
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 258502, 12 pages
doi:10.1155/2012/258502

Research Article
Some Notes on the Difference Equation
xn+1 = α + (xn−1/xk

n)
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We investigate the behavior of the solutions of the recursive sequence xn+1 = α + xn−1/xk
n, n =

0, 1, . . ., where α ∈ [0,∞), k ∈ (0,∞), and the initial conditions x−1, x0 are arbitrary positive
numbers. Included are results that considerably improve those in the recently published paper
by Hamza and Morsy (2009).

1. Introduction

Our aim in this paper is to give some remarks for the positive solutions of the difference
equation

xn+1 = α +
xn−1
xk
n

, n = 0, 1, . . . , (1.1)

where α ∈ [0,∞), k ∈ (0,∞), and the initial conditions x−1, x0 are arbitrary positive numbers.
Amleh et al. in [1] obtained important results for the difference equation

xn+1 = α +
xn−1
xn

, (1.2)

which guide many authors. It was proved in [1] that, when α > 1, the equilibrium x = α+1 of
(1.2) is globally asymptotically stable. When α = 1, every positive solution of (1.2) converges
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to a period-two solution. Every positive solution of (1.2) is bounded if and only if α ≥ 1.
Finally, when 0 < α < 1, the equilibrium is an unstable saddle point. Closely related equations
to (1.1) are investigated by many authors, for example, [2–10].

In [4] the authors investigated the behavior of positive solutions of (1.1). It was proved
in [4] that, when α/= 1, every positive solution of (1.1) is bounded and when α > k1/k ≥ 1,
the equilibrium x of (1.1) is globally asymptotically stable. But in [4] the authors obtain some
incorrect results for the boundedness character and the global stability of solutions of (1.1),
and it is not shown that (1.1) has periodic solutions with conditions of α and k.

Our aim here is to improve and correct these results and extend some of the results in
[4].

We say that the equilibrium point x of the equation

xn+1 = F(xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (1.3)

is the point that satisfies the condition

x = F(x, x, . . . , x). (1.4)

A positive semicycle of a solution {xn}∞n=−1 of (1.1) consists of a “string” of terms {xl,
xl+1, . . . , xm} all greater than or equal to x, with l ≥ −1 and m ≤ ∞, such that

either l = −1 or l > −1, xl−1 < x,

either m = ∞ or m < ∞, xm+1 < x.
(1.5)

A negative semicycle of a solution {xn}∞n=−1 of (1.1) consists of a “string” of terms {xl,
xl+1, . . . , xm} all less than x, with l ≥ −1 and m ≤ ∞, such that

either l = −1 or l > −1, xl−1 ≥ x,

either m = ∞ or m < ∞, xm+1 ≥ x.

(1.6)

A solution {xn}∞n=−k of (1.1) is called nonoscillatory if there exists N ≥ −1 such that either

xn > x ∀n ≥ N (1.7)

or

xn < x ∀n ≥ N. (1.8)

{xn}∞n=−1 of (1.1) is called oscillatory if it is not nonoscillatory. We say that a solution {xn}∞n=−1
of (1.1) is bounded and persists if there exist positive constants P andQ such that P ≤ xn ≤ Q
for n = −1, 0, . . ..
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The linearized equation for (1.1) about the positive equilibrium x is

yn+1 + kx−kyn − x−kyn−1 = 0, n = 0, 1, . . . . (1.9)

We need the following lemmas, which were given in [4].

Lemma 1.1. Let x be the equilibrium point of (1.1).

(i) If k(1+k)(1−k)/k < α, then the equilibrium point x of (1.1), is locally asymptotically stable.

(ii) If k(1 + k)(1−k)/k > α, then the equilibrium point x of (1.1) is unstable.

Lemma 1.2. The following statements are true.

(i) If k = 1, then (1.1) has a unique equilibrium point x = α + 1.

(ii) If k /= 1, then (1.1) has a unique equilibrium point x > 1.

Lemma 1.3. Let {xn}∞n=−1 be a solution of (1.1), which consists of at least two semicycles. Then,
{xn}∞n=−1 is oscillatory and, except possibly for the first semicycle, every semicycle is of length one.

The paper is organized as follows. In Section 2 we investigate the boundedness
character of positive solutions of (1.1). We prove that if 0 ≤ α < 1, then there exist unbounded
solutions of (1.1) and when the cases either α ∈ (0,∞) and k → 0+ or α > 1 and k → ∞, then
every positive solution of (1.1) is unbounded. We show that when α > 1 and k � 0+, k � ∞,
then every positive solution of (1.1) is bounded. Also we show that if α > 1, α > k(1+k)(1−k)/k

and k � 0+, k � ∞, then the equilibrium point x of (1.1) is globally asymptotically stable.
Section 3 is devoted to the periodic character of the positive solutions of (1.1). Finally we
show that a sufficient condition that every positive solution of (1.1) converges to a prime two
periodic solution.

