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The theory of impulsive state feedback control is used to establish a mathematical model in the
pest management strategy. Then, the qualitative analysis of the mathematical model was provided.
Here, a successor function in the geometry theory of differential equations is used to prove the
sufficient conditions for uniqueness of the 1-periodic solution. It proved the orbital asymptotic
stability of the periodic solution. In addition, numerical analysis is used to discuss the application
significance of the mathematical model in the pest management strategy.

1. Introduction

Impulse is an interference in the thing at a short time in the course of its development. It is a
method of external control. This kind of method is widely used in biological control, preven-
tion of epidemic, cancer cells of chemotherapeutics, and so on. We use impulsive differential
equation to reflect the method of external control. We can use impulsive differential equation
to describe some biological phenomena in population ecology. There are mainly two kinds
of impulsive differential equation. One kind is fixed times impulsive differential equation,
and the other kind is differential system with state impulses. In the recent thirty years,
many authors have studied the impulsive differential equation [1–5]. They obtained some
theories of impulsive differential equation; particularly the theory of fixed times impulsive
differential equation is widely used in population ecology. Many authors have studied the
dynamics of predator-prey models with impulsive control strategies [6–12].

Pest management is a focus which people are concerned with. Because the techno-
logical revolutions have recently hit the industrial world and the experience and lessons are
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accumulated, the ideology and strategy of pest management have changed a lot. Pest man-
agement changes from chemical control to integrated control. It is fully integrated into the
development of agriculture and forestry sustainability.

The study of pest management strategy has good application value and significant
agriculture production. In the past few decades, many authors have made a lot of research
and discussion it [13]. There are twomajor methods of pest management. The first is chemical
control. It means that the main method to control the amount of pests is spraying insecticide.
But its drawback is that it will cause pollution to the environment. In addition, spray
insecticide will kill natural enemies and other beneficial organisms. Although this can control
pest, it had a negative impact. The second is biological control, which means that the method
to control the amount of pests is culturing the natural enemies of pests. Because the biological
control can avoid the environmental pollution, many scholars studied biological control.
Some people put forward the integrated control method (IPM) by combining chemical
control and biological control. Thus we not only can use the fast speed of chemical control,
but also can use biological control to avoid the environmental pollution. In the process of
pest management, we see culturing the natural enemies of pests or insecticide spraying as an
instant action, and this action is not regular. This action is decided by the number of pests;
when the amount of pests reached a critical value, we spray insecticide or release the natural
enemies of pests at the instant of that time; here, the critical value is called economic threshold
or ET. Here, the instant action of culturing the natural enemies of pests or insecticide spraying
is impulsive control as we said before, so we use differential system with state impulses to
describe integrated control method (IPM) in pest management.

In recent years, the application of differential system with state impulses in integrated
pest management has been greatly developed. Tang used differential system with state
impulses in pest management [14, 15]. They established a system with state impulses:

dx

dt
= x

(
a − by

)

dy

dt
= y(cx − d)

x < x1

Δx = −px, Δy = h, x = x1.

(1.1)

Here x is the densities of the pest, y is the densities of natural enemies of the pest, x1 is the
critical value of economic, a is the growth rate of the pest, b is the trapping rate of natural
enemies of the pest, c is the absorption rate of natural enemies of the pest, d is the death rate
of natural enemies of the pest, 0 < p < 1 is the rate of killed pest by spraying insecticide, and
h is the amount of natural enemies of the pest that we released; they are all positive numbers.
This system is a spatial model; we can get the explicit solution of it. For system (1.1), the
stability and existence of 1-periodic solution and the existence of 2-periodic solution all can
be gotten by using comparison principle to transform the system into difference equation.

System (1.1) considered a two-species predator-prey model (Lotka-Volterra) that there
is not density dependence for the continuous process of pulse points; this disagrees with
practical significance. In order to be closer to the actual, Zeng at [16, 17] made the system
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(1.1) to be that there is density dependence for the continuous process of pulse points. This
can reflect the practical situation; the model is as follows:

dx

dt
= x

(
a − rx − by

)

dy

dt
= y(cx − d)

x < x1

Δx = −px, Δy = h, x = x1.

