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A new bifurcation critical criterion of flip-Neimark-Sacker bifurcation is proposed for detecting
or anticontrolling this type of codimension-two bifurcation of discrete systems in a general sense.
The criterion is built on the properties of coefficients of characteristic equations instead of the
properties of eigenvalues of Jacobian matrix of nonlinear system, which is formulated using a
set of simple equalities and inequalities consisting of the coefficients of characteristic polynomial
equation. The inequality conditions enable us to easily pick off the fake parameter domain whereas
the equality conditions are used to accurately locate the critical bifurcation point. In particular, after
the bifurcation parameter piont is determined, the inequality conditions can be used to figure out
the feasible region of other system parameters. Thus, the criterion is suitable for two-parameterized
family of n-dimensional discrete systems. As compared with the classical critical criterion (or
definition) of flip-Neimark-Sacker bifurcation stated in terms of the properties of eigenvalues, the
proposed criterion is preferable in anticontrolling or detecting the existence of flip-Neimark-Sacker
bifurcation in high-dimension nonlinear systems, due to its explicit parameter mechanism of the
bifurcation.

1. Introduction

With the development of bifurcation analysis [1–3] and nonlinear control theories [4, 5],
people become interested in active utilization of the bifurcation characteristics. The seminal
work of Chen and his coauthors [6, 7] presented the concept of anticontrol of bifurcation.
Similar to anticontrol of chaos, anticontrol of bifurcation is aimed at actively creating a certain
bifurcation with desired dynamic properties at a prespecified system parameter point via
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control method in order to utilize bifurcation characteristics. Notice that among the classic
bifurcation analysis, one can determine the type of bifurcation and its existence based on
the critical criterion or definition of bifurcation. Some developed software packages such
as MATCONT [8] that allow one to numerically search for the curves of equilibria, limit
points, Hopf points, limit cycles, period-doubling bifurcation points of limit cycles, and fold
bifurcation points of limit cycles by using a prediction-correction continuation algorithm.
However, Wen et al. have pointed out the fact [9, 10] that for anticontrol of bifurcation in
high-dimension nonlinear systems, the classical critical criteria or definitions of bifurcations
described by the properties of eigenvalue of Jacobian matrix are not suitable for the design of
gains, especially for complicated codimenison bifurcations withmultiparameters and various
bifurcating solutions. It is significant for anticontrol of bifurcation to develop explicit critical
criterion of the corresponding bifurcation. Bifurcation, a qualitative change of dynamical
properties, is a critical phenomena related to the loss of system stability. Thus, it is possible
to establish new explicit critical criteria based on the existing stability criteria without using
eigenvalues, which give the stability conditions with significant computational simplification
for multiparameter systems, such as the Schur-Cohn stability criterion [11, 12] and the
formulation of stability limit in terms of the Jacobian matrix and its bialternate product [13].
Recently, Wen and the coauthors [14–19] have systematically developed some critical criteria
of Hopf bifurcation at nonresonance or resonance, period-doubling bifurcation, degenerate
Hopf bifurcation, and interaction of Hopf-Hopf bifurcation in high-dimensional systems.
The advantages of the criteria independent of eigenvalue computations are obvious in the
applications to anticontrol of bifurcations or detecting the existence [20, 21] as compared with
the methodologies of numerical search for bifurcation points [8] or the classical bifurcation
definitions [1–3].

Flip-Neimark-Sacker bifurcation is one of so-called codimension two singularities of
discrete time systems. The bifurcation may give rise to rich bifurcation outcomes depending
on two-parameter unfolding at the bifurcation point, including unstable (or stable) fixed
point, stable (or unstable) limit circle, stable (or unstable) fixed points of order two, and
a couple of stable (or unstable) invariant circles [22, 23]. It should be stressed that this
bifurcation occurs only in high-dimensional (≥3) systems, and its bifurcation point involves
with at least two bifurcation parameters. Subject to the classical critical criterion stated in
terms of the properties of eigenvalues [2, 22], the main idea of detecting the existence of the
bifurcation in the literature is to directly compute and check all eigenvalues of the Jacobian
matrix at each parameter point in the parameter plane. Since the difficulty in the eigenvalue
computation point by point in the parameter plane, it is in general an arduous task to detect
a bifurcation point in practical physical systems. The same difficulty exists in the design
of gains for anticontrol of this complicated codimension bifurcation. Wen and Xu [18, 24]
discussed a critical criterion without using eigenvalues and its application to anticontrol
of this bifurcation. However, their critical criterion is only limited to the four-dimensional
dynamical systems and not universal in a general sense.