2. Boundedness and Global Stability of (1.1)

In this section, we present some results for the boundedness character of positive solutions
and global stability of the equilibrium point of (1.1).

Theorem 2.1. Consider (1.1). Then, the following statements are true.

(a) If α ∈ (0,∞) and k → 0+, then every positive solution of (1.1) is unbounded.

(b) If α > 1 and k → ∞, then every positive solution of (1.1) is unbounded.

Proof. (a) On the contrary, we assume that {xn}∞n=−1 is a positive bounded solution of (1.1).
Then, we have

s = lim infxn, S = lim supxn < ∞. (2.1)

Thus, from (1.1)we get

s ≥ α +
s

Sk
. (2.2)
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Let k → 0+; then we obtain

s ≥ α + s,

α ≤ 0,
(2.3)

which contradicts α > 0, so the proof is complete.
(b) Again we assume that {xn}∞n=−1 is a positive bounded solution of (1.1). Then, we

have

α < s = lim infxn, S = lim supxn < ∞. (2.4)

Thus, from (1.1), we have

S ≤ α +
S

sk
. (2.5)

Let k → ∞; then

S ≤ α, (2.6)

which contradicts α < s, so the proof is complete.

Now, we show that if 0 ≤ α < 1, then there exist positive solutions of (1.1) that are
unbounded.

Theorem 2.2. One has

0 ≤ α < 1. (2.7)

Then there exist positive solutions of (1.1) that are unbounded.

Proof. Assume that α ∈ (0, 1). Choose δ ∈ (0, 1−α), and let {xn}∞n=−1 be a solution of (1.1)with
the initial conditions such that

x−1 >

((
α + δ

δ

)1/k

− α

)
(α + δ),

α < x0 < α + δ.

(2.8)

Then,

x1 = α +
x−1
xk
0

> α +
x−1

(α + δ)k
,

x2 = α +
x0

xk
1

< α +
α + δ(

α + x−1/(α + δ)k
)k < α + δ.

(2.9)
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Further we have

x3 = α +
x1

xk
2

> α +
x1

(α + δ)k
> α +

1

(α + δ)k

(
α +

x−1
(α + δ)k

)
> α +

x−1
(α + δ)k

,

x4 = α +
x2

xk
3

< α +
α + δ(

α + x−1/(α + δ)k
)k < α + δ.

(2.10)

Therefore, working inductively we can prove that for n = 0, 1, . . .

x2n+1 > α +
x2n−1

(α + δ)k
> α +

x−1
(α + δ)k

,

α < x2n < α + δ.

(2.11)

Hence,

x2n+1 >
x−1(

(α + δ)k
)n+1 + α

⎛
⎜⎝1 +

1

(α + δ)k
+ · · · + 1(

(α + δ)k
)n
⎞
⎟⎠. (2.12)

Since

1

(α + δ)k
> 1, (2.13)

which implies that

lim
n→∞

x2n+1 = ∞ (2.14)

{xn}∞n=−1 is unbounded. For α ∈ (0, 1), the proof is complete.
Now, we assume that α = 0 and choose the initial conditions such that

0 < x−1 ≤ 1,

x0 >
1

(1 − ε)1/k
for some 0 < ε < 1.

(2.15)

So, we have

0 < x1 =
x−1
xk
0

≤ 1

xk
0

< 1 − ε,

x2 =
x0

xk
1

>
x0

(1 − ε)k
.

(2.16)
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Further we have

x3 =
x1

xk
2

<
1

xk
0

< 1 − ε,

x4 =
x2

xk
3

>
x0/(1 − ε)k

(1 − ε)k
=

x0

(1 − ε)2k
.

(2.17)

By induction we have

x2n+1 ∈ (0, 1 − ε), x2n >
x0(

(1 − ε)k
)n ∀n = 0, 1, . . . . (2.18)

Thus,

lim
n→∞

x2n = ∞, lim
n→∞

x2n+1 = 0. (2.19)

This completes the proof.

The following theorem is given in [4].

Theorem 2.3. Suppose that α/= 1; then; every positive solution of (1.1) is bounded.

In [4] this result is not correct. So, we give the following theorem for the boundedness
of (1.1).

Theorem 2.4. Suppose that α > 1, k � 0+, and k � ∞; then every positive solution of (1.1) is
bounded.