(1.2)

Here r is the density-dependent coefficient of the pest. They use tectonic Lambert-W function
and comparison principle to get the condition of the existence of 1-periodic solution.

For system (1.2), it did not consider the influence of spraying insecticide on natural
enemies. In order to reflect the actual more accurately, we introduced the rate of killed natural
enemies by spraying insecticide (0 < q < 1) at the foundation on system (1.2); then we get the
model:

dx

dt
= x

(
a − rx − by

)

dy

dt
= y(cx − d)

x < x1,

Δx = −px
Δy = −qy + h

x = x1.

(1.3)

The significance of parameters is the same as the aforementioned.
The remainder of this paper is organized as follows. In Section 3 we use the successor

function about geometry theory of semicontinuous dynamical systems to get the condition
of existence and stability of 1-periodic solution for system (1.3). Section 4 combined with
numerical simulations gives the application for system (1.3) in pest management.

2. Preliminaries

Definition 2.1. For the state impulse differential equation

dx

dt
= f

(
x, y

)
,

dy

dt
= g

(
x, y

)
,

(
x, y

)
/∈ M

{
x, y

}
,

Δx = α
(
x, y

)
, Δy = β

(
x, y

)
,

(
x, y

) ∈ M
{
x, y

}
.

(2.1)

Here M{x, y}, N{x, y}, and R2(x, y) are lines or curves on the plane, M{x, y} is the pulse
set, andN{x, y} is the phase set. We describe a dynamical systemmade by the solution maps
of system (2.1) as a semicontinuous dynamical system, which is denoted as (Ω, f, ϕ,M). The
initial mapping point p is not in the pulse set, P ∈ Ω = R2 − M{x, y}, ϕ is a continuous
mapping, ϕ(M) = N, and ϕ is known as pulse mapping.

Definition 2.2. f(P, t) is the semicontinuous dynamical system mapping described by system
(2.1) at Ω → Ω; f(P, t) is a mapping in itself. It includes two parts:
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(1) differential equation

dx

dt
= f

(
x, y

)
,

dy

dt
= g

(
x, y

)
. (2.2)

The Poincare mapping π(P, t) is the mapping of (2.2) at the initial mapping point
P ; if f(P, t) ∩M(x, y) = 0, then the semicontinuous dynamical system mapping at
the initial mapping point P is f(P, t) = π(P, t).

(2) If there is a T1, then f(P, T1) = Q1 ∈ M{x, y}; pulse mapping is

ϕ(Q1) = ϕ
(
f(P, T1)

)
= P1 ∈ N, (2.3)

and if f(P1, t) ∩M{x, y} = 0, then the semicontinuous dynamical system mapping
at the initial mapping point P is f(P, t) = π(P, T1) + π(P1, t − T1).

(3) At the situation of (2), if f(P1, t) ∩ M{x, y}/= 0, and having a T2 made f(P1, T2) =
Q2 ∈ M{x, y}, then

f(P, t) = π(P, T1) + f(P1, t − T1) = π(P, T1) + π(P1, T2) + f(P2, t − T1 − T2). (2.4)

(4) For repeated superior surface, f(P1, t) ∩ M{x, y}/= 0; then we have f(P1, T1) =∑
k=1 π(Pk, Tk) + f(Pk, t)

f(P1, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(P1, t) 0 ≤ t < T1

π(P1, T1) + f(P2, t − T1) T1 ≤ t < T1 + T2

π(P1, T1) + π(P2, T2) + f(P3, t − T1 − T2) T1 + T2 ≤ t < T1 + T2 + T3
...
n∑

k=1
π(Pk , Tk) + f

(
Pk+1, t −

n∑

k=1
Tk

)
n∑

k=1
Tk ≤ t ≤

n+1∑

k=1
Tk

...

