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We analyze a triopoly game model with fully heterogeneous players when the demand function is
isoelastic. The three players were considered to be bounded rational, adaptive, and naı̈ve. Existing
equilibrium points and their locally asymptotic stability conditions are studied. Complexity of
the dynamical system is examined by means of numerical simulations, such as period cycles,
bifurcation diagrams, strange attractors and sensitive, dependence on initial conditions. This paper
extends the result of Tramontana (2010) who considered a heterogeneous duopoly with isoelastic
demand function. Comparisons with respect to the heterogeneous triopoly model of Elabbasy
et al. (2009) assuming linear demand function are performed.

1. Introduction

Oligopolistic market is a universal market mechanism, in which a trade is controlled by a
small number of firms producing the same or homogeneous products. These firms must
consider not only the market demand but also the strategies of their competitors. The
most classical and widely used oligopoly model was proposed by Cournot in 1838 [1]. The
mathematician Augustin Cournot investigated a duopoly case, where two firms were naı̈ve
players. In 1959, Theocharis reconsidered the Cournot oligopoly model assuming a linear
demand function and constant marginal costs then he pointed out that an oligopoly system
with n players would be only neutrally stable for three players and unstable for four and
more players [2]. In [3], Puu pointed out that the Theocharis argument was stated under
more general conditions 20 years earlier by palander [4]. After that the similar conclusionwas
shown by Ahmed and Agiza for a isoelastic demand function and, again, constant marginal
costs. They demonstrated that with four players the Cournot equilibrium is neutrally stable
and with five and higher becomes unstable [5]. However, it is highly unlikely that all the
players are naı̈ve. Therefore, different approaches to firm behavior were proposed. Players
were not only naı̈ve but also bounded rational and adaptive.
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Some authors studied dynamics of the duopoly game with homogenous expectations
[6–8]. They demonstrated that dynamics of the Cournot oligopoly gamesmay never converge
to equilibrium and in the long-term bounded periodic or chaotic behavior may be observed.
In [8], delay is introduced in a bounded rationality duopoly game model. The analysis
showed that the delay case increases the domain of stability, and firms using delayed
bounded rationality have a higher chance of reaching a Nash equilibrium point. Models
with heterogeneous players were studied [9–13]. In [9, 10], Agiza and Elsadany investigated
dynamics of a duopoly game with bounded rational and naı̈ve (adaptive) assuming linear
inverse demand function and linear cost functions. Zhang et al. [11] evidenced chaotic
behavior in a modification of the game by Agiza and Elsadany [9] introducing nonlinear,
in particular quadratic, instead of linear cost functions and thus increasing marginal costs.
Dubiel-Teleszynski [12] amended the game by Agiza and Elsadany [10] replacing linear with
nonlinear cost functions. Nonlinear demand function was introduced into the duopoly game
of Agiza and Elsadany [9] by Tramontana [13]. In theory, there are another three kinds of
duopoly game model. These are bounded rational, and adaptive players facing nonlinear
demand function and linear cost functions, bounded rational and naı̈ve players assuming
nonlinear demand function and cost functions and bounded rational, and adaptive players
facing nonlinear demand function and cost functions.

In oligopoly model, all players maximize their profits while triopoly game is a
oligopoly market with three players. The dynamics of a triopoly game with homogenous
players were discussed in [14–18]. But, the same with duopoly game, it is impossible that
all players have the same expectations. Recently, models with heterogeneous players were
studied in [19, 20]. In these two papers, triopoly with different expectations were used,
namely bounded, rational, adaptive, and naı̈ve expectations. The stability of the triopoly
game, bifurcation, and chaotic behavior were analyzed. And the difference of the two papers
is as follows: one uses linear cost functions; the other applies nonlinear cost functions. We
know isoelastic demand function has its advantages. The advantages are that it always
results when the consumers maximize utility functions of the Cobb-Douglas type. Then, all
the consumers spend constant budget shares on each commodity and they have demand
functions of the same type. In this paper, isoelastic demand function is introduced into the
triopoly game. And the three players are completely heterogeneous.

This paper is organized as follows. In Section 2, the triopoly game model with
isoelastic demand function and fully heterogeneous players is briefly described. The
conditions of the existence and local stability of fixed point will be given in Section 3. In
Section 4, numerical simulations are used to demonstrate complexity of the system. Finally,
the conclusion of the paper is provided in Section 5.

