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We investigate the global dynamics of an HIV infection model with two classes of target cells and
multiple distributed intracellular delays. The model is a 5-dimensional nonlinear delay ODEs that
describes the interaction of the HIV with two classes of target cells, CD4+ T cells and macrophages.
The incidence rate of infection is given by saturation functional response. The model has two types
of distributed time delays describing time needed for infection of target cell and virus replication.
This model can be seen as a generalization of several models given in the literature describing
the interaction of the HIV with one class of target cells, CD4+ T cells. Lyapunov functionals are
constructed to establish the global asymptotic stability of the uninfected and infected steady states
of the model. We have proven that if the basic reproduction number R0 is less than unity then the
uninfected steady state is globally asymptotically stable, and if R0 > 1 then the infected steady
state exists and it is globally asymptotically stable.

1. Introduction

In the last decade, several mathematical models have been developed to describe the inter-
action of the human immunodeficiency virus (HIV) with target cells [1]. HIV is responsible
for acquired immunodeficiency syndrome (AIDS). Mathematical modeling and model ana-
lysis of the HIV dynamics are important for exploring possible mechanisms and dynamical
behaviors of the viral infection process, estimating key parameter values, and guiding
development efficient antiviral drug therapies. Some of the existing HIV infection models
are given by nonlinear ODEs by assuming that the infection could occur and the viruses are
produced from infected target cells instantaneously, once the uninfected target cells are con-
tacted by the virus particles (see e.g., [2–4]). Other accurate models incorporate the delay
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between the time, the viral entry into the target cell, and the time the production of new
virus particles, modeled with discrete time delay or distributed time delay using functional
differential equations (see e.g., [5–9]). The basic virus dynamics model with distributed intra-
cellular time delay has been proposed in [9] and given by

ẋ(t) = λ − dx(t) − (1 − urt)βx(t)v(t), (1.1)

ẏ(t) = (1 − urt)β
∫∞

0
f(τ)e−mτx(t − τ)v(t − τ)dτ − ay(t), (1.2)

v̇(t) =
(
1 − up

)
p

∫∞

0
g(τ)y(t − τ)dτ − cv(t), (1.3)

where x(t), y(t) and v(t) represent the populations of uninfected CD4+ T cells, infected cells,
and free virus particles at time t, respectively. Here, λ represents the rate of which new CD4+

T cells are generated from sources within the body, d is the death rate constant, and β is
the constant rate at which a target cell becomes infected via contacting with virus. Equation
(1.2) describes the population dynamics of the infected cells and shows that they die with
rate constant a. The virus particles are produced by the infected cells with rate constant p
and are removed from the system with rate constant c. The model includes two kinds of
antiretroviral drugs, reverse transcriptase inhibitors (RTI) to prevent the virus from infecting
cells and protease inhibitors (PI) drugs to prevent already infected host cells from producing
infectious virus particles. The parameters urt ∈ [0, 1] and up ∈ [0, 1] are the efficacies of RTI
and PI, respectively. To account for the time lag between viral contacting a target cell and the
production of new virus particles, two distributed intracellular time delays are introduced.
It is assumed that the target cells are contacted by the virus particles at time t − τ become
infected cells at time t, where τ is a random variable with a probability distribution f(τ). The
factor e−mτ accounts for the loss of target cells during time period [t−τ, t]. On the other hand,
it is assumed that a cell infected at time t − τ starts to yield new infectious virus at time t,
where τ is distributed according to a probability distribution g(τ).

A tremendous effort has been made in developing various mathematical models
of HIV infection with discrete or distributed delays and studying their basic and global
properties, such as positive invariance properties, boundedness of the model solutions, and
stability analysis [5–20]. Most of the existing delayed HIV infection models are based on
the assumption that the virus attacks one class of target cells, CD4+ T cells. In 1997, it was
observed by Perelson et al. [21] that the HIV attacks two classes of target cells, CD4+ T cells
and macrophages. In [3, 4], an HIV model with two target cells has been proposed. Also, in
very recent works [22–25], we have proposed several HIV models with two target cells and
investigated the global asymptotic stability of their steady states. In [26], we have studied
a class of virus infection models assuming that the virus attacks multiple classes of target
cells. In very recent works, [27, 28], discrete-time delays have been incorporated into the HIV
models.

