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A stochastic computer virus spread model is proposed and its dynamic behavior is fully inves-
tigated. Specifically, we prove the existence and uniqueness of positive solutions, and the stability
of the virus-free equilibrium and viral equilibrium by constructing Lyapunov functions and
applying Ito’s formula. Some numerical simulations are finally given to illustrate our main results.

1. Introduction

A generalized computer virus, including the narrowly defined virus and the worm, is a kind
of computer program that can replicate itself and spread from one computer to another.
Viruses mainly attack the file system and worms use system vulnerability to search and
attack computers. As hardware and software technology developed and computer networks
became widespread, computer virus has come to be one major threat to our daily life. Con-
sequently, in order to deal with the threat, the trial on better understanding the computer
virus propagation dynamics is an important matter. Similar to the biological virus, there are
two ways to study this problem: microscopic and macroscopic. Following a macroscopic
approach, since [1, 2] took the first step towards modeling the spread behavior of computer
virus, much effort has been done in the area of developing a mathematical model for the
computer virus propagation [3–13]. These models provide a reasonable qualitative under-
standing of the conditions under which viruses spread much faster than others.

In [13], the authors investigated a differential SEIR model by making the following
assumptions.

(H1) The total population of computers is divided into four groups: susceptible, exposed,
infected, and recovered computers. Let S, E, I, and R denote the numbers of sus-
ceptible, exposed, infected, and recovered computers, respectively. N denotes the
total number of computers.

(H2) New computers are attached to the computer network with rate μN.
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(H3) Computers are disconnected to the computer network with constant rate μ.

(H4) S computers become E computers with rate αr/N, where r denotes the averaged
number of neighbor nodes (with various states) that are directly connected; α is the
transition rate from E to I. S computers become R computers with rate ρSR.

(H5) E computers become I computers with constant rate α; E computers becomeR com-
puters with constant rate ρSR; I computers become R computers with constant rate
γ .

According to the above assumptions, the following model (see Figure 1) is derived:

Ṡ(t) = μN − αr

N
E(t)S(t) − ρSRS(t) − μS(t),

Ė(t) =
αr

N
E(t)S(t) − (

α + ρER + μ
)
E(t),

İ(t) = αE(t) − (
γ + μ

)
I(t),

Ṙ(t) = ρSRS(t) + ρERE(t) − γI(t) − μR(t).

(1.1)

Notably, the first three equations in (1.1) do not depend on the fourth equation, since
Ṡ(t) + Ė(t) + İ(t) + Ṙ(t) = 1. Therefore, the forth equation can be omitted and the model (1.1)
can be rewritten as

Ṡ(t) = μN − αrE(t)S(t)
N

− ρSRS(t) − μS(t),

Ė(t) =
αrE(t)S(t)

N
− (

α + ρER + μ
)
E(t),

İ(t) = αE(t) − (
γ + μ

)
I(t).

(1.2)

In [13], authors have proved the virus-free equilibrium EQvf = ((μ/(ρSR+μ))N, 0, 0) is
globally asymptotically stable if R0 = (αrμ/(αrμ)(ρSR + μ)) ≤ 1, and the viral equilibrium
EQve is globally asymptotically stable if R0 > 1, where

EQve=

((
α+ρER+μ

)

αr
N,

μN
(
α+ρER+μ

)−
(
ρER+μ

)
N

αr
,

α

γ+μ

[
μN

(
α+ρER+μ

)−
(
ρER+μ

)
N

αr

])

.

(1.3)
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However, in the real world, systems are inevitably affected by environmental noise.
Hence the deterministic approach has some limitations in mathematically modeling the
transmission of an infectious disease, and it is quite difficult to predict the future dynamics
of the system accurately. This happens due to the fact that deterministic models do
not incorporate the effect of a fluctuating environment. Stochastic differential equation
models play a significant role in various branches of applied sciences, including infectious
dynamics, as they provide some additional degree of realism compared to their deterministic
counterpart. In this paper, we introduce a noise into (1.2) and we transform the deterministic
problem into a corresponding stochastic problem.