The main purpose of this paper is to study a criterion without using eigenvalues
for anticontrolling or detecting the flip-Neimark-Sacker bifurcation in discrete time systems
in a general sense. With the application of the criterion to two-parameterized family of n-
dimensional discrete systems, the effects of the parameters on the bifurcation may be explic-
itly formulated. Numerical examples show that the proposed criterion is more convenient
and efficient to analyze this kind of complicated bifurcation than the classical bifurcation
critical criterion.
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2. Problem Formulation and Preliminaries

Consider an n-dimension nonlinear discrete time system (or map) in the general form,

xk+1 = fμ(xk), (2.1)

where xk+1, xk ∈ Rn are the state vectors, k is the iterative index, and fμ denotes the nonlinear
function vector. μ ∈ Rm is the system parameter vector. For flip-Neimark-Sacker bifurcation
(also called as Hopf-flip interaction bifurcation), we have μ = (μ1, μ2)

T ∈ R2 for this type
of codimension-two bifurcation if μ is limited to the bifurcation parameters. It is often
convenient to state the definition of flip-Neimark-Sacker bifurcation for map (2.1) as the
following Definition 2.1.

Definition 2.1 (see [2, 22, 23]). Suppose that fμ has a fixed point x0. A flip-Neimark-Sacker
bifurcation occurs at a bifurcation point μ = μ0 if and only if system (2.1) satisfies the
following conditions:

(C1) eigenvalue assignment: the Jacobian matrix Dxkfμ(x0) has a pair of complex conju-
gate eigenvalues λ1(μ) and λ1(μ)with |λ1(μ0)| = 1, one real eigenvalue λ3(μ0) = −1,
and the rest λj(μ)with |λj(μ0)| < 1, j = 4, . . . , n;

(C2) transversality condition: ∂|λ1(μ)|/∂μ1|μ=μ0 /= 0, ∂|λ1(μ)|/∂μ2|μ=μ0 /= 0,
∂|λ3(μ)|/∂μ1|μ=μ0 /= 0, and ∂|λ3(μ)|/∂μ2|μ=μ0 /= 0, where μ1, μ2 are the bifurcation
parameters;

(C3) nonresonance condition: λm1 (μ0)/= 1 wherem = 3, 4, 5, . . ..

Definition 2.1 gives the classical critical criterion of flip-Neimark-Sacker bifurcation
which is used to determine the existence of the bifurcation as usual. The type and stability
of bifurcation solutions depend on the nonlinear property of map fμ and the parameter
unfolding of μ1 and μ2 at μ = μ0 [22, 23]. As shown in Definition 2.1, the classical critical
criterion is stated in terms of the properties of eigenvalues. Furthermore, it follows from the
condition (C1) that the bifurcation occurs only in three or higher dimensional systems. It is
well known that it is very difficult or even infeasible to obtain the analytical expressions of
all eigenvalues with respect to μ in high-dimensional systems. This implies that the classical
critical criterion fails to explicitly formulate the effect of parameters on the bifurcation. In
order to detect the existence of this type of codimension-two bifurcation, we have to resort to
eigenvalue computation point by point by scanning the parameter space (μ1, μ2) as shooting
an arrow without a target. In particular, it is a nontrivial task to check the transversality
condition without the analytical expressions of the derivatives of eigenvalue modulus. This
implies that it is in general an arduous task to detect a bifurcation point μ0 = (μ10, μ20)

T in
practical physical systems by applying the classical critical criterion.