2. Triopoly Game with Isoelastic Demand Function and
Heterogeneous Players

We consider a market served by three firms, where players produce homogeneous goods
which are perfect substitutes. Let qi(t) denote the quantity supplied by ith firm, i = 1, 2, 3
during period t. We assume an isoelastic demand function that has the form

p =
1
Q
, (2.1)
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which is founded on the hypothesis of the Cobb-Douglas utility function of the agents [3, 6,
13], where Q =

∑3
i=1 qi is the total supply, and the residual supply (not under the control of

the ith firm) is Qi = Q − qi. The cost function has the linear form

Ci

(
qi
)
= ciqi, (2.2)

where ci is the marginal cost of ith firm, so ci is positive constant. The profit of ith firm i =
1, 2, 3, is given by

Πi = pqi − Ci

(
qi
)
=

qi
Qi + qi

− ciqi. (2.3)

At each period t, every player must form an expectation of the rival’s output in the
next time period in order to determine the corresponding profit-maximizing quantities for
period t + 1. If we denote by qi(t) the output of ith player at time period t, its production
qi(t + 1) for the next time period t + 1 is decided by solving the optimization problem:

qi = ri
(
qj
)
= arg max

qi

[
qi

Qi + qi
− ciqi

]

, i, j = 1, 2, 3, i /= j. (2.4)

This optimization problem (2.4) has unique solution in the form

qi =

√
Qi

ci
−Qi. (2.5)

In this work, we consider heterogeneous players in the sense that they adopt different
mechanisms to decide the output of each time period. We assume the first player is bounded
rational player; hence it does not has a complete knowledge of the demand function of the
market and builds his output decision on the basis of the expected marginal profit ∂

∏
1/∂q1.

If the marginal profit is positive (negative), he increases (decreases) his production qi at the
next period output. Then the dynamical equation of the first player has the form

q1(t + 1) = q1(t) + αq1(t)
∂
∏

1

∂q1(t)
= q1(t) + αq1(t)

(
q2(t) + q3(t)

(
q1(t) + q2(t) + q3(t)

)2 − c1

)

, (2.6)

where α is a positive parameter which represents the speed of adjustment.
We assume the second player is a adaptive player. When player 2 thinks with adaptive

expectation, hence he computes his output with weight between last periods’ output q2
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and his reaction function r2(q1, q3). By using above assumptions and using (2.5), hence the
dynamical equation of the adaptive player 2 has the form

q2(t + 1) =
(
1 − β

)
q2(t) + β

⎛

⎝

√
q1(t) + q3(t)

c2
− (q1(t) + q3(t)

)
⎞

⎠, (2.7)

where β ∈ [0, 1] is the speed of adjustment of adaptive player.
Let player 3 be a naive player. He computes his outputs from using the reaction

function in (2.5), and then the dynamical equation of player 3 is given by

q3(t + 1) =

√
q1(t) + q2(t)

c3
− (q1(t) + q2(t)

)
. (2.8)

By combining (2.6)–(2.8), we have the triopoly game with fully heterogeneous players in the
form

q1(t + 1) = q1(t) + αq1(t)

(
q2(t) + q3(t)

(
q1(t) + q2(t) + q3(t)

)2 − c1

)

,

q2(t + 1) =
(
1 − β

)
q2(t) + β

⎛

⎝

√
q1(t) + q3(t)

c2
− (q1(t) + q3(t)

)
⎞

⎠

q3(t + 1) =

√
q1(t) + q2(t)

c3
− (q1(t) + q2(t)

)
.

, (2.9)

Therefore, the system describes the dynamical triopoly game with fully heterogeneous
players. In the next section, we study the dynamical behaviors of thismodel using the location
of fixed points of the dynamical system; the determination of the parameters sets for given
local stable fixed points. We are interested only in nonnegative trajectories; hence the system
is not defined in the origin (0, 0, 0).

3. Equilibrium Points and Local Stability

By setting qi(t + 1) = qi(t) = qi, we get the following nonlinear algebraic system:

q1

(
q2 + q3

(q1 + q2 + q3)
2
− c1

)

= 0,

√
q1 + q3
c2

− (q1 + q2 + q3
)
= 0,

√
q1 + q2
c3

− (q1 + q2 + q3
)
= 0.

(3.1)
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It is easy to work out two equilibrium points:

E1 =

(

0,
c3

(c2 + c3)
2
,

c2

(c2 + c3)
2

)

,

E∗ =

(
2(c2 + c3 − c1)

(c1 + c2 + c3)
2
,
2(c1 + c3 − c2)

(c1 + c2 + c3)
2
,
2(c1 + c2 − c3)

(c1 + c2 + c3)
2

)

,

(3.2)

where E1 is the boundary equilibrium point and E∗ is the Nash equilibrium point provided
that q1∗ > 0, q2

∗ > 0 and q3
∗ > 0; that is,

c2 + c3 > c1,

c1 + c3 > c2,

c1 + c2 > c3.