In this paper, we introduce randomness into the model by replacing the parameters
μ, μ and μ by μ → μ+σ1Ḃ1(t), μ → μ+σ2Ḃ2(t), and μ → μ+σ3Ḃ3(t), where Ḃ1(t), Ḃ2(t), and
Ḃ3(t) are mutual independent standard Brownian motions with B1(0) = 0, B2(0) = 0, and
B3(0) = 0, and intensity of white noise σ2

1 ≥ 0, σ2
2 ≥ 0 and σ2

3 ≥ 0, respectively. Then the
stochastic system is

Ṡ(t) = μN − αrE(t)S(t)
N

− ρSRS(t) − μS(t) − σ1S(t)Ḃ1(t),

Ė(t) =
αrE(t)S(t)

N
− (

α + ρER + μ
)
E(t) − σ2E(t)Ḃ1(t),

İ(t) = αE(t) − (
γ + μ

)
I(t) − σ3I(t)Ḃ1(t).

(1.4)

The organization of this paper is as follows. In Section 2, we prove the existence and
the uniqueness of the nonnegative solution of (1.3). In Section 3, if R0 ≤ 1, we show that
the solution is oscillating around the virus-free equilibrium of (1.3). Section 4 focuses on the
persistence of the virus. By choosing appropriate Lyapunov function, we show that there is a
stationary distribution for (1.3) and that it is persistent if R0 > 1. Some numerical simulations
are performed in Section 5. In Section 6, a brief conclusion is given.

Throughout this paper, consider the n-dimensional stochastic differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t), on t ≥ t0, (1.5)

with the initial value x(t0) = x0 ∈ Rn. B(t) denotes n-dimensional standard Brownian motion
defined on the above probability space. Define the differential operator L associated with
(1.4) by

L =
∂

∂xk
+
1
2

n∑

k,j=1

[
gT (x, t)g(x, t)

] ∂2

∂xk∂xj
. (1.6)

If L acts on a function V , then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1
2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
, (1.7)

where Vt = ∂V/∂t, Vx = (∂V/∂x1, . . . , ∂V/∂xn), Vxx = (∂2V/∂xk∂xk)n∗n.
By Ito’s formula, if x(t) ∈ Rn, then for (1.4), assume that f(0, t) = 0, g(0, t) = 0 for all

t ≥ t0. So x(t) ≡ 0 is a solution of (1.4), called the trivial solution or equilibrium position.
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2. Existence and Uniqueness of the Nonnegative Solution

To investigate the dynamical behavior of a population model, the first concern is whether the
solution is positive or not andwhether it has the global existence or not. Hence, in this section,
we mainly use the Lyapunov analysis method to show that the solution of system (1.3) is
positive and global.

Theorem 2.1. Let (S0, E0, I0) ∈ Δ, then the system (1.2) admits a unique solution (S(t), E(t), I(t))
on t ≥ 0, and this solution remains in R3

+ with probability 1.

Proof. Since the coefficients of the equation are locally Lipschitz continuous, for any given
initial value (S0, E0, I0) there is a unique local solution (S(t), E(t), I(t)) on t ∈ [0, τe), where
τe is the explosion time [2, 13]. To show this solution is global, we need to show that τe = ∞
a. s. Let k0 > 0 be sufficiently large so that every component of x0 lies within the interval
[1/k0, k0]. For each integer k ≥ k0, define the stopping time,

τk = inf
{
t ∈ [0, τe) : S(t) /∈

(
1
k
, k

)
or E(t) /∈

(
1
k
, k

)
or I(t) /∈

(
1
k
, k

)}
, (2.1)

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Clearly, τk is
increasing as k → ∞. Set τ∞ = limk→∞τk, whence τ∞ ≤ τe a. s. If we can show that τ∞ = ∞ a.
s., then τe = ∞ and (S(t), E(t), I(t)) a. s. for all t ≥ 0. In other words, to complete the proof we
need to show that τ∞ = ∞ a. s. For if this statement is false, then there is a pair of constants
T > 0 and ε ∈ (0, 1) such that

P(τ∞ ≤ T) > ε. (2.2)

Hence, there is an integer k1 ≥ k0 such that

P{τ∞ ≤ T} > ε ∀k > k1. (2.3)

Define a C2-function V for X(S, E, I) ∈ R3
+ by

V (X) =
(
S − a − log

S

a

)
+
(
E − 1 − logE

)
+
(
I − 1 − log I

)
. (2.4)