In the next section, we will explore a new critical criterion of flip-Neimark-Sacker
bifurcation in a general sense. The criterion is formulated using a set of equalities or inequali-
ties consisting of the coefficients of characteristic polynomial equation, which is independent
of the computation of eigenvalues. This property may overcome the aforementioned
difficulties for the classical critical criterion.
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3. Critical Criterion without Using Eigenvalues

In order to obtain the criterion of flip-Neimark-Sacker bifurcation without using eigenvalues,
we write the characteristic polynomial of map (2.1) at the fixed point x0 as

pμ(λ) = a0λn + a1λn−1 · · · + an−1λ + an, (3.1)

where a0 = 1 and aj = aj(μ), j = 1, . . . , n. Define the sequence of determinants [11], Δ±
k
(μ) = 1

for k ≤ 0, and Δ±
1
(μ), . . ., Δ±

n(μ), where
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)
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, j = 1, . . . , n. (3.2)

Furthermore, the following Lemma 3.1 describing the critical criterion of Hopf bifurcation
is needed to serve the purpose of formulating a new criterion of flip-Neimark-Sacker
bifurcation.

Lemma 3.1 (see [9]). For map (2.1), the following conditions (H1)–(H3):

(H1) eigenvalue assignment: Δ−
n−1(μ0) = 0, pμ0(1) > 0, (−1)npμ0(−1) > 0, Δ+

n−1(μ0) > 0,
Δ±
j (μ0) > 0, j = n − 3, n − 5, . . . , 1 (or 2), when n is even (or odd, resp.);

(H2) transversality condition: ∂Δ−
n−1(μ)/∂μj |μ=μ0 /= 0, j = 1, 2, and μ1, μ2 are the bifurcation

parameters;

(H3) nonresonance condition: cos(2π/m)/=ψ where m = 3, 4, 5, . . . and ψ = 1 −
0.5 pμ0(1)Δ

−
n−3(μ0)/Δ+

n−2(μ0), are equivalent to the following conditions (D1)–(D3) from
the classical critical criterion of Hopf bifurcation for maps:

(D1) eigenvalue assignment: the Jacobian matrix Dxkfμ(x0) has a pair of complex conjugate
eigenvalues λ1(μ) and λ1(μ) with |λ1(μ0)| = 1, and the rest λj(μ) with |λj(μ0)| < 1,
j = 3, . . . , n;

(D2) transversality condition: ∂|λ1(μ)|/∂μj |μ=μ0 /= 0, j = 1, 2;

(D3) nonresonance condition: λm1 (μ0)/= 1 wherem = 3, 4, 5, . . ..

Based on Lemma 3.1, the following conditions (T1)–(T3) in Theorem 3.2 can be for-
mulated to establish a new critical criterion of flip-Neimark-Sacker bifurcations in a general
sense.

Theorem 3.2. For a general n-dimensional map (2.1), the flip-Neimark-Sacker bifurcation occurs at
μ0 if and only if the following conditions (T1)–(T3) hold:

(T1) eigenvalue assignment: pμ0(−1) = 0,Δ−
n−2(μ0) = 0, pμ0(1) > 0,Δ+

n−2(μ0) > 0,Δ±
j (μ0) > 0,

j = n − 4, n − 6, . . . , 1 (or 2), when n is odd (or even, resp.), and

(−1)n−1
n∑

k=1

(

(−1)n−k
k∑

i=1

(
(−1)k−iai−1

))

> 0, (3.3)
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(T2) transversality condition:

∂Δ−
n−2
(
μ
)

∂μj

∣
∣
∣
∣
∣
μ=μ0

/= 0, j = 1, 2,

∑n
i=1 a

′
ij(−1)n−i

∑n
k=1(n − k + 1)(−1)n−kak−1

/= 0, j = 1, 2,

(3.4)

where a′ij stands for the derivative of ai(μ) with respect to μj at μ = μ0, and μ1, μ2 are the
bifurcation parameters,

(T3) nonresonance condition: cos(2π/m)/=ψ where m = 3, 4, 5, . . . and ψ = 1 −
(pμ0(1)Δ

−
n−4(μ0)/4Δ+

n−3(μ0)), where we have Δ±
k
(μ) = 1 if k ≤ 0.