The purpose of this paper is to propose a delayed HIV infection model with two target
cells and establish the global stability of its steady states. We assume that the infection rate is
given by saturation functional response. We incorporate two types of distributed delays into
this model to account the time delay between the time the target cells are contacted by the
virus particle and the time the emission of infectious (matures) virus particles. The global sta-
bility of this model is established using Lyapunov functionals, which are similar in nature to
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those used in [29]. We prove that the global dynamics of these models are determined by the
basic reproduction number R0. If R0 ≤ 1, then the uninfected steady state is globally asympto-
tically stable (GAS) and if R0 > 1, then the infected steady state exists and it is GAS.

2. HIV Infection Model with Two Classes of
Target Cells and Distributed Delays

In this section, we propose a mathematical model of HIV infection which describes two
cocirculation populations of target cells, potentially representing CD4+ T cells and macro-
phages taking into account the saturation infection rate and multiple distributed intracellular
delays. This model can be considered as an extension of HIV infection models given in
[3, 4, 22].

Consider the following:

ẋ1(t) = λ1 − d1x1(t) −
β1x1(t)v(t)
1 + α1v(t)

, (2.1)

ẏ1(t) = β1

∫∞

0
f1(τ)e−m1τ

x1(t − τ)v(t − τ)
1 + α1v(t − τ)

dτ − a1y1(t), (2.2)

ẋ2(t) = λ2 − d2x2(t) −
β2x2(t)v(t)
1 + α2v(t)

, (2.3)

ẏ2(t) = β2

∫∞

0
f2(τ)e−m2τ

x2(t − τ)v(t − τ)
1 + α2v(t − τ)

dτ − a2y2(t), (2.4)

v̇(t) = p1

∫∞

0
g1(τ)e−n1τy1(t − τ)dτ + p2

∫∞

0
g2(τ)e−n2τy2(t − τ)dτ − cv(t). (2.5)

The state variables describes the plasma concentrations of: x1, the uninfected CD4+ T cells;
y1, the infected CD4+ T cells; x2, the uninfected macrophages; y2, the infected macrophages;
v, the free virus particles. Here, αi, i = 1, 2 are positive constants, βi = (1 − urt)βi, and pi =
(1 − up)pi, i = 1, 2. The factors e−niτ , i = 1, 2 account for the cells loss during the delay period.
All the other parameters of the model have the same meanings as given in (1.1)–(1.3).

The probability distribution functions fi(τ) and gi(τ) are assumed to satisfy fi(τ) > 0
and gi(τ) > 0, i = 1, 2 and

∫∞

0
fi(τ)dτ =

∫∞

0
gi(τ)dτ = 1, i = 1, 2,

∫∞

0
fi(r)esrdr < ∞,

∫∞

0
gi(r)esrdr < ∞, i = 1, 2,

(2.6)
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where s is a positive number. Then

0 <

∫∞

0
fi(τ)e−miτdτ ≤ 1, for mi ≥ 0, i = 1, 2,

0 <

∫∞

0
gi(τ)e−niτdτ ≤ 1, for ni ≥ 0, i = 1, 2.

(2.7)

The initial conditions for system (2.1)–(2.5) take the form

x1(θ) = ϕ1(θ), y1(θ) = ϕ2(θ),

x2(θ) = ϕ3(θ), y2(θ) = ϕ4(θ),

v(θ) = ϕ5(θ),

ϕj(θ) ≥ 0, θ ∈ (−∞, 0), j = 1, . . . , 5,

ϕj(0) > 0, j = 1, . . . , 5,

(2.8)

where (ϕ1(θ), ϕ2(θ), . . . , ϕ5(θ)) ∈ UC((−∞, 0],R5
+), and UC is the Banach space of fading

memory type defined as [30]

UC
(
(−∞, 0],R5

+

)

=

{
ϕ∈C

(
(−∞, 0],R5

+

)
: ϕ(r)esr is uniformly continuous on (−∞, 0],

∥∥ϕ∥∥=sup
r≤0

ϕ(r)esr <∞
}
,

(2.9)

where C((−∞, 0],R5
+) is the Banach space of continuous functions mapping the interval

(−∞, 0] into R
5
+. By the fundamental theory of functional differential equations [31], system

(2.1)–(2.5) has a unique solution satisfying the initial conditions (2.8).