(2.5)

Property 1. The mapping of the semi-continuous dynamical system:
(1) f(P, 0) = P ; (2) f(f(P, t1), t2) = f(P, t1 + t2); (3) f(P, t) is continuously at initial

mapping point P .

Definition 2.3. If the periodic solution Γ0 of system (2.1) does not intersect with pulse set
M{x, y}, then Γ0 is also the periodic solution for system (2.1).

Definition 2.4. When there is a point P at phase setN and a T1, make f(P, T1) = Q1 ∈ M{x, y};
it also has ϕ(Q1) = ϕ(f(P, T1)) = P ∈ N; then f(P, T1) is said to be 1-periodic solution.

Definition 2.5. Successor function: let L be a coordinate axis defined at N, the origin point is
intersection point of line x = (1 − p)x1 with x axis, and the positive direction consistent with
the positive direction of y axis, an arbitrary point x ∈ N, l(x) is the coordinate of x at N,
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l(x) ∈ C0; if there exists a t1 ∈ R+, making π(x, t1) ∈ M,x+ = ϕ(π(x, t1)) ∈ N, then F(x) is the
successor function of point x; here F(x) = l(x+) − l(x).

Lemma 2.6. The successor function F(x) is continuous.
In fact, successor function F(x) is that continuous solution π(x, t1) of differential equation

compound with continuous functions I(x) and F(x) is a complex function of two continuous func-
tions, so F(x) is continuous.

Lemma 2.7. Let continuous dynamical system be as (X,Π); if there are two points x1 and x2 at phase
set, making F(x1) ·F(x2) < 0, then there must exist a point P between x1 and x2 such that F(P) = 0;
thus there must exist 1-periodic solution by point P .

Lemma 2.8 (Poincaré’s criterion). The T -periodic solution x = φ(t), y = ϕ(t) of system

dx

dt
= f

(
x, y

)
,

dy

dt
= g

(
x, y

)
, Φ

(
x, y

)
/= 0,

Δx = α
(
x, y

)
, Δy = β

(
x, y

)
, Φ

(
x, y

)
= 0

(2.6)

is orbitally asymptotically stable if the multiplier μ2 satisfies the condition |μ2| < 1, where

u2 =
q∏

k=1

Δk exp

[∫T

0

(
∂f

∂x

(
φ(t), ϕ(t)

)
+
∂g

∂y

(
φ(t), ϕ(t)

)
)
dt

]

, (2.7)

Δk =
(
f+

((
∂β

∂y

)
·
(
∂Φ
∂x

)
−
(
∂β

∂x

)
·
(
∂Φ
∂y

)
+ ∂Φ/∂x

)

+g+
((

∂α

∂x

)
·
(
∂Φ
∂y

)
−
(
∂α

∂y

)
·
(
∂Φ
∂x

)
+ ∂Φ/∂y

))

×
(
f

(
∂Φ
∂x

)
+ g

(
∂Φ
∂y

))−1
.

(2.8)

Here f , g, ∂α/∂x, ∂α/∂y, ∂β/∂x, ∂β/∂y, ∂Φ/∂x, ∂Φ/∂y are calculated for the point
(φ(τk), ϕ(τk)),

f+ = f
(
φ
(
τ+k

)
, ϕ

(
τ+k

))
, g+ = g

(
φ
(
τ+k

)
, ϕ

(
τ+k

))
. (2.9)

3. The Stability and Existence of 1-Periodic Solution to Pest
Management Model with Impulsive State Control

Statement 3.1. At system (1.3), if p = q = h = 0, then we get Lotka-Volterra predator-prey
model:

dx

dt
= x

(
a − rx − by

)
,

dy

dt
= y(cx − d).

(3.1)
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When 0 < ac − rd < r2d/4c, system has stable focus E(d/c, (ac − rd)/bc). This stable focus is
asymptotically stable. When p > 0, q > 0, h > 0, we get system (1.3).