Proof. If the conditions (T1)–(T3) in Theorem 3.2 are equivalent to the conditions (C1)–(C3)
in Definition 2.1, then Theorem 3.2 stands for a critical criterion of flip-Neimark-Sacker
bifurcations for maps. First of all, it should be noticed that the equality pμ0(−1) = 0 in the
condition (T1) implies that the Jacobian matrix Dxkfμ(x0) has one real eigenvalue equal to
−1 at μ = μ0, and vice versa. In other words, at μ = μ0, we may rewrite the characteristic
polynomial pμ(λ) in (3.1) as

pμ0(λ) = (λ + 1)p̃μ0(λ), (3.5)

where p̃μ0(λ) = λn−1 + b1λ
n−2 · · · + bn−3λ + bn−1. All what we have to do further is employ

Lemma 3.1 to show that p̃μ0(λ) = 0 satisfies the conditions (H1)–(H3) subject to the conditions
(T1)–(T3).

It follows from (3.5) that pμ0(1) = 2p̃μ0(1). Thus, pμ0(1) > 0 implies p̃μ0(1) > 0.
By expanding the right-hand side of (3.5), one can easily obtain the relationship of the
coefficients am in (3.1) and bm in (3.5) as follows:

am = bm + bm−1, (3.6)

where m = 1, . . . , n, b0 = 1 and bj = 0 if j > (n − 1) or j < 0. Substituting (3.6) into (3.3), we
have

(−1)n−1p̃μ0(−1) > 0. (3.7)

Let us define a set of determinants Δ̃±
j (μ) of p̃μ(λ), j = n − 2, n − 3, . . . , 1, 0, similar to (3.2).

We then substitute (3.6) into Δ±
j (μ0), j = n − 2, n − 4, . . . , 1 or 2, and make the elementary row

operations for each row of Δ±
j (μ0) as follows: starting from the last row of Δ±

j (μ0), multiply
themth row by −1, and add it to the (m − 1)th row (if any), to obtain

Δ±
j

(
μ0
)
= Δ̃±

j

(
μ0
)
, j = n − 2, n − 4, . . . , 1, or 2. (3.8)

Notice that Lemma 3.1 is proposed for an n-dimension map in a general sense, and it
is applicable for the (n-1)-order characteristic polynomial p̃μ(λ) with minor modification.
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According to (3.8), the equalities and inequalities in the condition (T1), except for pμ0(−1) =
0, implies the fact that the polynomial p̃μ0(λ) = 0 satisfies with the condition (H1). By
considering the additional condition equation (3.7), we can readily infer the eigenvalue
assignment of the polynomial p̃μ0(λ) = 0 that at μ = μ0 a pair of complex conjugate eigenvalue
lie on the unit circle and the others lie in the unit disk. The condition (C1) thus is satisfied
under the condition (T1). Inversely, based on (3.5)–(3.8), one can conclude that the condition
(T1) holds if the Jacobian matrix Dxkfμ(x0) has the eigenvalue assignment stated in (C1).

The transversality condition (C2) means that the −1 eigenvalue and the complex
conjugate eigenvalues λ1(μ0) and λ1(μ0) lying on the unit circle will cross the unit circle at
nonzero rate if μ varies near μ0. Note that with λ3(μ0) = −1, we have ∂|λ3(μ)|/∂μj |μ=μ0 =
−∂λ3(μ)/∂μj |μ=μ0 , j = 1, 2. Directly differentiating the two sides of the characteristic
polynomial pμ(λ) = 0 with respect to μj at μ = μ0 and substituting λ3(μ0) for λ, we find that
∂|λ3(μ)|/∂μj |μ=μ0 /= 0 leads to (3.4) and vice versa. In addition, (3.5) implies that the sole pair

of complex conjugate eigenvalues λ1(μ0) and λ1(μ0) lying on the unit circle of pμ0(λ) = 0 are
just the ones of p̃μ0(λ) = 0. As in the case of the derivation of equalities (3.8), we can obtain
Δ−
n−2(μ) = Δ̃−

n−2(μ) such that ∂Δ−
n−2(μ)/∂μj |μ=μ0 /= 0 means ∂Δ̃−

n−2(μ)/∂μj |μ=μ0 /= 0. It follows
from Lemma 3.1 that (H2) is equivalent to (D2). Note that this conclusion holds for the pair
of complex conjugate eigenvalues of p̃μ0(λ) = 0 lying on the unit circle as well. Therefore, (T2)
is equivalent to (C2).