2.1. Nonnegativity and Boundedness of Solutions

In the following, we establish the nonnegativity and boundedness of solutions of (2.1)–(2.5)
with initial conditions (2.8).

Proposition 2.1. Let (x1(t), y1(t), x2(t), y2(t), v(t)) be any solution of (2.1)–(2.5) satisfying the
initial conditions (2.8), then x1(t), y1(t), x2(t), y2(t) and v(t) are all nonnegative for t ≥ 0 and
ultimately bounded.

Proof. From (2.1) and (2.3)we have

xi(t) = xi(0)e−
∫ t
0[di+βiv(ξ)/(1+αiv(ξ))]dξ + λi

∫ t

0
e−

∫ t
η[di+βiv(ξ)/(1+αiv(ξ))]dξdη, i = 1, 2, (2.10)
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which indicates that xi(t) ≥ 0, for all t ≥ 0. Now from (2.2), (2.4), and (2.5) we have

yi(t) = yi(0)e−ait + βi

∫ t

0
e−ai(t−η)

∫∞

0
fi(τ)e−miτ

xi

(
η − τ

)
v
(
η − τ

)
1 + αiv

(
η − τ

) dτ dη, i = 1, 2,

v(t) = v(0)e−ct + p1

∫ t

0
e−c(t−η)

∫∞

0
g1(τ)e−n1τy1

(
η − τ

)
dτ dη

+ p2

∫ t

0
e−c(t−η)

∫∞

0
g2(τ)e−n2τy2

(
η − τ

)
dτ dη,

(2.11)

confirming that y1(t), y2(t) ≥ 0, and v(t) ≥ 0 for all t ≥ 0.
Next we show the boundedness of the solutions. From (2.1) and (2.3) we have ẋi(t) ≤

λi − dixi(t), i = 1, 2. This implies lim supt→∞xi(t) ≤ λi/di, i = 1, 2.
Let Xi(t) =

∫∞
0 fi(τ)e−miτxi(t − τ)dτ + yi(t), i = 1, 2, then

Ẋi(t) =
∫∞

0
fi(τ)e−miτ

(
λi − dixi(t − τ) − βixi(t − τ)v(t − τ)

1 + αiv(t − τ)

)
dτ

+
∫∞

0
fi(τ)e−miτ

βixi(t − τ)v(t − τ)
1 + αiv(t − τ)

dτ − aiyi(t)

= λi

∫∞

0
fi(τ)e−miτdτ − di

∫∞

0
fi(τ)e−miτxi(t − τ)dτ − aiyi(t)

≤ λi

∫∞

0
fi(τ)e−miτdτ − σi

[∫∞

0
fi(τ)e−miτxi(t − τ)dτ + yi(t)

]

= λi

∫∞

0
fi(τ)e−miτdτ − σiXi(t)

≤ λi − σiXi(t),

(2.12)

where σi = min{di, ai}. Hence lim supt→∞Xi(t) ≤ Li, where Li = λi/σi, i = 1, 2. On the other
hand,

v̇(t) ≤ p1L1

∫∞

0
g1(τ)e−n1τdτ + p2L2

∫∞

0
g2(τ)e−n2τdτ − cv

≤ p1L1 + p2L2 − cv,

(2.13)

then lim supt→∞v(t) ≤ (p1L1 + p2L2)/c. Therefore, x1(t), y1(t), x2(t), y2(t), and v(t) are ulti-
mately bounded.