Statement 3.2. The intersection point of pulse set x = x1 and isoclines a − rx − by = 0 is
denoted by H(Hx,Hy); then there exists a trajectory of system Γ1 that tangency with x = x1

toH(Hx,Hy), and the phase point ofH at phase set x = (1−p)x1 is denoted byH1(H1x,H1y).

Theorem 3.3. When pulse set is x1 = d/c, then there exists a pointM at phase set x = (1−p)(d/c);
make F(M) = 0, and then system (1.3) has a 1-periodic solution.

Proof. Let pulse set be x1 = d/c, phase set is x = (1 − p)x1, the intersection point of pulse set
x = (1 − p)x1 and isoclines a − rx − by = 0 is denoted by A(Ax,Ay) = A((1 − p)(d/c), (ac −
rd(1−p))/bc),Ax is the x coordinate ofA,Ay is the y coordinate ofA, there exists a trajectory
L1 at initial point A of system, its tangency with x = (1 − p)x1 at A and intersects with x = x1

at C1(d/c, C1y), that pulse to x = (1 − p)x1, phase point isA1(A1x,A1y) = A((1 − p)(d/c), (1 −
q)C1y + h), it is called the successor point of A. From Definition 2.5, we get the successor
faction is F(A) = A1y −Ay of A.

(i) If F(A) = A1y−Ay < 0, (see Figure 1), there exists a point S : Sy � 0 at x = (1−p)x1,
the trajectory L2 over S intersects with x = (1−p)x1, the intersection point is denoted
by B, let 0 < By � 1, trajectory L2 intersects with x = x1 at point C2, that is pulsed to
x = (1− p)x1, phase point is B1(B1x, B1y), so F(B) = B1y −By > 0, so there must exist
a pointM at phase set x = (1−p)x1, it satisfies By < My < Ay, that make F(M) = 0,
from Lemma 2.7, we get that system (1.3) has a 1-periodic solution.

(ii) If F(A) = A1y − Ay > 0, (see Figure 2), then there exists a trajectory L3 which can
sufficiently approach trajectory L1 to make the intersection pointA′ : 0 < A′

y−Ay �
1 of trajectory L3 and x = (1 − p)x1. It means that point A′ can sufficiently approach
point A. The trajectory L3 over S intersects with x = x1 at point C3, that pulse to
x = (1 − p)x1, phase point is A′

1(A
′
1x,A

′
1y), and point B1 satisfies 0 < A1y −A′

1y � 1.
That means A′

1 can sufficiently approach point A1; then F(A′) = A′
1y − A′

y > 0. At
the same time, there exists a point S : Sy � 0 at x = (1 − p)x1, the trajectory L2 over
S intersects with x = x1, the intersection point is denoted by C2, that is pulsed to
x = (1 − p)x1, phase point is S1(S1x, S1y), then F(S) = S1y − Sy < 0. So, there must
exist a point M at phase set x = (1 − p)x1, it satisfy A′

y < My < Sy, that makes
F(M) = 0, from Lemma 2.7, we get that system (1.3) has a 1-periodic solution. This
completes the proof.

Theorem 3.4. When pulse set is 0 < x1 < d/c, there exists a point M at phase set x = (1 − p)x1;
make F(M) = 0, and then system (1.3) has a 1-periodic solution.

Proof. Let pulse set is 0 < x1 < d/c, phase set be x = (1−p)x1, the intersection point of pulse set
x = (1−p)x1 and isoclines a−rx−by = 0 is denoted byA(Ax,Ay), and there exists a trajectory
L1 at initial point A of system, its tangency with x = (1 − p)x1 at A and intersects with x = x1

at C1(C1x, C1y), that is pulsed to x = (1 − p)x1, phase point is A1(A1x,A1y), it is called the
successor point of A. From Definition 2.5, we get the successor function F(A) = A1y − Ay

of A. Here, we make the discussion similar to the proof of Theorem 3.3; then we get that
system (1.3) has a 1-periodic solution whether at F(A) = A1y − Ay < 0 (see Figure 3) or at
F(A) = A1y −Ay > 0, (see Figure 4). This completes the proof.
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1
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Statement 3.5. Let pulse set be x = x1(d/c < x1 < a/r), and phase set is x = (1−p)x1; we know
that trajectory L0 of system tangency with x = x1 at H(Hx,Hy); the negative semiorbits of
point H are denoted by R(H, t); here t ≤ 0 the phase point of H at phase set x = (1 − p)x1 is
denoted by A1(A1x,A1y).