The nonnegativity of this function can be seen from μ + 1 − logμ ≥ 0, for all μ > 0. Using Ito’s
formula we get

dV (X) =
(
a − a

S

)
dS +

a

2S2 (dS)
2 +

(
1 − 1

E

)
dE +

1
2E2 (dE)

2 +
(
1 − 1

I

)
dI +

1
2I2

(dI)2

.= LVdt − [
σ1(S − a)Ḃ1(t) + σ2(E − 1)Ḃ2(t) + σ3(I − 1)Ḃ3(t)

]
,

(2.5)
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where

LV =
(
1 − a

S

)[
μN − αrE(t)S(t)

N
− ρSRS(t) − μS(t)

]
+
aσ2

1

2

+
(
1 − 1

E

)[
αrE(t)S(t)

N
− (

α + ρSR + μ
)
E(t)

]
+
σ2
1

2

+
(
1 − 1

I

)
[
αE(t) − (

γ + μ
)
I(t)

]
+
σ2
3

2

=

(

μN + aρSR + μa + α + ρSR + μ + γ + μ +
aσ2

1

2
+
σ2
2

2
+
σ2
3

2

)

+
[
αra

N
E − ρSRS − μS − a

S
μN − ρSRE − μE − αr

N
S − γI − μI − α

I
E

]

≤ μN + aρSR + μa + α + ρSR + μ + γ + μ +
aσ2

1

2
+
σ2
2

2
+
σ2
3

2
+
αra

N
E − ρERE − μE.

(2.6)

By choosing a = (ρER + μ)N/αr, then

LV ≤ μN + aρSR + μa + α + ρSR + μ + γ + μ +
aσ2

1

2
+
σ2
2

2
+
σ2
3

2
.= Ṁ. (2.7)

Therefore,

∫ τm∧T

0
dV (X) ≤

∫ τm∧T

0
Ṁdt −

∫ τm∧T

0
[σ1(S − a)dB1(t) + σ2(E − 1)dB2(t) + σ3(I − 1)dB3(t)],

EV (X(τm ∧ T)) ≤ V (X(0)) + E

[∫ τm∧T

0
Ṁdt

]

≤ V (X(0)) + ṀT.

(2.8)

SettingΩm = {τm ≤ T} form ≥ m1, then by (2.3), we know that P(Ωm) ≥ ε. Note that for every
ω ∈ Ωm, there is at least one of S(Ωm,ω), E(Ωm,ω), and I(Ωm,ω) that equals eitherm or 1/m.
Then

V (X(τm)) ≥
(
m − 1 − logm

) ∧
(

1
m

− 1 + logm
)
∧
(
m − a − a log

m

a

)
∧
(

1
m

− a + a logam
)
,

(2.9)

where 1Ωm(ω) is the indicator function of Ωm. Let m → ∞ lead to the contradiction that
∞ > V (X(0)) + ṀT = ∞. So τ∞ = ∞ is necessary. The proof of Theorem 2.1 is completed.
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3. Stability of Virus-Free Equilibrium

It is clear that EQvf = (μN/(ρSR + μ), 0, 0) is the virus-free equilibrium of system (1.3), which
has been mentioned above, and EQvf is globally stable if R0 ≤ 1, which means that the virus
will die out after some period of time. Since there is no virus-free equilibrium of system (1.3),
in this section, we show that the solution is oscillating in a small neighborhood of EQvf if the
white noise is small.

Theorem 3.1. If ρSR+μ > σ2
1 , 3α2+2ρSR+2μ > σ2

2 , 2γ +2μ−α > σ2
3 and R0 ≤ 1, then the solution

X(t) of system (1.3) with initial value X(0) ∈ R3
+ has the property

lim
x→∞

sup
1
t
E

∫ t

0

[
(1 + b)

(
ρSR + μ − σ2

1

)
μ2(s) +

(
1
2
α + ρSR + μ − 1

2
σ2
2

)
σ2(s)

+
(
γ + μ − α

2
− 1
2
σ2
3w

2(s)
)
ds ≤ (1 − b)σ2

1

(
μ

ρSR + μ
N

)]
,

(3.1)

where b is positive constants, defined as in the proof.

