Figure 5 depicts the synchronization state variables xi1(t), xi2(t), and xi3(t)
without impulsive effects.
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Figure 5: The state variables xi1(t), xi2(t), and xi3(t) without impulsive effects.

Remark 4.3. In Example 4.2, if we take tk − tk−1 = 0.1 and dk = 0.2, τ(t) = 0.9 sin t, it is easy to
see that the synchronization criteria proposed by Corollary 3.8 are not satisfied. However, we
conclude that the networks (4.4) are exponentially synchronized by Theorem 3.1.

5. Conclusions

In this paper, by establishing some lemmas of new impulsive differential inequality and by
using the Lyapunov functional method and the Kronecker product techniques, exponential
synchronization for impulsive dynamical networks with irreducible coupling matrix is
derived. Some criteria are obtained not only relevant to delay but also to impulsive effects. In
particular, the results can be extended to the case of one reducible coupling matrix A, which
implies that the network topology may be a weakly connected graph containing a rooted
spanning tree.
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