Theorem 3.6. When the pulse set is d/c < x1 < a/r and phase set is 0 < (1 − p)x1 < d/c,

(1) if the negative semiorbits of point H are R(H, t) ∩N = φ, then there exists a point M at
x = (1 − p)x1 making F(M) = 0. It means that system (1.3) has a 1-periodic solution.

(2) The negative semiorbits of point H are R(H, t). If for the first time it intersects with phase
set at A(Ax,Ay), the second time it intersects with phase set at B(Bx, By), here Ay > By,
when A1y − Ay > 0 or A1y − By < 0, there exists a point M at phase set x = (1 − p)x1,
making F(M) = 0; it means that system (1.3) has a 1-periodic solution.
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Proof. (1) If the negative semiorbits of pointH are R(H, t)∩N = φ, there exists a trajectory L1

at initial point A of system, that tangency with x = (1 − p)x1 to A and intersects with x = x1

at C1(C1x, C1y), that is pulsed to x = (1 − p)x1, phase point is A1(A1x,A1y), it is called the
successor point of A, the successor faction is F(A) = Ay −A1y.

(i) If f(A) = A1y −Ay < 0 (see Figure 5), there exists a point S : Sy � 0, the trajectory
of system L2 which cross the point S intersect with x = (1 − p)x1 at B, it make
0 < By � 1, the trajectory L2 of system intersect with x = x1 at point C2, that is
pulse to x = (1− p)x1, phase point is B1(B1x, B1y), then F(B) = B1y −By > 0, so there
must exist a point M at phase set x = (1 − p)x1, it satisfies By < My < Ay, it makes
F(M) = 0. From Lemma 2.7, we get that system (1.3) has a 1-periodic solution.
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(ii) If F(A) = A1y − Ay > 0 (see Figure 6), there exists a trajectory L3 which can
sufficiently approach trajectory L1 to make the intersection pointA′ : 0 < A′

y−Ay �
1 of trajectory L3 and x = (1 − p)x1; it means that point A′ can sufficiently approach
point A, the trajectory L3 over S intersects with x = x1 at point C3, that is pulsed
to x = (1 − p)x1, phase point is A′

1(A
′
1x,A

′
1y), point A

′
1 satisfies 0 < A1y − A′

1y � 1,
and that means A′

1 can sufficiently approach point A1; then F(A′) = A′
1y − A′

y > 0.
At the same time, there exists a point S : Sy � 0 at x = (1 − p)x1, the trajectory L2

over S intersects with x = x1, the intersection point is denoted by C2, that pulse to
x = (1 − p)x1, phase point is F1(F1x, F1y), and then F(S) = S1y − Sy < 0, so there
must exist a point M at phase set x = (1 − p)x1; it satisfies A′

y < My < Sy, making
F(M) = 0. From Lemma 2.7, we get that system (1.3) has a 1-periodic solution.

(2) The negative semiorbits of point H are (H, t). If for the first time it intersects with
phase set at A′′(A′′

x,A
′′
y), the second time it intersects with phase set at B′′(B′′

x, B
′′
y); here A′′

y >
B′′
y; here we consider the phase point A′′

1(A
′′
1x,A

′′
1y) of H at x = (1 − p)x1.