Proof . From (1.1), xn ≥ α for n ≥ 0. Thus, from (1.1), without loss of generality, we obtain for
n ≥ 0

x2n+1 = α +
x2n−1
xk
2n

≤ α +
x2n−1
αk

,

x2n = α +
x2n−2
xk
2n−1

≤ α +
x2n−2
αk

.

(2.20)

From (2.20) using induction, we obtain

x2n+1 ≤ α

(
1 +

1
αk

+
1(
αk
)2 + · · · + 1(

αk
)n
)

+
x−1(
αk
)n+1

≤ αk

αk − 1
+

x−1(
αk
)n+1 ,
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x2n ≤ α

(
1 +

1
αk

+
1(
αk
)2 + · · · + 1(

αk
)n−1

)
+

x0(
αk
)n

≤ αk

αk − 1
+

x0(
αk
)n .

(2.21)

From which the proof follows.

Actually, Hamza and Morsy in [4] obtained global stability of the equilibrium point
of (1.1). But the result does not include the case k ∈ (0, 1) and some parts of its proof are
incorrect. So, here we will obtain global stability of the equilibrium point of (1.1) when k ∈
(0, 1).

Theorem 2.5. Consider (1.1). Let k � 0+ and k � ∞. Suppose that

α > 1, α > k(1 + k)(1−k)/k (2.22)

hold. Then, the unique positive equilibrium x of (1.1) is globally asymptotically stable.

Proof. By Lemma 1.1, x is locally asymptotically stable. Thus, it is enough for the proof that
every positive solution of (1.1) tends to the unique positive equilibrium x. Let {xn}∞n=−1 be a
solution of (1.1). By Theorem 2.4, {xn}∞n=−1 is bounded. Thus, we have

1 < s = lim infxn, S = lim supxn < ∞. (2.23)

Then, from (2.23), we get

S ≤ α +
S

sk
, s ≥ α +

s

Sk
. (2.24)

We claim that s = S, otherwise S > s. From (2.24), we obtain

Ssk ≤ αsk + S, Sks ≥ αSk + s, (2.25)

And, from (2.25),

αSksk−1 + sk ≤ αskSk−1 + Sk. (2.26)

Thus,

αSk−1sk−1(S − s) ≤ Sk − sk. (2.27)
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Assume that k ≥ 1. We consider f(x) = xk with x ∈ (0,∞); then there exists a, c ∈ (s, S) such
that

Sk − sk

S − s
= kck−1 ≤ kSk−1. (2.28)

From (2.27) and (2.28), we obtain

αSk−1sk−1 ≤ kSk−1, (2.29)

which is equivalent to

αsk−1 ≤ k. (2.30)

Since we have S, s ≥ α, we get

αk ≤ k. (2.31)

Since α > 1 and α > k(1 + k)(1−k)/k, for some values α and k, (2.31) is not satisfied. This is a
contradiction. Thus, we find S = s.

Now, assume that k < 1. Then, from (2.27) and arguing as above, we get

αSk−1sk−1 ≤ ksk−1. (2.32)

Furthermore, we have

x2n+1 < α +
x2n−1
αk

. (2.33)

We consider the following difference equation:

ym+1 = α +
ym

αk
. (2.34)

Every positive solution of the previous equation converges to αk+1/(αk − 1). It follows that
S = lim supxn ≤ αk+1/(αk − 1). Then, we obtain that

(
αk+1

αk − 1

)k−1
≤ Sk−1 ≤ k

α
. (2.35)

Thus,

α

(
αk+1

αk − 1

)k−1
≤ k. (2.36)
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Since α > 1 and α > k(1 + k)(1−k)/k, for some values α and k, (2.36) is not satisfied. So s = S,
which implies that {xn}∞n=−1 tends to the unique positive equilibrium. From which the proof
follows.

Remark 2.6. Consider (1.1), where 0 ≤ α < 1. Let {xn}∞n=−1 be a solution of (1.1). If {xn}∞n=−1 is
bounded, then it is stable too.

3. Periodicity of the Solutions of (1.1)

In this section we investigate the periodicity of (1.1)when α > 1 and k > 1, k � ∞.
We need the following lemma whose proof follows by simple computation and thus it

will be omitted.

Lemma 3.1. Let {xn}∞n=−k be a solution of (1.1), and let L > α. Then, the following statements are
satisfied.

(i) limn→∞ x2n = L if and only if limn→∞ x2n+1 = L1/k/(L − α)1/k,

(ii) limn→∞ x2n+1 = L if and only if limn→∞ x2n = L1/k/(L − α)1/k.