Proof. For simplicity, let u(t) = S(t)−μN/(ρSR +μ), v(t) = E(t), w(t) = I(t), system (1.3) can
be written as

u̇(t) = −αrv(t)
N

[
u(t) +

μ

ρSR + μ
N

]
− (

ρSR + μ
)
u(t) − σ1

(
u(t) +

μ

ρSR + μ
N

)
Ḃ(t),

v̇(t) =
αrv(t)
N

[
u(t) +

μ

ρSR + μ
N

]
− (

α + ρSR + μ
)
v(t) − σ2v(t)Ḃ(t),

ẇ(t) = αv(t) − (
γ + μ

)
w(t) − σ3w(t)Ḃ3(t).

(3.2)

Let

V (x) =
1
2
(u + v)2 +

1
2
bu2 +

1
2
bv +

1
2
w2

= V1 + bV2 + bV3 + V4,

(3.3)

then b is positive constants to be determined later. By Ito’s formula, we compute

dV1
.= LV1dt − (u(t) + v(t))

[
σ1

(
u(t) +

μ

ρSR + μ
N

)
Ḃ(t) + σ2v(t)Ḃ2(t)

]
,
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LV1 = (u(t) + v(t))
[−(ρSR + μ

)
u(t) − (

α + ρSR + μ
)
v(t)

]
+
1
2
σ2
1

(
u(t) +

μ

ρSR + μ
N

)2

+
1
2
σ2
2v

2(t)

≤ (u(t) + v(t))
[−(ρSR + μ

)
u(t) − (

α + ρSR + μ
)
v(t)

]
+ σ2

1u
2(t) + σ2

1

(
μ

ρSR + μ
N

)2

+
1
2
σ2
2v

2(t)

= −
[(

ρSR + μ − σ2
1

)
u2(t) +

(
α + ρSR + μ − 1

2
σ2
2

)
v2(t) +

(
α + 2ρSR + 2μ

)
u(t)v(t)

−σ2
1

(
μ

ρSR + μ
N

)2
]

,

dV2
.= LV2dt − σ1u(t)

(
u(t) +

μ

ρSR + μ

)
Ḃ(t),

LV2 = u(t)
{
−αrv(t)

N

[
u(t) +

μ

ρSR + μ
N

]
− (

ρSR + μ
)
u(t)

}

+
1
2
σ2
1

(
u(t) +

μ

ρSR + μ
N

)2

≤ u(t)
{
−αrv(t)

N

[
u(t) +

μ

ρSR + μ
N

]
− (

ρSR + μ
)
u(t)

}
+ σ2

1u
2(t)

+ σ2
1

(
μ

ρSR + μ
N

)2

= −
[(

ρSR + μ − σ2
1

)
u2(t) +

αrμ

ρSR + μ
u(t)v(t) +

αr

N
v(t)u2(t)

+σ2
1

(
μ

ρSR + μ
N

)2
]

≤ −
[(

ρSR + μ − σ2
1

)
u2(t) +

αrμ

ρSR + μ
u(t)v(t) + σ2

1

(
μ

ρSR + μ
N

)2
]

,

dV3 =
αrv(t)
N

[
u(t) +

μ

ρSR + μ
N

]
dt − (

α + ρSR + μ
)
v(t)dt − σ2v(t)Ḃ(t)

=
[
αr

N
v(t)u(t) +

(
αrμ

ρSR + μ
− (

α + ρSR + μ
)
)
v(t)

]
dt − σ2v(t)Ḃ(t)

.= LV3 − σ2v(t)Ḃ(t),
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dV4 =
[
w(t)

(
αv(t) − (

γ + μ
)
w(t)

)
+
1
2
σ2
3w

2(t)
]
dt − σ3w

2(t)Ḃ(t)

=
[
αv(t)w(t) − (

γ + μ
)
w2(t) +

1
2
σ2
3w

2(t)
]
dt − σ3w

2(t)Ḃ(t)

≤
[
α

2

(
v2(t) +w2(t)

)
− (

γ + μ
)
w2(t) +

1
2
σ2
3w

2(t)
]
dt − σ3w

2(t)Ḃ(t)

=
[(

α

2
− γ − μ +

1
2
σ2
3

)
w2(t) +

α

2
v2(t)

]
dt − σ3w

2(t)Ḃ(t)

.= LV4dt − σ3w
2(t)Ḃ(t),

LV = LV1 + bLV2 + bLV3 + LV4

= −
[(

ρSR + μ − σ2
1

)
u2(t) +

(
α + ρSR + μ − 1

2
σ2
2

)
v2(t)

+
(
α + 2ρSR + 2μ

)
u(t)v(t) − σ2

1

(
μ

ρSR + μ
N

)2
]

− b

[(
ρSR + μ − σ2

1

)
u2(t) +

αrμ

ρSR + μ
u(t)v(t) + σ2

1

(
μ

ρSR + μ
N

)2
]

+ b

[
αr

N
v(t)u(t) +

(
αrμ

ρSR + μ
− (

α + ρSR + μ
)
)
v(t)

]

+
[(

α

2
− γ − μ +

1
2
σ2
3

)
w2(t) +

α

2
v2(t)

]
.

