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Computer virus spread model concerning impulsive control strategy is proposed and analyzed.
We prove that there exists a globally attractive infection-free periodic solution when the
vaccination rate is larger than θ0. Moreover, we show that the system is uniformly persistent if
the vaccination rate is less than θ1. Some numerical simulations are finally given to illustrate the
main results.

1. Introduction

Computer virus is a kind of computer program that can replicate itself and spread from one
computer to others. Viruses mainly attack the file system andworms use system vulnerability
to search and attack computers. As hardware and software technology develop and computer
networks become an essential tool for daily life, the computer virus starts to be a major
threat. Consequently, the trial on better understanding of the computer virus propagation
dynamics is an important matter for improving the safety and reliability in computer systems
and networks. Similar to the biological virus, there are two ways to study this problem:
microscopic and macroscopic models. Following a macroscopic approach, since [1, 2] took
the first step towards modeling the spread behavior of computer virus, much effort has been
done in the area of developing a mathematical model for the computer virus propagation [3–
13]. These models provide a reasonable qualitative understanding of the conditions under
which viruses spread much faster than others.

In [4], the authors investigated a differential SIRS model by making the following
assumptions.

(H1) The total population of computers is divided into three groups: susceptible,
infected, and recovered computers. Let S, I, and R denote the numbers of
susceptible, infected and recovered computers, respectively.
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Figure 1: Original model.

(H2) New computers are attached to the computer network with constant rate b. For
the sake of antivirus software, some new nodes have temporary immunity with
probability p, some have not with probability 1 − p. Hence, new nodes are added
into the susceptible class with rate (1−p)b and into the recovered class with rate pb.

(H3) Computers are disconnected to the computer network with the constant rate μ and
are disconnected from the attack of malicious object with probability α.

(H4) S computers become I with constant rate β and with constant time delay τ1; R
computers become S with constant rate γ and with constant time delay τ1; I
computers become R with constant rate γ .

According to the above assumptions, the following model (see Figure 1) is derived :

dS

dt
=
(
1 − p

)
b − μS − βS(t − τ1)I(t − τ1) + υR(t − τ2),

dI

dt
= βS(t − τ1)I(t − τ1) −

(
μ + γ + α

)
I,

dR

dt
= pb − γI − μR − υR(t − τ2).

(1.1)

As we know, antivirus software is a kind of computer program which can detect
and eliminate known viruses. There are two common methods that an antivirus software
application uses to detect viruses: using a list of virus signature definitions and using
a heuristic algorithm to find viruses based on common behaviors. It has been observed
that it does not always work in detecting a novel computer virus by using the heuristic
algorithm. On the other hand, obviously, it is impossible for antivirus software to find new
computer viruss signature definitions on the dated list. So, to keep the antivirus soft in high
efficiency, it is important to ensure that it is updated. Based on the above facts, we propose an
impulsive system to model the process of periodic installing or updating antivirus software
on susceptible computers at fixed time for controlling the spread of computer virus.

Based on above facts, we propose the following assumptions.

(H5) The antivirus software is installed or updated at time t = kT (k ∈ N), where T is
the period of the impulsive effect.

(H6) S computers are successfully vaccinated from S class to R class with rate θ (0 < θ <
1).
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According to the above assumptions (H1)–(H6), and for the reason of simplicity we
propose the following model with one time delay (see Figure 2):

dS

dt
=
(
1 − p

)
b − μS − βSI(t − τ) + νR,

dI

dt
= βSI(t − τ) − (

μ + γ + α
)
I, t /= kT, k ∈ Z+,

dR

dt
= pb + γI − μR − νR,

S(t+) = (1 − θ)S(t),

I(t+) = I(t), t = kT,

R(t+) = R(t) + θS(t).

(1.2)

The total population size N(t) can be determined by N(t) = S(t) + I(t) + R(t) to form
the differential equation

Ṅ(t) = b − μN(t) − αI(t), (1.3)

which is derived by adding the equations in system (1.1). Thus the total population size N
may vary in time. From (1.2), we have

b − (
μ + α

)
N(t) ≤ Ṅ(t) ≤ b − μN(t). (1.4)

It follows that b/(μ + α) ≤ inf limx→∞N(t) ≤ limx→∞ supN(t) ≤ b/μ.
Before going into any details, we simplify model (1.1) and restrict our attention to the

following model:

dS

dt
=
(
1 − p

)
b + βSI(t − τ) + ν(N − S − I),

dI

dt
= βSI(t − τ) − (

μ + γ + α
)
I, t /= kT, k ∈ Z+,

dN

dt
= b − μN − αI,

S(t+) = (1 − θ)S(t),

I(t+) = I(t), t = kT,

N(t+) = N(t).