Theorem 3.2. Consider (1.1), where

α > 1, k > 1, k � ∞. (3.1)

Assume that there exists a sufficient small positive number ε1 such that

(α + ε1)1/k − (α + ε1)(1−k
2)/k < αε1/k1 , (3.2)

ε1 < (α + ε1)1−k. (3.3)

Then, (1.1) has a periodic solution of prime period two.

Proof. Let {xn}∞n=−1 be a solution of (1.1). It is obvious that if

x−1 = α +
x−1
xk
0

, x0 = α +
x0

xk
−1

(3.4)

hold, then {xn}∞n=−1 is a periodic solution of period two. Consider the system

x = α +
x

yk
, y = α +

y

xk
. (3.5)

Then this system is equivalent to

y − α − y

xk
= 0, y =

(
x

x − α

)1/k

, (3.6)
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and so we get the equation

F(x) =
(

x

x − α

)1/k

− α − x(1−k2)/k

(x − α)1/k
(3.7)

and obtain

F(x) =
1

(x − α)1/k
(
x1/k − x(1−k2)/k

)
− α. (3.8)

Thus,

lim
x→α+

F(x) = ∞. (3.9)

Moreover, from (3.2)we can show that

F(α + ε1) < 0. (3.10)

Therefore, the equation F(x) = 0 has a solution x = α + ε0, where 0 < ε0 < ε1, in the interval
(α, α + ε1). So, we have

y =
(

x

x − α

)1/k

. (3.11)

We now consider the function

K(ε) = (α + ε)1−k − ε. (3.12)

Since from (3.1)

K′(ε) = (1 − k)(α + ε)−k − 1 < 0, (3.13)

we have

K(ε0) > K(ε1). (3.14)

From (3.3), we have K(ε1) > 0, and thus K(ε0) > 0, which implies that

x = α + ε0 <

(
α + ε0
ε0

)1/k

= y. (3.15)

Hence, if x−1 = x, x0 = y, then the solution {xn}∞n=−1 with initial values x−1, x0 is a prime
2-periodic solution. This completes the proof.
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In the following theorem we will generalize the result due to Stević [6, Theorem 2].

Theorem 3.3. For every positive solution {xn} of (1.1), the sequences {x2n} and {x2n+1} are eventu-
ally monotone.

Proof. We have

x2n+1 − x2n−1 =
xk
2n−2(x2n−1 − x2n−3) + x2n−3

(
xk
2n−2 − xk

2n

)
(x2nx2n−2)k

,

x2n+2 − x2n =
xk
2n−1(x2n − x2n−2) + x2n−2

(
xk
2n−1 − xk

2n+1

)
(x2n+1x2n−1)k

.

(3.16)

If x1 ≥ x−1 and x2 ≤ x0, we obtain from (3.16) x3 ≥ x1 and consequently x4 ≤ x2. By induction
we obtain

x0 ≥ x2 ≥ · · · ≥ x2n ≥ · · · , · · · ≥ x2n+1 ≥ x2n−1 ≥ · · · ≥ x1 ≥ x−1. (3.17)

Similarly if x1 ≤ x−1 and x2 ≥ x0, using induction we obtain from (3.16)

x0 ≤ x2 ≤ · · · ≤ x2n ≤ · · · , · · · ≤ x2n+1 ≤ x2n−1 ≤ · · · ≤ x1 ≤ x−1. (3.18)

If x1 ≥ x−1, x2 ≥ x0 and x1 ≥ x3, we can obtain from (3.16)

x0 ≤ x2 ≤ · · · ≤ x2n ≤ · · · , · · · ≤ x2n+1 ≤ x2n−1 ≤ · · · ≤ x1. (3.19)

Hence, we may assume that x3 ≥ x1 ≥ x−1 and x0 ≤ x2. If further x2 ≥ x4, then

x2 ≥ · · · ≥ x2n ≥ · · · , · · · ≥ x2n+1 ≥ x2n−1 ≥ · · · ≥ x1 ≥ x−1. (3.20)

So we may assume that x3 ≥ x1 ≥ x−1 and x0 ≤ x2 ≤ x4. By induction we obtain the result in
this case.

The cases x1 ≤ x−1 and x2 ≤ x0 can be treated similarly.

Theorem 3.4. Consider (1.1)where (3.1), (3.2), and (3.3) hold. Then, every positive solution of (1.1)
converges to a prime two periodic solution.

Proof. By Theorem 3.3, for every positive solution of (1.1) the sequences {x2n} and {x2n+1}
are eventually monotone. By Theorem 2.4, the sequences {x2n} and {x2n+1} are bounded.
Hence, the sequences {x2n} and {x2n+1} are convergent. Using Lemmas 1.3 and 3.1 the result
follows.
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