(3.4)

Choosing b = (N(α + 2ρSR + 2μ)(ρSR + μ))/(αr(ρSR + μ −Nμ)), then we get

LV = −(1 + b)
(
ρSR + μ − σ2

1

)
u2(t) −

(
1
2
α + ρSR + μ − 1

2
σ2
2

)
v2(t) −

(
γ + μ − α

2
− 1
2
σ2
3

)
w2(t)

− b

(
(
α + ρSR + μ

) − αrμ

ρSR + μ

)
v(t) + (1 − b)σ2

1

(
μ

ρSR + μ

)2

,

dV ≤ −(1 + b)
(
ρSR + μ − σ2

1

)
u2(t) −

(
1
2
α + ρSR + μ − 1

2
σ2
2

)
v2(t) −

(
γ + μ − α

2
− 1
2
σ2
3

)
w2(t)

+ (1 − b)σ2
1

(
μ

ρSR + μ
N

)2

− (u(t) + v(t))
[
σ1

(
u(t) +

μ

ρSR + μ
N

)
Ḃ1(t) + σ2v(t)Ḃ2(t)

]

− σ1u(t)
(
u(t) +

μ

ρSR + μ
N

)
Ḃ(t) − σ2v(t)Ḃ2(t) − σ3w

2(t)Ḃ3(t).

(3.5)
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Integrating this from 0 to t and taking the expectation, we have

E[V (t)] − V (0)

≤ −E
∫ t

0

[

(1 + b)
(
ρSR + μ − σ2

1

)
u2(s) +

(
1
2
α + ρSR + μ − 1

2
σ2
2

)
v2(s)

+
(
γ + μ − α

2
− 1
2
σ2
3

)
w2(s) − (1 − b)σ2

1

(
μ

ρSR + μ
N

)2
]

ds.

(3.6)

Hence,

lim
x→∞

sup
1
t
E

∫ t

0

[
(1 + b)

(
ρSR + μ − σ2

1

)
u2(s) +

(
1
2
α + ρSR + μ − 1

2
σ2
2

)
v2(s)

+
(
γ + μ − α

2
− 1
2
σ2
3

)
w2(s)

]
ds ≤ (1 − b)σ2

1

(
μ

ρSR + μ
N

)2

.

(3.7)

Remark 3.2. Theorem 3.1 shows that the solution of system (1.3) would oscillate around the
virus-free equilibrium of system (1.1) if some conditions are satisfied, and the intensity of
fluctuation is proportional to σ2

1 , which is the intensity of the white noise Ḃ1(t). In a biological
interpretation, if the stochastic effect on S is small, the solution of system (1.3) will be close
to the virus-free equilibrium of system (1.1) most of the time.

4. Permanence

When studying epidemic dynamical systems, we are interested in when the computer viruses
will persist in network. For a deterministic model, this is usually solved by showing that the
viral equilibrium is a global attractor or is globally asymptotically stable. But, for system (1.3),
there is no viral equilibrium. In this section, we show that there is a stationary distribution,
which reveals that the computer viruses will persist.

Lemma 4.1 (see [14, 15]). Assumption B: there exists a bounded domainU ⊂ El with regular bound-
ary Γ, having the following properties.

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion
matrix A(x) is bounded away from zero.

(B.2) If x ∈ El/U, the mean time τ at which a path issuing from x reaches the setU is finite, and
supx∈KExτ < ∞ for every compact subset K ⊂ El. If (B) holds, then the Markov process
X(t) has a stationary distribution μ(•). Let f(•) be a function integrable with respect to
the measure μ. Then

Px

{

lim
T →∞

1
T

∫T

0
f(X(t))dt =

∫

El

f(x)μd(x)

}

= 1, ∀x ∈ El. (4.1)
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Lemma 4.2 (see [14, 15]). Let X(t) be a regular temporally homogeneous Markov process in El. If
X(t) is recurrent relative to some bounded domain U, then it is recurrent relative to any nonempty
domain in El.