(1.5)

The initial conditions for (1.5) are

(
φ1(ξ), φ2(ξ), φ3(ξ)

) ∈ C+ = C
(
[−ω, 0], R3

+

)
,
(
φ2(ξ)

)
> 0, i = 1, 2, 3. (1.6)
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Figure 2: Impulse Model.

From physical considerations, we discuss system (1.5) in the closed set

Ω =
{
(S, I,N) ∈ R3

+ | 0 ≤ S + I ≤ b

μ
, 0 ≤ N ≤ b

μ

}
, (1.7)

whereR3
+ denotes the nonnegative cone ofR

3 including its lower-dimensional faces. Note that
it is positively invariant with respect to (1.7). The organization of this paper is as follows. In
Section 2, we first state three lemmas which are essential to our proofs and establish sufficient
condition for the global attractivity of infection-free periodic solution. The sufficient condition
for the permanence of the model is obtained in Section 3. Some numerical simulations are
performed in Section 4. In the final section, a brief conclusion is given and some future
research directions are also pointed out.

2. Global Attractivity of Infection-Free Periodic Solution

In this section, we prove that the infection-free periodic solution is globally attractive under
some conditions. To prove the main results, two lemmas (given in [14]) which are essential
to the proofs are stated here.

Lemma 2.1 (see [14], Lemma 1). Consider the following impulsive system:

u̇(t) = a − bu(t), t /= kτ,

u(t+) = (1 − θ)u(t), t = kτ,
(2.1)

where a > 0, b > 0, 0 < θ < 1. Then there exists a unique positive periodic solution of system (2.1)

ue(t) =
a

b
+
(
u∗ − a

b

)
e−b(t−kτ), kτ < t ≤ (k + 1)τ, (2.2)

which is globally asymptotically stable, where u∗ = a(1 − θ)(1 − e−bτ)/(b(1 − (1 − θ)e−bτ)).
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Lemma 2.2 (see [14], Lemma 2). Consider the following linear neutral delay equation:

ẋ(t) + λẋ(t −ω) + a2x(t) − a1x(t −ω) = 0. (2.3)

If |λ| < 1, a2
1 < a2

2 or −a1 = a2 /= 0, then increasing τ does not change the stability of (2.3).

When λ = 0, (2.3) becomes

ẋ(t) = a1x(t −ω) − a2x(t). (2.4)

Corollary 2.3. Consider system (2.4) and assume that a1, a2, ω > 0; x(t) > 0 for −ω ≤ t ≤ 0. Then
we have the following statements:

(i) assume that a1 < a2, then limx→∞x(t) = 0;

(ii) assume that a1 > a2, then limx→∞x(t) = +∞.

From the third and sixth equations of system (1.5), we have limt→∞N(t) = b/μ. Further, if
I(t) ≡ 0, we have the following limit system

dS

dt
=
(
1 − p

)
b +

νb

μ
− (

μ + ν
)
S, t /= kT, k ∈ Z+,

dN

dt
= b − μN,

S(t+) = (1 − θ)S(t), t = kT,

N(t+) = N(t).

(2.5)

From the second and fourth equations of system (3.5), we have limt→∞N(t) = b/μ and have the
following limit systems of (3.5):

dS

dt
=
(
1 − p

)
b +

νb

μ
− (

μ + ν
)
S, t /= kT,

S(t+) = (1 − θ)S(t), t = kT.

(2.6)

According to Lemma 2.1, we know that the periodic solution of system (3.10) is of the form

Se(t) =

(
μ
(
1 − p

)
+ ν

)
b

μ
(
μ + ν

) +

(

S∗ −
(
μ
(
1 − p

)
+ ν

)
b

μ
(
μ + ν

)

)

e−(μ+ν)(t−kτ), kτ < t ≤ (k + 1)τ, (2.7)

and it is globally asymptotically stable, where S∗ = (((1 − p)b + νb/μ)(1 − θ)(e(μ+ν)τ − 1)/((μ +
ν)(e(μ+ν)τ − 1 + θ))).
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Theorem 2.4. The infection-free periodic solution (Se(t), 0, b/μ) of system (1.5) is globally attractive
provided that R0 < 1, where

R0 =

((
1 − p

)
b + νb/μ

)
β
(
e(μ+ν)τ − 1

)

(
μ + γ + α

)(
μ + ν

)(
e(μ+ν)τ − 1 + θ

) . (2.8)