2.2. Steady States

It is clear that system (2.1)–(2.5) has an uninfected steady state E0 = (x0
1, 0, x

0
2, 0, 0), where

x0
i = λi/di, i = 1, 2. In addition to E0, the system can also have a positive infected steady
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state E1(x∗
1, y

∗
1, x

∗
2, y

∗
2, v

∗). The coordinates of the infected steady state, if they exist, satisfy the
following equalities:

λi = dix
∗
i +

βix
∗
i v

∗

1 + αiv∗ , i = 1, 2, (2.14)

aiy
∗
i = Fi

βix
∗
i v

∗

1 + αiv∗ , i = 1, 2, (2.15)

cv∗ = G1p1y
∗
1 +G2p2y

∗
2, (2.16)

where

Fi =
∫∞

0
fi(τ)e−miτdτ, Gi =

∫∞

0
gi(τ)e−niτdτ, i = 1, 2. (2.17)

Following van den Driessche and Watmough [32], we define the basic reproduction number
for system (2.1)–(2.5) as

R0 =
2∑
i=1

Ri =
2∑
i=1

FiGiβipiλi
aidic

, (2.18)

where R1 and R2 are the basic reproduction numbers of the HIV dynamics with CD4+ T cells
(in the absence of macrophages) and the HIV dynamics with macrophages (in the absence of
CD4+ T cells), respectively.

Lemma 2.2. If R0 > 1, then there exists a positive steady state E1.

Proof. From (2.14) and (2.15)we have

x∗
i =

x0
i (1 + αiv

∗)
(1 + δiv∗)

, i = 1, 2, (2.19)

y∗
i =

Fiβix
0
i v

∗

ai(1 + δiv∗)
, i = 1, 2, (2.20)

where δi = αi + βi/di. From (2.20) into (2.16)we get

1 =
F1G1p1β1x

0
1

a1c(1 + δ1v∗)
+

F2G2p2β2x
0
2

a2c(1 + δ2v∗)
=

R1

1 + δ1v∗ +
R2

1 + δ2v∗ . (2.21)

Equation (2.21) can be written as

δ1δ2v
∗2 + (δ1R1 + δ2R2 + (1 − R0)(δ1 + δ2))v∗ + 1 − R0 = 0. (2.22)
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If R0 > 1, then the positive solution of (2.21) is given by:

v∗=
−(δ1R1 + δ2R2 + (1 − R0)(δ1 + δ2))+

√
(δ1R1 + δ2R2 + (1 − R0)(δ1 + δ2))

2 − 4δ1δ2(1 − R0)

2δ1δ2
.

(2.23)

It follows that, if R0 > 1 then x∗
1, y

∗
1, x

∗
2, y

∗
2 and v∗ are all positive.

2.3. Global Stability

In this section, we prove the global stability of the uninfected and infected steady states of
system (2.1)–(2.3) employing the method of Lyapunov functional which is used in [29] for
SIR epidemicmodel with distributed delay. Next we shall use the following notation: z = z(t),
for any z ∈ {x1, y1, x2, y2, v}. We also define a function H : (0,∞) → [0,∞) as

H(z) = z − 1 − ln z. (2.24)

It is clear that H(z) ≥ 0 for any z > 0 and H has the global minimum H(1) = 0.

Theorem 2.3. If R0 ≤ 1, then E0 is GAS.

Proof. Define a Lyapunov functional W1 as follows:

W1 =
2∑
i=1

γi

[
x0
i H

(
xi

x0
i

)
+

1
Fi
yi +

βi
Fi

∫∞

0
fi(τ)e−miτ

∫ τ

0

xi(t − θ)v(t − θ)
1 + αiv(t − θ)

dθ dτ

+
ai

FiGi

∫∞

0
gi(τ)e−niτ

∫ τ

0
yi(t − θ)dθdτ

]
+ v,

(2.25)

where γi = piFiGi/ai, i = 1, 2.
The time derivative of W1 along the trajectories of (2.1)–(2.5) satisfies

dW1

dt
=

2∑
i=1

γi

[(
1 − x0

i

xi

)(
λi − dixi −

βixiv

1 + αiv

)
+
βi
Fi

∫∞

0
fi(τ)e−miτ

xi(t − τ)v(t − τ)
1 + αiv(t − τ)

dτ

− ai

Fi
yi +

βi
Fi

∫∞

0
fi(τ)e−miτ

(
xiv

1 + αiv
− xi(t − τ)v(t − τ)

1 + αiv(t − τ)

)
dτ

+
ai

FiGi

∫∞

0
gi(τ)e−niτ

(
yi − yi(t − τ)

)
dτ

]

+
2∑
i=1

pi

∫∞

0
gi(τ)e−niτyi(t − τ)dτ − cv.