Theorem 4.3. If σ2
1 < (ρSR+μ)(1+(αr/S∗N))(S∗/(S∗−1)), σ2

2 < (α/2)+ρSR+μσ2
3 < γ+μ−(α/2),

and R0 > 1, then, for any initial value X(0) ∈ R3
+, there is a stationary distribution μ(•) for system

(1.3), and it has an ergodic property, where a, c are defined as in the proof, Qve = (S∗, E∗, I∗) is the
viral equilibrium of system.

Proof. When R0 > 1, there is an viral equilibrium EQve of system (1.3). Then

μN =
αrE∗S∗

N
− ρSRS

∗ + μS∗,
αrE∗S∗

N
=
(
α + ρSR + μ

)
E∗, αE∗ =

(
γ + μ

)
I∗. (4.2)

Define

V (x) = a

(
S − S∗ − S∗ log

S

S∗ + E − E∗ − E∗ log
E

E∗

)
+
(
E − E∗ − E∗ log

E

E∗

)

+
1
2
(S − S∗ + E − E∗)2 +

1
2
c(S − S∗)2 +

1
2
(I − I∗)2

= aV1 + V2 + V3 + cV4 + V5,

(4.3)

where a, c, are positive constants to be determined later. Then V is positive definite. By Ito’s
formula, we compute

dV1 =
(
1 − S∗

S

)[(
μN − αrES

N
− ρSRS − μS

)
dt − σ1SḂ1(t)

]

+
(
1 − E∗

E

)[(
αrES

N
− (

α + ρSR + μ
)
E

)
dt − σ2EḂ2(t)

]

+
1
2
S∗σ2

1dt +
1
2
E∗σ2

2dt

= LV1dt −
(
1 − S∗

S

)
σ1S(t)Ḃ1(t) −

(
1 − E∗

E

)
σ2E(t)Ḃ2(t),

(4.4)

where

LV1 =
(
1 − S∗

S

)[(
μN − αrES

N
− ρSRS − μS

)
dt

]

+
(
1 − E∗

E

)[(
αrES

N
− (

α + ρSR + μ
)
E

)
dt

]

+
1
2
S∗σ2

1dt +
1
2
E∗σ2

2dt

=
(
1 − S∗

S

)[αr
N

(E∗S∗ − ES)dt +
(
ρSR + μ

)
(S∗ − S)dt

]
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+
(
1 − E∗

E

)[(
αrES

N
− (

α + ρSR + μ
)
E

)
dt

]

+
1
2
S∗σ2

1dt +
1
2
E∗σ2

2dt

= − (S − S∗)2

S

(
ρSR + μ

)
+
αr

N
E∗S∗ + E∗(α + ρSR + μ

)

+
(αr
N

S∗ − α − ρSR − μ
)
E − αr

N
E∗S∗ − αr

N

E∗S∗2

S

+
1
2
S∗σ2

1 +
1
2
E∗σ2

2

≤ − (S − S∗)2

S

(
ρSR + μ

)1
2
S∗σ2

1 +
1
2
E∗σ2

2 ,

dV2 =
(
1 − E∗

E

)[(
αrES

N
− (

α + ρSR + μ
)
E

)
dt − σ2EḂ2(t)

]
+
1
2
E∗σ2

2dt

= LV2dt −
(
1 − E∗

E

)
σ2E(t)Ḃ2(t).

(4.5)