Proof. Since R0 < 1, we can choose ε1 > 0 sufficiently small such that

β

(((
1 − p

)
b + νb/μ

)(
e(μ+ν)τ − 1

)

(
μ + ν

)(
e(μ+ν)τ − 1 + θ

) + ε1

)

< μ + γ + α. (2.9)

It follows from the third equation of system (1.5) that

Ṅ(t) ≤ b − μN(t). (2.10)

There exists an integer k1 > 0 such that N(t) ≤ b/μ, t > k1τ .
From the first equation of system (1.5), we have

Ṡ(t) ≤ (
1 − p

)
b +

νb

μ
− (

μ + ν
)
S. (2.11)

For t > k1τ, k > k1, we consider the following comparison differential system:

ẋ(t) =
(
1 − p

)
b +

νb

μ
− (

μ + ν
)
x(t), t /= kτ,

x(t+) = (1 − θ)x(t), t = kτ.

(2.12)

In view of Lemma 2.1, we know that the unique periodic solution of system (2.12) is of the
form

S(t) < Se(t) + ε1 ≤
((
1 − p

)
b + νb/μ

)(
e(μ+ν)τ − 1

)

(
μ + ν

)(
e(μ+ν)τ − 1 + θ

) + ε1 =̇ δ, kτ < t ≤ (k + 1)τ, k > k2,

(2.13)

and it is globally asymptotically stable. From (1.5), we have

İ(t) ≤ βδI(t − τ) − (
μ + γ + α

)
I(t), t > kτ, k > k2. (2.14)

From (2.9), we have that βδ < μ + γ + α. According to Corollary 2.3 we have

lim
t→∞

I(t) = 0. (2.15)
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Therefore, for any ε1 > 0 (sufficiently small), there exists an integer k3 > k2 such that I(t) < ε
for all t > k3τ . From the third equation of system (1.5), we have

N(t) > b − μN(t) − αε1, t > k3τ. (2.16)

Consider the comparison equation

ż(t) = b − αε1 − μz(t), for t > k3τ. (2.17)

It is easy to see that limt→∞z(t) = (b−αε1)/μ. It follows by the comparison theorem that there
exists an integer k4 > k3 such that

N(t) ≥ b − αε1
μ

− ε1, ∀ t > k4τ. (2.18)

Since ε1 is arbitrarily small, from limt→∞ supN(t) ≤ b/μ and (2.18)we have

lim
t→∞

N(t) =
b

μ
. (2.19)

It follows from (2.15) and (2.19) that there exists k5 > k4 such that

I(t) < ε1, N(t) >
b

μ
− ε1, for t > k5τ. (2.20)

Hence, from the first equation of system (1.5) we have that

Ṡ(t) ≥ (
1 − p

)
b − μS(t) − βS(t)ε1 + ν

(
b

μ
− sε1 − S(t)

)

=
(
1 − p

)
b + ν

b

μ
− 2ε1ν − (

μ + βε1 + ν
)
S(t), for t > k5τ.

(2.21)

Consider the following comparison impulsive differential equations for t > k5τ and k > k5,

u̇(t) =
(
1 − p

)
b + ν

b

μ
− 2ε1ν − (

μ + βε1 + ν
)
u(t), t /= kτ,

u(t+) = (1 − θ)u(t), t = kτ.

(2.22)

In view of Lemma 2.1, we periodic solution of system

ue(t) = Γ + (u∗ − Γ)e−(μ+βε1+ν)(t−kτ), kτ < t ≤ (k + 1)τ, (2.23)
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which is globally asymptotically stable, where

Γ =

(
1 − p

)
b + ν

(
b/μ

) − 2ε1ν
μ + βε1 + ν

, u∗ = Γ
(1 − θ)

(
1 − e−(μ+βε1+ν)τ

)

(
1 − (1 − θ)e−(μ+βε1+ν)τ

) . (2.24)

According to the comparison theorem for impulsive differential equation, there exists an
integer k6 > k5 such that

S(t) > ue(t) − ε1, kτ < t ≤ (k + 1)τ, k > k6. (2.25)

Because ε1 is arbitrarily small, it follows from (2.25) that

Se(t) =

((
1 − p

)
b + ν

(
b/μ

))(
e(μ+ν)τ − 1

)

(
μ + ν

)(
e(μ+ν)τ − 1 + θ

) , kτ < t ≤ (k + 1)τ, (2.26)

is globally attractive, that is,

lim
x→∞

S(t) = Se(t). (2.27)

It follows from (2.15), (2.19), (2.27), and the restriction N(t) = S(t) + I(t) + R(t) that
limx→∞R(t) = b/μ−Se(t). Hence, the infection-free periodic solution (Se(t), 0, b/μ) of system
(1.5) is globally attractive. The proof is completed.