(2.26)
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Collecting terms of (2.26)we get

dW1

dt
=

2∑
i=1

γi

(
λi − dixi − λi

x0
i

xi
+ dix

0
i +

βix
0
i v

1 + αiv

)
− cv

=
2∑
i=1

γiλi

(
2 − xi

x0
i

− x0
i

xi

)
− cv + cv

2∑
i=1

FiGipiβix
0
i

aic(1 + αiv)

= −
2∑
i=1

γidi

(
xi − x0

i

)2
xi

− cv + cv
2∑
i=1

Ri

1 + αiv

= −
2∑
i=1

γidi

(
xi − x0

i

)2
xi

−
2∑
i=1

Riαicv
2

1 + αiv
+ (R0 − 1)cv.

(2.27)

IfR0 ≤ 1 then dW1/dt ≤ 0 for all x1, x2, v > 0. By Theorem 5.3.1 in [31], the solutions of system
(2.1)–(2.5) limit to M, the largest invariant subset of {dW1/dt = 0}. Clearly, it follows from
(2.27) that dW1/dt = 0 if and only if xi = x0

i , i = 1, 2, and v = 0. Noting that M is invariant,
for each element of M we have v = 0, then v̇ = 0. From (2.5)we drive that

0 = v̇ = p1

∫∞

0
g1(τ)e−n1τy1(t − τ)dτ + p2

∫∞

0
g2(τ)e−n2τy2(t − τ)dτ. (2.28)

This yields y1 = y2 = 0. Hence dW1/dt = 0 if and only if xi = x0
i , yi = 0, i = 1, 2, and v = 0.

From La Salle’s Invariance Principle, E0 is GAS.

Theorem 2.4. If R0 > 1, then E1 is GAS.

Proof. We construct the following Lyapunov functional:

W2 =
2∑
i=1

γi

[
x∗
i H

(
xi

x∗
i

)
+

1
Fi
y∗
i H

(
yi

y∗
i

)

+
1
Fi

βix
∗
i v

∗

1 + αiv∗

∫∞

0
fi(τ)e−miτ

∫ τ

0
H

(
xi(t − θ)v(t − θ)(1 + αiv

∗)
x∗
i v

∗(1 + αiv(t − θ))

)
dθ dτ

+
aiy

∗
i

FiGi

∫∞

0
gi(τ)e−niτ

∫ τ

0
H

(
yi(t − θ)

y∗
i

)
dθ dτ

]
+ v∗H

( v

v∗
)
.

(2.29)

Differentiating with respect to time yields

dW2

dt
=

2∑
i=1

γi

[(
1 − x∗

i

xi

)(
λi − dixi −

βixiv

1 + αiv

)

+
1
Fi

(
1 − y∗

i

yi

)(
βi

∫∞

0
fi(τ)e−miτ

xi(t − τ)v(t − τ)
1 + αiv(t − τ)

dτ − aiyi

)
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+
βi
Fi

∫∞

0
fi(τ)e−miτ

×
(

xiv

1 + αiv
− xi(t − τ)v(t − τ)

1 + αiv(t − τ)
+

x∗
i v

∗

1 + αiv∗ ln
(
xi(t − τ)v(t − τ)(1 + αiv)

xiv(1 + αiv(t − τ))

))
dτ

+
ai

FiGi

∫∞

0
gi(τ)e−niτ

(
yi − yi(t − τ) + y∗

i ln
(
yi(t − τ)

yi

))
dτ

]

+
(
1 − v∗

v

)(
2∑
i=1

pi

∫∞

0
gi(τ)e−niτyi(t − τ)dτ − cv

)
.