(i) If F(A′′) = A′′
1y − A′′ > 0 (see Figure 7), then there exists a trajectory L3 which can

sufficiently approach trajectory L1 to make the intersection pointD : 0 < Dy −Ay �
1 of trajectory L3 and x = (1 − p)x1. It means that point D can sufficiently approach
pointA, the trajectory L3 intersect with x = x1 at pointC3, that pulse to x = (1−p)x1,
phase point is D1(D1x,D1y), it satisfies D1 : 0 < A1y −D1y � 1; that means D1 can
sufficiently approach point A1; then we have f(D) = D1y − Dy > 0, there exists a
point S : Sy � 0 at x = (1 − p)x1, the trajectory L2 over S intersects with x = x1,
the intersection point is denoted by C2, that pulse to x = (1 − p)x1, phase point is
F1(F1x, F1y), and then F(S) = S1y − Sy < 0, so there must exist a point M at phase
set x = (1− p)x1; it satisfiesDy < My < Sy, making F(M) = 0. From Lemma 2.7, we
get that system (1.3) has a 1-periodic solution.

(ii) If F(B′′) = A′′
1y − B′′

y < 0 (see Figure 8), there exists a point S : Sy � 0, the trajectory
of system L2 which crosses the point S intersects with x = (1 − p)x1 at G, it makes



10 Discrete Dynamics in Nature and Society

y

x

E

H

a/b

a/yO (1 − p)x1 x1d/c

C2
L 2

L3

C1
C3

A

A

1

A2

L 0

L 1
B

B

1

S1

A′

A′

Figure 6

y

x

E

H

a/b

a/yO (1 − p)x1 x1d/c

C2

L 2

D

D
1

L3

C3

1

L 0

S

S

1

B ′′

A′′

A
′′

Figure 7

0 < Gy � 1, the trajectory of system L2 intersects with x = x1 at point C2, that pulse
to x = (1 − p)x1; phase point is G1(G1x, G1y), and then f(G) = G1y −Gy > 0, so there
must exist a point M at phase set x = (1 − p)x1; it satisfies Gy < My < B′′

y, making
F(M) = 0. From Lemma 2.7, we get that system (1.3) has a 1-periodic solution.

Statement 3.7. If By < h < A1y < Ay, then system (1.3) has no 1-periodic solution.
If d/c ≤ (1 − p)x1 < x1, the periodic solution at the right of stable focus under the

influence of impulsive control, then it does not have practical significance, so we did not
discuss it.

Theorem 3.8. If the condition 0 < (bh− rpx1 −bqφ0)/(a− rx1 −bφ0) < 2 holds, then the 1-periodic
solution Γ0 which crosses the point (x1, ϕ0) of system (1.3) is orbitally asymptotically stable.
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Proof. From system (1.3), we have

∂f

∂x
= a − 2rx − by,

∂g

∂y
= cx − d,

∂α

∂x
= −p, ∂β

∂y
= −q,

Φ
(
x, y

)
= x − x1,

∂Φ
∂x

= 1,
∂Φ
∂y

= 0,
(
φ(T), ϕ(T)

)
=
(
x1, ϕ0

)
,

∂α

∂y
= 0,

∂β

∂x
= 0,

(
φ(T+), ϕ(T+)

)
=
((
1 − p

)
x1,

(
1 − q

)
ϕ0 + h

)
,

Δ2 =
(
f+

((
∂β

∂y

)
·
(
∂Φ
∂x

)
−
(
∂β

∂x

)
·
(
∂Φ
∂y

)
+
(
∂Φ
∂x

))

+g+
(
(∂α/∂x) ·

(
∂Φ
∂y

)
−
(
∂α

∂y

)
·
(
∂Φ
∂x

)
+
(
∂Φ
∂y

)))
×
(
f

(
∂Φ
∂x

)
+ g

(
∂Φ
∂y

))−1

=
f+ ·

(
1 − q

)

g
=

(
1 − q

) · f+
(
φ(T+) · ϕ(T+)

)

f
(
φ(T) · ϕ(T))

=

(
1 − p

)
x1
[
a − r

(
1 − p

)
x1 − b

((
1 − q

)
ϕ0 + h

)](
1 − q

)

x1
(
a − rx1 − bϕ0

)