Corollary 2.5. The infection-free periodic solution (Se(t), 0, b/μ) of system (1.5) is globally attract-
ive, if θ > θ0 where θ0 = (e(μ+ν)τ − 1)(((1 − p + ν/μ)/((μ + γ)(μ + γ + α))) − 1).

Theorem 2.4 determines the global attractivity of (1.5) in Ω for the case R0 < 1. Its
realistic implication is that the infected computers vanish so the computer virus removed
from the network. Corollary 2.5 implies that the computer virus will disappear if the vaccina-
tion rate is larger than θ0.

3. Permanence

In this section, we say the computer virus is local if the infectious population persists above a
certain positive level for sufficiently large time. The locality viruses can be well captured and
studied through the notion of permanence.

Definition 3.1. System (1.5) is said to be uniformly persistent if there is an ϕ > 0 (independent
of the initial data) such that every solution (S(t), I(t), R(t),N(t))with initial conditions (1.7)
of system (1.5) satisfies

lim
t→∞

infS(t) ≥ ϕ, lim
t→∞

inf I(t) ≥ ϕ, lim
t→∞

infR(t) ≥ ϕ. (3.1)
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Definition 3.2. System (1.5) is said to be permanent if there exists a compact regionΩ0 ∈ intΩ
such that every solution of system (1.5)with initial data (1.7)will eventually enter and remain
in region Ω0. Denote

R1 =
β
(
1 − p

)
b(eμτ − 1)

(
μ + γ + α

)
(eμτ − 1 + θ)

. (3.2)

Theorem 3.3. Suppose that R1 > 1. Then there is a positive constantmI such that each positive solu-
tion (S(t), I(t), R(t)) of system (1.5) satisfies I(t) ≥ mI , for t large enough.

Proof. Now, we will prove there exist mI > 0 and a sufficiently large tp such that I(t) ≥ mI

holds for all t > tp. Suppose that I(t) < m∗
I for all t > t0. From the first equation of (1.5), we

have

Ṡ(t) >
(
1 − p

)
b − (

μ + βm∗
I

)
S. (3.3)

Consider the following comparison system:

ż2(t) =
(
1 − p

)
b − (

μ + βm∗
I

)
z2(t), t /= kτ,

z2(t+) = (1 − θ)z2(t), t = kτṠ(t) >
(
1 − p

)
b − (

μ + βm∗
I

)
S.

(3.4)

By Lemma 2.1, we know that, there exists t1 such that

S(t) ≥ z2(t) > z∗2(t) − ε ≥
(
1 − p

)
b
(
e(μ+βm

∗
I)τ − 1

)

(
μ + βm∗

I

)(
e(μ+βm

∗
I)τ − 1 + θ

) − ε =̇ S > 0, for t > t1. (3.5)

It follows from the second equation of (1.5) that İ(t) > βSI(t−τ)−(μ+γ +α)I(t). Consider the
comparison system ż3(t) = βSI(t− τ)− (μ+ γ +α)z3(t). Noting that R1 > 1 and ε is sufficiently
small, we have βS > (μ + γ + α).

Corollary 2.3 implies that t → ∞, I(t) > z3(t) → ∞. This contradicts I(t) ≤ b. Hence,
we can claim that, for any t0 > 0, it is impossible that

I(t) < m∗
I ∀ t ≥ t0. (3.6)

By the claim, we are left to consider two cases. First, I(t) ≤ m∗
I for t large enough. Second, I(t)

oscillates about m∗
I for t large enough. Obviously, there is nothing to prove for the first case.

For the second case, we can choose t2 > t1 and ξ > 0 satisfy

I(t2) = I(t2 + ξ) = m∗
I , I(t) < m∗

I , for t2 < t < t2 + ξ (3.7)

I(t) is uniformly continuous since the positive solutions to (1.5) are ultimately bounded and
I(t) is not effected by impulses.
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Therefore, it is certain that there exists η (0 < η < τ , and η is independent of the choice
of t2) such that

I(t) ≥ m∗
I

2
, for t2 ≤ t ≤ t2 + η. (3.8)

In this case, we shall consider the following three possible cases in term of the sizes of η, ξ
and τ .

Case 1. If ξ ≤ η < τ , then it is obvious that I(t) ≥ m∗
I/2, for t ∈ [t2, t2 + ξ].

Case 2. If η < ξ ≤ τ , then from the second equation of system (1.5), we obtain
İ(t) > −(μ + γ + α)I(t). Since I(t2) = m∗

I , it is obvious that I(t) > m∗
Ie

−(γ+α+μ)τ =̇m∗∗
I ,

for t ∈ [t2, t2 + ξ].