Let B̂ = (αr/N)E∗S∗ = (α + ρSR + μ)E∗ and α − 1 − logα > 0, for all α

LV2 =
(
1 − E∗

E

)(
αrES

N
− (

α + ρSR + μ
)
E

)
dt +

1
2
E∗σ2

2dt

=
(
1 − E∗

E

)(
B̂

ES

E∗S∗ − B̂
E

E∗

)
+
1
2
E∗σ2

2

=
(
B̂

ES

E∗S∗ − B̂
E

E∗ + B̂
S

S∗ + B̂

)
+
1
2
E∗σ2

2

≤ B̂

[
ES

E∗S∗ − E

E∗ −
(
1 + log

S

S∗

)
+ 1

]
+
1
2
E∗σ2

2

≤ B̂

[
ES

E∗S∗ − E

E∗ +
(

S

S∗ − 2
)
+ 1

]
+
1
2
E∗σ2

2

= B̂

(
E

E∗ − 1
)(

S

S∗ − 1
)
+ B̂

(
S∗

S
+

S

S∗ − 2
)
+
1
2
E∗σ2

2

=
αr

N
(E − E∗)(S − S∗) +

αr

N
E∗ (S − S∗)2

S
+
1
2
E∗σ2

2 ,

dV3 = (S − S∗ + E − E∗)
[
μN − (

ρSR + μ
)
S − (

α + ρSR + μ
)
E
]
dt

− (S − S∗ + E − E∗)
[
σ1SḂ1(t) + σ2EḂ2(t)

]
+

(
σ2
1

2
S2 +

σ2
2

2
E2

)

dt,
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LV3 = (S − S∗ + E − E∗)
[−(ρSR + μ

)
(S − S∗) − (

α + ρSR + μ
)
(E − E∗)

]

+
σ2
1

2
S2 +

σ2
2

2
E2

≤ −(ρSR + μ
)
(S − S∗)2 − (

α + ρSR + μ
)
(E − E∗)2

− (
α + ρER + ρSR + 2μ

)
(S − S∗)(E − E∗)

+ σ2
1

[
(S − S∗) + S∗2

]
+ σ2

2

[
(E − E∗) + E∗2

]

≤
(
σ2
1 − ρSR − μ

)
(S − S∗)2 +

(
σ2
2 − α − ρER − μ

)
(E − E∗)2 + σ2

1S
∗2 + σ2

2E
∗2,

dV4 = (S − S∗)
(
μN − αr

N
ES − (

ρSR + μ
)
S
)
− S(S − S∗)σ1Ḃ(t) +

1
2
σ2
1S

2,

LV4 = (S − S∗)
(
μN − αr

N
ES − (

ρSR + μ
)
S
)
+
1
2
σ2
1S

2

= (S − S∗)
[
−αr
N

(ES − E∗S∗) − (
ρSR + μ

)
(S − S∗)

]
+
1
2
σ2
1S

2

= −αr
N

S∗(S − S∗)(E − E∗) − αr

N
(S − S∗)2E − αr

N

(
ρSR + μ

)
(S − S∗)2 +

1
2
σ2
1S

2

≤ −αr
N

S∗(S − S∗)(E − E∗) −
(αr
N

(
ρSR + μ

) − σ2
1

)
(S − S∗)2 + σ2

1S
∗2,

dV5 = (I − I∗)
[
αE − (

γ + μ
)
I
]
+
σ2
3

2
I2

= LV5dt − σ3I(I − I∗)Ḃ3,

LV5 = (I − I∗)
[
αE − (

γ + μ
)
I
]
+
σ2
3

2
I2

= (I − I∗)
[
α(E − E∗) − (

γ + μ
)
(I − I∗)

]
+
σ2
3

2
I2

≤ α(E − E∗)(I − I∗) −
(
γ + μ − σ2

3

)
(I − I∗)2 + σ2

3I
∗2

≤ α

2
(E − E∗)2 −

(
γ + μ − σ2

3 −
α

2

)
(I − I∗)2 + σ2

3I
∗2.

(4.6)

Choosing a = (αr/(ρSR + μ)N)E∗, then

aV1 + V2 = a

[

− (S − S∗)2

S

(
ρSR + μ

)
+
1
2
S∗σ2

1 +
1
2
E∗σ2

2

]

+

[
αr

N
(E − E∗)(S − S∗) +

αr

N
E∗ (S − S∗)2

S
+
1
2
E∗σ2

2

]

=
αr

N
(E − E∗)(S − S∗) +

1
2
aS∗σ2

1 +
1
2
E∗σ2

2 .