=

(
1 − p

)[
a − r

(
1 − p

)
x1 − b

((
1 − q

)
ϕ0 + h

)](
1 − q

)

a − rx1 − bϕ0
,
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μ2 = Δ2 · exp
{∫T

0

(
∂f

∂x

(
φ, ϕ

)
+
∂g

∂y

(
φ, ϕ

)
)
dt

)}

= Δ2 · exp
{∫T

0

(
a − rφ − bϕ + cφ − d − rφ

)
dt

}

= Δ2 · exp
{∫x1

(1−p)x1

1
φ(t)

dφ(t) +
∫ϕ0

(1−q)ϕ0+h

1
ϕ(t)

dϕ(t) −
∫T

0
rφ(t)dt

}

= Δ2 · exp
{

ln
1

1 − p
+ ln

1
(
1 − q

)
ϕ0 + h

− r

∫T

0
φ(t)dt

}

= Δ2 · 1
1 − p

· ϕ0
(
1 − q

)
ϕ0 + h

· exp
{

−r
∫T

0
φ(t)dt

}

,

(3.2)

then

u2 =

(
1 − p

)[
a − r

(
1 − p

)
x1 − b

((
1 − q

)
ϕ0 + h

)](
1 − q

)

a − rx1 − bϕ0
· 1
1 − p

· ϕ0
(
1 − q

)
ϕ0 + h

· exp
{

−r
∫T

0
φ(t)dt

}

=

[
a − r

(
1 − p

)
x1 − b

((
1 − q

)
ϕ0 + h

)](
1 − q

)

a − rx1 − bϕ0

· ϕ0
(
1 − q

)
ϕ0 + h

· exp
{

−r
∫T

0
φ(t)dt

}

≤
[
a − r

(
1 − p

)
x1 − b

((
1 − q

)
ϕ0 + h

)](
1 − q

)

a − rx1 − bϕ0
· ϕ0
(
1 − q

)
ϕ0

· exp
{

−r
∫T

0
φ(t)dt

}

=

[
a − r

(
1 − p

)
x1 − b

((
1 − q

)
ϕ0 + h

)]

a − rx1 − bϕ0
· exp

{

−r
∫T

0
φ(t)dt

}

≤
[
a − r

(
1 − p

)
x1 − b

((
1 − q

)
ϕ0 + h

)]

a − rx1 − bϕ0

= 1 − bh − rpx1 − bqϕ0

a − rx1 − bϕ0
.

(3.3)

When 0 < (bh − rpx1 − bqφ0)/(a − rx1 − bφ0) < 2, then |u2| < 1, so the 1-periodic solution Γ0 is
orbitally asymptotically stable.
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Statement 3.9. If p = q = 0, h > 0, we get the pest management model of nonpollution; when
the economic threshold of system (1.3) is x = x1, then y1 = (a− rx1)/b, and it is called the key
point of the natural enemies of pests. At the time that the number of the natural enemies of
pests is less than y1, we release the natural enemies of pests, so we have the following model:

dx

dt
= x

(
a − rx − by

)

dy

dt
= y(cx − d)

y > y1,

Δy = h, y = y1.

(3.4)

here 0 < h < (r/b)x1 or 0 < h < ((a/b) − y1) means the number of the natural enemies we
released at one time; the significance of other parameters is the same as the aforementioned.

Theorem 3.10. (1) If x1 ≤ d/c, then the system (3.4) has a 1-periodic solution.
(2) If x1 > d/c, then the system (3.4) has a 1-periodic solution or it has x(t) ≤ x1 for any t.

Theorem 3.11. The 1-periodic solution of system (3.4) is orbitally asymptotically stable.

4. Numerical Analysis and Biological Significance

In this part, we use numerical simulation to analyse the dynamical behavior and ecological
significance of system (1.3). We fixed the coefficients of the system, then we get system (2.1):

dx

dt
= x

(
16 − x − 2y

)

dy

dt
= y(2x − 10)

x < x1

Δx = −px, Δy = −qy + h, y = y1.