Case 3. If η < τ ≤ ξ, it is easy to obtain that I(t) > m∗∗
I for t ∈ [t2, t2 + τ]. Then,

proceeding exactly the proof for above claim, we have that I(t) > m∗∗
I for t ∈ [t2 +

τ, t2 + ξ].

Owing to the randomicity of t2, we obtain that there existsmI =̇ min{m∗
I/2, m

∗∗
I }, such

that I(t) > mI holds for all t > tp. The proof of Theorem 3.3 is completed.

Theorem 3.4. Suppose R1 > 1. Then system (1.5) is permanent.

Proof. Let (S(t), I(t), N(t)) be any solution to system (1.5). First, from the first equation of
system (1.5), we have Ṡ(t) > (1 − p)b − (μ + βb)S. Consider the following comparison system:

ż1(t) =
(
1 − p

)
b − (

μ + βb
)
z1(t), t /= kτ,

z1(t+) = (1 − θ)z1(t), t = kτ.
(3.9)

By Lemmas 2.1 and 2.2, we know that for any sufficiently small ε > 0, there exists t1 (t1
is sufficiently large) such that

S(t) ≥ z2(t) > z∗2(t) − ε ≥
(
1 − p

)
b
(
e(μ+βm

∗
I)τ − 1

)

(
μ + βm∗

I

)(
e(μ+βm

∗
I)τ − 1 + θ

) − ε =̇ mS > 0, kτ < t ≤ (k + 1)τ.

(3.10)

From the third equation of (1.5), we have Ṅ(t) > n−μN(t)−αN(t). It is easy to see thatN(t) >
b/(μ + α) − ε =̇mN . Let Ω0 = {(S, I,N) ∈ R3

+ | mξ ≤ S, mI ≤ I, mN ≤ N ≤ b/μ, S + 1 ≤ b/μ}.
By Theorem 3.3 and above discussions, we know that the setΩ0 is a global attractor inΩ, and
of course, every solution of system (1.5)with initial conditions (1.7)will eventually enter and
remain in region Ω0. Therefore, system (1.5) is permanent. The proof is completed.
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Figure 3: Global attractivity of infection-free periodic solution.

Corollary 3.5. It follows from Theorem 3.4 that the system (1.5) is uniformly persistent provided that
θ < θ1, where θ1 = (eμτ − 1)((β(1 − p)b/((μ + α)(μ + α + γ))) − 1).

4. Numerical Simulations

In this section, we perform some numerical simulations to show the geometric impression of
our results. To demonstrate the global attractivity of infection-free periodic solution to system
(1.5), we take the following parameter values: b = 1, μ = 0.5, γ = 0.3, α = 0.02, β = 0.3, ν =
0.7, θ = 0.4, and τ = 1. In this case, we have R0 = 0.5894 < 1. In Figures 3(a), 3(b), and 3(c)
display respectively the susceptible, infected and recovered population of system (1.5) with
initial conditions: S(0) = 3, I(0) = 4 and R(0) = 5. Figure 3(d) shows their corresponding
phase-portrait.

To demonstrate the permanence of system (1.5) we take following set parameter
values: b = 10, μ = 0.3, γ = 0.3, α = 0.02, β = 0.3, θ = 0.2, ν = 0.7, and τ = 1. In this case,
we have R1 = 2.2195 > 1. In Figures 4(a), 4(b), and 4(c) display, respectively, the susceptible,
infected and recovered population of system (1.5) with initial conditions: S(0) = 3, I(0) = 4,
and R(0) = 5. Figure 4(d) shows their corresponding phase portrait.
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Figure 4: permanence of system.

5. Conclusion

We have analyzed the delayed SIRS model with pulse vaccination and varying total
population size. We have shown that R1 > 1 or θ < θ1 implies that the disease will be
endemic, whereas R0 < 1 or θ > θ0 implies that the disease will fade out. We have also estab-
lished sufficient condition for the permanence of the model. Our results indicate that a short
interpulse time or a large pulse vaccination rate will lead to eradication of the computer virus.

In this paper, we have only discussed two cases: (i) R0 < 1 (or θ > θ0) and (ii) R1 >
1 (or θ < θ1). But for closed interval [R0, R1] (or [θ1,θ0]), the dynamical behavior of model (3)
have not been studied, and the threshold parameter for the reproducing number (or the pulse
vaccination rate) between the extinction of the computer viruses and the uniform persistence
of the viruses have not been obtained. These issues would be left to our future consideration.
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