Finally, according to Lemma 3.1, the nonresonance condition of p̃μ0(λ) = 0 with respect
to the pair of complex conjugate eigenvalues lying on the unit circle should be cos(2π/m)/=ψ
wherem = 3, 4, 5, . . . and

ψ = 1 − 0.5 p̃μ0(1)Δ̃
−
n−4
(
μ0
)

Δ̃+
n−3
(
μ0
) . (3.9)

Equations (3.5) and (3.8) give pμ0(1) = 2p̃μ0(1) andΔ−
n−4(μ0) = Δ̃−

n−4(μ0), respectively. By using
the same procedures in the derivation of the equalities in (3.8), we can obtain Δ−

n−3(μ0) =
Δ̃−
n−3(μ0). Thus, (3.9) can be rewritten as,

ψ = 1 − pμ0(1)Δ
−
n−4
(
μ0
)

4Δ+
n−3
(
μ0
) . (3.10)

It follows from (3.10) that the condition (T3) is equivalent to (C3).
It should be mentioned that different from the conditions (C1)–(C3), the conditions

(T1)–(T3) are formulated as a set of simple equalities or inequalities, explore the effects of the
two parameters on the bifurcation and are independent of the computations of all eigenval-
ues. For example, for a three-dimension map, we have the following Corollary 3.3.

Corollary 3.3. For map (2.1) with n = 3 to appear a flip-Neimark-Sacker bifurcation at μ0, it is
necessary and sufficient that the following conditions (E1)–(E2) hold:

(E1) eigenvalue assignment: a3 = 1, a1 = a2, −1 < a1 < 3;
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(E2) transversality condition:

a′3j /= 0, j = 1, 2,

a′1j − a′2j + a′3j
a0 − 2a1 + a2

/= 0, j = 1, 2,
(3.11)

where a′ij stands for the derivative of ai(μ) with respect to μj at μ = μ0;

(E3) nonresonance condition: cos(2π/m)/=ψ wherem = 3, 4, 5, . . ., and ψ = (3−a1−a2−a3)/4.

Here, we briefly show the procedures to obtain the eigenvalue assignment (E1) in term
of the conditions in (T1). Notice that the condition Δ−

n−2(μ0) = 0 gives a3 = 1. The condition
pμ0(−1) = 0 gives −1 + a1 − a2 + a3 = 0, which implies a1 = a2. It is from pμ0(1) > 0 that
1 + a1 + a2 + a3 > 0. Then, we have −1 < a1 by using a3 = 1 and a1 = a2. The condition
(−1)n−1∑n

k=1((−1)n−k
∑k

i=1((−1)k−iai−1)) > 0 gives 3 − 2a1 + a2 > 0, which implies a1 < 3 on the
basis of a1 = a2. The conditionΔ+

n−2(μ0) > 0 representing a3 > −1 is superfluous due to a3 = 1.
It is clear from Corollary 3.3 that the proposed criterion is formulated as a set of simple

equalities or inequalities. The inequalities may directly exclude some parameter region in
the parameter plane and suggest no need for computing all eigenvalues point by point
in the parameter plane. This implies that the significant computational simplification for
anticontrolling or detecting the codimension-two bifurcation parameter point. In addition,
the potential of the criterion to reveal the effect of multiparameter on the bifurcation is
illustrated by numerical examples in the next section.