(4.1)

Statement 4.1. If there is no impulse, then system has the unique positive equilibrium (5, 4.5)
which is globally asymptotically stable.

Next, we consider the existence of 1-periodic solution for system (4.1) under the
different values of pulse set x1, the parameters p, q, h, and initial point (x0, y0).

Case 1. p = 0.6, q = 0.4, h = 1, (x0, y0) = (3.77, 1.42), pulse set is x1 = 4.5 < 5, see Figure 9, and
the system has a 1-periodic solution.

Case 2. p = 0.6, q = 0.4, h = 5, (x0, y0) = (3.77, 1.42), pulse set is x1 = 4.5 < 5, see Figure 10,
and the system has a 1-periodic solution.

Case 3. p = 0.6, q = 0.4, h = 1, (x0, y0) = (3.77, 1.42), pulse set is x1 = 5, see Figure 11, and the
system has a 1-periodic solution.

Case 4. p = 0.6, q = 0.4, h = 5, (x0, y0) = (3.77, 1.42), pulse set is x1 = 5, see Figure 12, and the
system has a 1-periodic solution.

Case 5. p = 0.6, q = 0.4, h = 1, (x0, y0) = (3.77, 1.42), pulse set is x1 = 6 > 5, phase set is
(1 − p)x1 = 2.4 < 5, see Figure 13, and the system has a 1-periodic solution.
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Case 6. p = 0.6, q = 0.4, h = 5, (x0, y0) = (3.77, 1.42), pulse set is x1 = 6 > 5, phase set is
(1 − p)x1 = 2.4 < 5, see Figure 14, and the system has a 1-periodic solution.

Case 7. p = 0.2, q = 0.5, h = 1.1, (x0, y0) = (6.44, 0.435), pulse set is x1 = 7 > 5, phase set is
(1 − p)x1 = 5.6 > 5, see Figure 15, and the system has a 1-periodic solution.
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Case 8. p = 0.2, q = 0.5, h = 12, (x0, y0) = (6.44, 0.435), pulse set is x1 = 7 > 5, phase set is
(1 − p)x1 = 5.6 > 5, see Figure 16, and the system has a 1-periodic solution.

Case 9. p = 0.2, q = 0.5, h = 1.2, (x0, y0) = (6.44, 0.435), pulse set is x1 = 7 > 5, phase set is
(1 − p)x1 = 5.6 > 5, see Figure 17, and the system has no 1-periodic solution.
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Case 10. p = 0.2, q = 0.5, h = 11, (x0, y0) = (6.44, 0.435), pulse set is x1 = 7 > 5, phase set is
(1 − p)x1 = 5.6 > 5, see Figure 18, and the system has no 1-periodic solution.

From the numerical analyses, we know that it is better to use comprehensive
control including chemistry control and biological technique according to different values of
economic threshold to pest. When the pulse set is below or equal to the number of the pests of
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the system at the equilibrium state without pulse, the system has a 1-periodic solution, which
is consistent with the proof of the theorem. When the pulse set is more than the number of
the pests of the system at the equilibrium state without pulse and the phase set is less than
the number of the pests of the system at the equilibrium state without pulse, the system has
a 1-periodic solution, which is consistent with the proof of the theorem. When the pulse set
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is more than the number of the pests of the system at the equilibrium state without pulse
and the phase set is more than the number of the pests of the system at the equilibrium state
without pulse, the 1-periodic solution of system may not necessarily exist; we must consider
different kinds of the number of the natural enemies we released; then the 1-periodic solution
exists and has different periods, which is consistent with the proof of the theorem. So we
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take different release strategies according to different growth periods of the crop. In order to
decide how to control the number of the natural enemies we released, the control strategy
with impulsive state needs observing and recording the number of the pests and the natural
enemies. In theory, we can predict the cycle time without repeated measurements, which can
save a lot of manpower and material resources. The model in this paper is closer to the reality
than themodel that there is no density dependence for the continuous process of pulse points;
it is also closer to the reality than the model that did not consider the influence of natural
enemies of spraying insecticide.
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