(4.7)
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Choosing c = 1/S∗, then

aV1 + V2 + V3 + V4 + V5

≤ αr

N
(E − E∗)(S − S∗) +

1
2
aS∗σ2

1 +
1
2
(a + 1)E∗σ2

2

+
[(

σ2
1 − ρSR − μ

)
(S − S∗)2 +

(
σ2
2 − α − ρSR − μ

)
(E − E∗)2 + σ2

1S
∗2 + σ2

2E
∗2
]

+ c
[
−αr
N

S∗(S − S∗)(E − E∗) −
(αr
N

(
ρSR + μ

) − σ2
1

)
(S − S∗)2 + σ2

1S
∗2
]

+
[α
2
(E − E∗)2 −

(
γ + μ − σ2

3 −
α

2

)
(I − I∗)2 + σ2

3I
∗2
]

=
1
2
aσ2

1S
∗ + σ2

1S
∗ + σ2

1S
∗2 +

1
2
(a + 1)σ2

2E
∗ + σ2

2E
∗2 + σ2

3I
∗2

+
[(

σ2
1 − ρSR − μ

)
− c

(αr
N

(
ρSR + μ

) − σ2
1

)]
(S − S∗)2

+
(
σ2
2 −

α

2
− ρSR − μ

)
(E − E∗)2 −

(
γ + μ − σ2

3 −
α

2

)
(I − I∗)2

.= δ −
[(

1 +
αr

S∗N

)
(
ρSR + μ

) − σ2
1

(
1 +

1
S∗

)]
(S − S∗)2

−
(
−α
2
+ ρSR + μ − σ2

2

)
(E − E∗)2 −

(
γ + μ − σ2

3 −
α

2

)
(I − I∗)2.

(4.8)

Then the ellipsoid

δ −
[(

1 +
αr

S∗N

)
(
ρSR + μ

) − σ2
1

(
1 +

1
S∗

)]
(S − S∗)2 −

(
−α
2
+ ρSR + μ − σ2

2

)
(E − E∗)2 = 0

(4.9)

lies entirely in R3
+. We can take U to be a neighborhood of the ellipsoid with U ⊂ R3

+, so,
for x ∈ U/R3

+, LV ≤ −K (K is a positive constant), which implies that condition (B.2) in
Lemma 4.1 is satisfied. Hence, the solutionX(t) is recurrent in the domainU, which, together
with Lemma 4.2, implies that X(t) is recurrent in any bounded domain D ⊂ R3

+. Besides,
for all D, there is an

M = min
{
σ2
1S

2, σ2
2E

2, σ2
3I

2 ∈ D
}
> 0, (4.10)

such that
∑3

i,j=1 aijξiξj = σ2
1S

2ξ21 + σ2
2E

2ξ22 + σ2
3I

2ξ23 ≥ M‖ξ2‖ for all X ∈ D, ξ ∈ R3 which implies
that condition (B.1) is also satisfied. Therefore, the stochastic system (1.3) has a stationary
distribution μ(∗) and it is ergodic. This completes the proof.

5. Numerical Simulations

In this section, we have performed some numerical simulations to show the geometric
impression of our results. To demonstrate the global stability of infection-free solution of
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Figure 2: Deterministic and stochastic trajectories around infection-free solution.

system (1.3) we take following set parameter values: μ = 1/4380,N = 100000, α = 1/500,
r = 7, ρSR = 1/2500, ρER = 1/300, γ = 1/500,σ2

1 = 0.0006, σ2
2 = 0.001, σ2

3 = 0.002. In this case,
we have R0 = 0.9147 < 1. In Figures 2(a), 2(b), and 2(c), we have displayed, respectively, the
susceptible, infected and recovered computer of system (1.4)with initial conditions: S(0) = 3,
E(0) = 0.1 and I(0) = 0.1.

To demonstrate the permanence of system (1.4), we take the following set parameter
values: μ = 1/4380, N = 100000, α = 1/500, r = 30, ρSR = 1/2500, ρER = 1/300, γ = 1/500,
σ2
1 = 0.0006, σ2

2 = 0.001, σ2
3 = 0.002. In this case, we have R1 = 3.9201 > 1. In Figures 3(a), 3(b),

and 3(c), we have displayed, respectively, the susceptible and infected population of system
(1.4) with initial conditions: S(0) = 15000, E(0) = 2000 and I(0) = 2000.

6. Conclusion

In this paper, a stochastic computer virus spread model has been proposed and analyzed.
First, we prove the existence and uniqueness of positive solutions. Then, by constructing
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Figure 3: Deterministic and stochastic trajectories around virus endemic equilibrium.

Lyapunov functions and applying Ito’s formula, the stability of the virus-free equilibrium
and viral equilibrium is studied.
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