4. Numerical Examples

The proposed critical criterion in Section 3 is applicable for any high-dimensional map in a
general sense, such as the Poincaré map of impact vibrators [21], the three-order Rodriguez-
Vazquez map [25] and the generalized Hénonmap [26]. The feasibility of the critical criterion
in theoretical analysis and practical applications is illustrated by the following two examples.

Example 4.1. By incorporating a washout-filter controller into the four-dimension generalized
Hénon map [19], a five-dimension control system takes the following form:

x1(k + 1) = 0.75 − x4(k)2 − 0.1x3(k) + μ1(x2(k) − 1.5w(k)),

x2(k + 1) = x1(k),

x3(k + 1) = x2(k),

x4(k + 1) = x3(k) + μ2(x2(k) − 1.5w(k)),

w(k + 1) = x2(k) − 0.5w(k),

(4.1)

where the gains μ1 ∈ [−1.8, 1] and μ2 ∈ [−0.5, 3] to be determined stand for the
bifurcation parameters in order of anticontrol of this bifurcation. Map (4.1) has a fixed point
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2.5
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1.5

1

0.5

0

−0.5
−1.5 −1 −0.5 0 0.5 1

P1

P2

A B

µ
2

µ1

Figure 1: The illustrated conditions (T1)–(T3) of matrix (4.2) in Example 4.1. The blank region denotes the
parameter domain in which all inequalities in the condition (T1) hold whereas in the gray region at least
one inequality fails. The red heavy solid line and the red break line stand for Δ−

3 (μ0) = 0 and pμ0(−1) = 0,
respectively. Their intersecting points are marked with P1 and P2. The other lines crossing the blank region
consist of the parameter points where the transversality condition (T2) or the nonresonance condition (T3)
fails.

x0 = (x10, x10, x10, x10, w0)
T with w0 = x10/1.5 and x10 = 0.475914. The following matrix

Dxkfμ(x0) denotes the Jacobian matrix of map (4.1) at the fixed point x0:

Dxkfμ(x0) =

⎡

⎢⎢⎢⎢⎢
⎣

0 μ1 −1 −0.95182845 −1.5μ1

1 0 0 0 0
0 1 0 0 0
0 μ2 1 0 −1.5μ2

0 1 0 0 −0.5

⎤

⎥⎥⎥⎥⎥
⎦
. (4.2)

The conditions (T1)–(T3) are described in Figure 1. The blank region denotes the
parameter domain in which all inequalities in the condition (T1) hold whereas in the gray
region at least one inequality fails. Notice that we need not compute all eigenvalues point
by point in the two parameter domain (the gray region in Figure 1), which is picked off
by two inequalities in (T1)–(T3). It should be mentioned that, not only for the bifurcation
parameters, but also for other system parameters having this characteristic in parameter
analysis. The red heavy solid line and the red break line stand forΔ−

3 (μ0) = 0 and pμ0(−1) = 0,
respectively. Their intersecting points are marked with P1 and P2. The other black lines
crossing the blank region consist of the parameter points where the transversality condition
(T2) or the nonresonance condition (T3) fails. Based on Theorem 3.2, it is clear that both point
P1(−0.725229, 1.248199) and point P2(0.136024, 0.343479) are the bifurcation parameter points
of the flip-Neimark-Sacker bifurcations for map (4.1). It should be noted that the blue straight
line AB, which stands for the parameter points with ∂Δ−

3 (μ)/∂μ1|μ=μ0 = 0, is very close to
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4(
k
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Figure 2: The typical bifurcation solution resulting from the flip-Neimark-Sacker bifurcation of map (4.1).

the bifurcation parameter point P2 such that the change of the parameter μ1 is not sensitive
for the complex conjugate eigenvalues lying on the unit circle at P2 to cross the unit circle.
Therefore, the ideal bifurcation parameter point anticontrol of this bifurcation is accurately
located at the point P1(−0.725229, 1.248199).