(2.30)

Collecting terms we obtain

dW2

dt
=

2∑
i=1

γi

[
λi − dixi −

λix
∗
i

xi
+ dix

∗
i +

βix
∗
i v

1 + αiv
− βiy

∗
i

Fiyi

∫∞

0
fi(τ)e−miτ

xi(t − τ)v(t − τ)
1 + αiv(t − τ)

dτ

+
ai

Fi
y∗
i +

1
Fi

βix
∗
i v

∗

1 + αiv∗

∫∞

0
fi(τ)e−miτ ln

(
xi(t − τ)v(t − τ)(1 + αiv)

xiv(1 + αiv(t − τ))

)
dτ

+
aiy

∗
i

FiGi

∫∞

0
gi(τ)e−niτ ln

(
yi(t − τ)

yi

)
dτ

]
− cv

− v∗

v

2∑
i=1

pi

∫∞

0
gi(τ)e−niτyi(t − τ)dτ + cv∗.

(2.31)

Using the infected steady state conditions (2.14)–(2.16), and the following equality:

cv = cv∗ v
v∗ =

v

v∗

2∑
i=1

Gipiy
∗
i =

v

v∗

2∑
i=1

γiai

Fi
y∗
i , (2.32)

we obtain

dW2

dt
=

2∑
i=1

γi

[
dix

∗
i +

ai

Fi
y∗
i − dixi −

x∗
i

xi

(
dix

∗
i +

ai

Fi
y∗
i

)
+ dix

∗
i +

ai

Fi
y∗
i

v(1 + αiv
∗)

v∗(1 + αiv)

− ai

F2
i

y∗
i

∫∞

0
fi(τ)e−miτ

y∗
i xi(t − τ)v(t − τ)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τ))
dτ +

ai

Fi
y∗
i

+
ai

F2
i

y∗
i

∫∞

0
fi(τ)e−miτ ln

(
xi(t − τ)v(t − τ)(1 + αiv)

xiv(1 + αiv(t − τ))

)
dτ
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+
ai

FiGi
y∗
i

∫∞

0
gi(τ)e−niτ ln

(
yi(t − τ)

yi

)
dτ

−ai

Fi
y∗
i

v

v∗ − ai

FiGi
y∗
i

∫∞

0
gi(τ)e−niτ

v∗yi(t − τ)
vy∗

i

dτ +
ai

Fi
y∗
i

]
.

(2.33)

Then collecting terms of (2.33) and using the following equalities:

ln
(
xi(t − τ)v(t − τ)(1 + αiv)

xiv(1 + αiv(t − τ))

)
= ln

(
y∗
i xi(t − τ)v(t − τ)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τ))

)
+ ln

(
x∗
i

xi

)

+ ln

(
v∗yi

vy∗
i

)
+ ln

(
1 + αiv

1 + αiv∗

)
, i = 1, 2,

ln
(
yi(t − τ)

yi

)
= ln

(
vy∗

i

v∗yi

)
+ ln

(
v∗yi(t − τ)

vy∗
i

)
, i = 1, 2

ln

(
v∗yi

vy∗
i

)
+ ln

(
vy∗

i

v∗yi

)
= ln(1) = 0, i = 1, 2

(2.34)

we obtain

dW2

dt
=

2∑
i=1

γi

[
dix

∗
i

(
2 − x∗

i

xi
− xi

x∗
i

)
+
ai

Fi
y∗
i

(
1 − x∗

i

xi

)
+
2ai

Fi
y∗
i

+
ai

Fi
y∗
i

(
v(1 + αiv

∗)
v∗(1 + αiv)

− v

v∗

)
− ai

F2
i

y∗
i

∫∞

0
fi(τ)e−miτ

y∗
i xi(t−τ)v(t−τ)(1+αiv

∗)
yix

∗
i v

∗(1+αiv(t − τ))
dτ

+
ai

F2
i

y∗
i

∫∞

0
fi(τ)e−miτ

×
(
ln

(
y∗
i xi(t − τ)v(t − τ)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τ))

)
+ln

(
x∗
i

xi

)
+ln

(
v∗yi

vy∗
i

)
+ln

(
1 + αiv

1 + αiv∗

))
dτ

+
ai

FiGi
y∗
i

∫∞

0
gi(τ)e−niτ

(
ln
(
vy∗

i

v∗yi

)
+ ln

(
v∗yi(t − τ)

vy∗
i

))
dτ

− ai

FiGi
y∗
i

∫∞

0
gi(τ)e−niτ

v∗yi(t − τ)
vy∗

i

dτ

]
.