Furthermore, to demonstrate the bifurcation parameter point P1, the simulation results
of map (3.2) are used to show the bifurcation solutions. We take the bifurcation parameters
(μ1, μ2) = P1 + (−0.0001, 0.0001) in the small neighborhood of the bifurcation parameter point
P1, and the very small perturbation of the fixed point x0 as the initial iteration point. The total
iteration number is 50000. One of the simulation results for map (4.1) is presented in Figure 2,
in which a pair of stable invariant circles represents one of the most interesting bifurcation
solutions of flip-Neimark-Sacker bifurcations.

Example 4.2. By applying the forward Euler scheme with step-size of the form h = 1/5 to
discretize the sunflower model with delay [27], we can obtain a twelve-dimension nonlinear
map. Its Jacobian matrix Dxkfμ(x0) takes the following form:

Dxkfμ(x0) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 rh 0 0 0 0 0 0 0 0 0 0
0 1 − μ1h 0 0 0 0 0 0 0 −μ2h 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.3)
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Figure 3: The illustrated conditions (T1)–(T3) of matrix (4.3) in Example 4.2.

where the delay r = 2, and the bifurcation parameter vector μ consists of the two unknown
parameters μ1 and μ2, that is, μ = (μ1, μ2)

T . For the above high-dimensional system with two
parameters to be determined, acquiring the explicit forms of all eigenvalues is extremely diffi-
cult, or even infeasible. However, with the aid of Theorem 3.2 and the softwareMaple or Mat-
lab, we can easily graph the conditions (T1)–(T3) as shown in Figure 3. Similar to Figure 1,
the blank region denotes the parameter domain in which all inequalities in the condition
(T1) hold whereas in the gray region at least one inequality fails. The red heavy solid line
and the red break line with an intersecting point P1 stand for Δ−

10(μ0) = 0 and pμ0(−1) = 0,
respectively. The other black lines crossing the blank region consist of the parameter points
where the transversality condition (T2) or the nonresonance condition (T3) fails. In Figure 3,
it is evident that the point P1 is the bifurcation parameter point of the flip-Neimark-Sacker
bifurcation.

It should be mentioned that if the classical critical criterion stated in Definition 2.1
is used to seek the bifurcation point P1, we have to numerically compute all eigenvalues
of matrix (4.3) point by point scanning the parameter plane such that the work seems
like seeking a needle in the meadow. However, as shown in Figure 3, only the condition
pμ0(1) > 0 in Theorem 3.2may exclude half of the parameter region in the process of obtaining
the bifurcation point P1. Obviously, with the significant computational simplification, the
proposed bifurcation critical criterion in Theorem 3.2 is more efficient and convenient in
detecting the existence of the bifurcation.

Finally, let us show another advantage of Theorem 3.2: its potential to reveal the effect
of multiparameter on the bifurcation. For example, we locally zoom in a region near the point
P1 in Figure 3 and show it in Figure 4. One can easily check the fact that pμ0(−1) < 0 and
Δ−

10(μ0) < 0 hold in region I, pμ0(−1) < 0 and Δ−
10(μ0) > 0 in region II, pμ0(−1) > 0 and

Δ−
10(μ0) > 0 in region III; and pμ0(−1) > 0 and Δ−

10(μ0) < 0 in region IV. This implies that at a
sufficient small parameter neighborhood of the point P1, a couple of invariant circles as one
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Figure 4: The enlargement of a region near the point P1 in Figure 3. The red heavy solid line and the red
break line partition off the blank region to four subregions, labeled as I, II, III and IV, respectively.

invariant set may emerge in region I, fixed points of order 2 exist in region I, single-limit circle
appears in region III, and the original fixed point x0 is stable (no bifurcation occurs) in region
II. In other words, Figure 4 gives the direction of parameter unfolding at the sufficient small
neighborhood of the point P1.

5. Conclusions and Remarks

A new criterion without using eigenvalues is proposed for flip-Neimark-Sacker bifurcation
of a general discrete time system (or map). With the application of the criterion, the effects
of parameters on the bifurcation in two-parameterized family of n-dimensional discrete
systems may be explicitly formulated. The proposed critical criterion is more convenient and
efficient for analyzing or anticontrolling this complicated codimension-two bifurcation than
the classical critical criterion, especially for high-dimensional maps.
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