(2.35)
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Equation (2.35) can be rewritten as

dW2

dt
=

2∑
i=1

γi

[
dix

∗
i

(
2 − x∗

i

xi
− xi

x∗
i

)
− ai

Fi
y∗
i

(
x∗
i

xi
− 1 − ln

(
x∗
i

xi

))

+
ai

Fi
y∗
i

(
−1 + v(1 + αiv

∗)
v∗(1 + αiv)

− v

v∗ +
1 + αiv

1 + αiv∗

)

− ai

Fi
y∗
i

(
1 + αiv

1 + αiv∗ − 1 − ln
(

1 + αiv

1 + αiv∗

))

− ai

F2
i

y∗
i

∫∞

0
fi(τ)e−miτ

×
(

y∗
i xi(t − τ)v(t − τ)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τ))
− 1 − ln

(
y∗
i xi(t − τ)v(t − τ)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τ))

))
dτ

− ai

FiGi
y∗
i

∫∞

0
gi(τ)e−niτ

(
v∗yi(t − τ)

vy∗
i

− 1 − ln

(
v∗yi(t − τ)

vy∗
i

))
dτ

]
.

(2.36)

Using the following equality:

−1 + v(1 + αiv
∗)

v∗(1 + αiv)
− v

v∗ +
1 + αiv

1 + αiv∗ =
−αi(v − v∗)2

v∗(1 + αiv∗)(1 + αiv)
, i = 1, 2, (2.37)

we can rewrite dW2/dt as

dW2

dt
= −

2∑
i=1

γi

[
di

(
xi − x∗

i

)2
xi

+
ai

Fi
y∗
i

αi(v − v∗)2

v∗(1 + αiv∗)(1 + αiv)

+
ai

Fi
y∗
i H

(
x∗
i

xi

)
+
ai

Fi
y∗
i H

(
1 + αiv

1 + αiv∗

)

+
aiy

∗
i

F2
i

∫∞

0
fi(τ)e−miτH

(
y∗
i xi(t − τ)v(t − τ)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τ))

)
dτ

+
aiy

∗
i

FiGi

∫∞

0
gi(τ)e−niτH

(
v∗yi(t − τ)

vy∗
i

)
dτ

]
.

(2.38)

It is easy to see that if x∗
i , y

∗
i , v

∗ > 0, i = 1, 2, then dW2/dt ≤ 0. By Theorem 5.3.1 in [31], the
solutions of system (2.1)–(2.5) limit toM, the largest invariant subset of {dW2/dt = 0}. It can
be seen that dW2/dt = 0 if and only if xi = x∗

i , v = v∗, and H = 0, that is,

y∗
i xi(t − τ)v(t − τ)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τ))
=

v∗yi(t − τ)
vy∗

i

= 1 for almost all τ ∈ (0,∞). (2.39)



12 Discrete Dynamics in Nature and Society

If v = v∗ then from (2.39) we have yi = y∗
i , and hence dW2/dt equal to zero at E1. LaSalle’s

Invariance Principle implies global stability of E1.

3. Conclusion

In this paper, we have proposed an HIV infection model describing the interaction of the
HIV with two classes of target cells, CD4+ T cells and macrophages taking into account the
saturation infection rate. Two types of distributed time delays describing time needed for
infection of target cell and virus replication have been incorporated into themodel. The global
stability of the uninfected and infected steady states of the model has been established by
using suitable Lyapunov functionals and LaSalle invariant principle. We have proven that, if
the basic reproduction number R0 is less than unity, then the uninfected steady state is GAS
and if R0 > 1, then the infected steady state exists and it is GAS.
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