(3.3)

In mathematics, that is to say, c1, c2 and c3 must be able to constitute a triangle. Otherwise,
there will be one or two firms out of the market.

In order to investigate the local stability of the equilibrium points of E1 and E∗,
we return to the three dimensional system. Let J be the Jacobian matrix of the system
corresponding to the state variables (q1, q2, q3), then

J
(
q1, q2, q3

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − αc1 +
α
(
q2 + q3

)(
q2 + q3 − q1

)

(q1 + q2 + q3)
2

αq1
(
q1 − q2 − q3

)

(q1 + q2 + q3)
3

αq1
(
q1 − q2 − q3

)

(q1 + q2 + q3)
3

β

⎛

⎜
⎝

1

2
√
c2
(
q1 + q3

) − 1

⎞

⎟
⎠ 1 − β β

⎛

⎜
⎝

1

2
√
c2
(
q1 + q3

) − 1

⎞

⎟
⎠

1

2
√
c3
(
q1 + q2

) − 1
1

2
√
c3
(
q1 + q2

) − 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.4)

The stability of equilibrium points will be determined by the nature of the equilibrium
eigenvalues of the Jacobian matrix evaluated at the corresponding equilibrium points.

Proposition 3.1. The boundary equilibrium point E1 of the system (2.9) is asymptotically stable
provided that

−2 < α(c2 + c3 − c1) < 0 if
(
3 − 2

√
2
)
c3 < c2 <

(
3 + 2

√
2
)
c3,

−2 < α(c2 + c3 − c1) < 0, β <
4c2c3

(c2 − c3)2
if 0 < c2 ≤

(
3 − 2

√
2
)
c3 ∪ c2 ≥

(
3 + 2

√
2
)
c3.

(3.5)
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Proof. The Jacobian matrix at E1 takes the form:

J(E1) = J
(
0, q2, q3

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + α(c2 + c3 − c1) 0 0

β

2

(
c3
c2

− 1
)

1 − β
β

2

(
c3
c2

− 1
)

1
2

(
c2
c3

− 1
)

1
2

(
c2
c3

− 1
)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.6)

Its characteristic polynomial can be written as

p(λ) = (1 + α(c2 + c3 − c1) − λ)

∣
∣
∣
∣
∣
∣
∣
∣

(
1 − β

) − λ
β

2

(
c3
c2

− 1
)

1
2

(
c2
c3

− 1
)

−λ

∣
∣
∣
∣
∣
∣
∣
∣

. (3.7)

If we set λ1 = 1 + α(c2 + c3 − c1) and

r(λ) =

∣
∣
∣
∣
∣
∣
∣
∣

(
1 − β

) − λ
β

2

(
c3
c2

− 1
)

1
2

(
c2
c3

− 1
)

−λ

∣
∣
∣
∣
∣
∣
∣
∣

= λ2 − (1 − β
)
λ +

β(c2 − c3)
2

4c2c3
, (3.8)

then, by Jury stability criterion, we see that the roots of the characteristic polynomial are in
the unit disk if the following conditions are fulfilled:

(1) |λ1| < 1,

(2) r(1) > 0,

(3) r(−1) > 0,

(4) r(0) < 1.

Condition (1) can be written as

−1 < 1 + α(c2 + c3 − c1) < 1, (3.9)

which gives us

−2 < α(c2 + c3 − c1) < 0. (3.10)

Condition (2) reads as

r(1) = 1 − (1 − β
)
+
β(c2 − c3)

2

4c2c3
= β +

β(c2 − c3)
2

4c2c3
> 0 (3.11)
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which is always fulfilled because β ∈ [0, 1], c2 > 0, c3 > 0. Condition (3) is also always fulfilled
because

r(−1) = 1 +
(
1 − β

)
+
β(c2 − c3)

2

4c2c3
= 2 − β +

β(c2 − c3)
2

4c2c3
> 0 (3.12)

which is always fulfilled because β ∈ [0, 1], c2 > 0, c3 > 0. Condition (4) is

r(0) =
β(c2 − c3)

2

4c2c3
< 1. (3.13)

Since β ∈ [0, 1], so condition (4) is always satisfied if (c2 − c3)
2/4c2c3 < 1 equivalent to

(
3 − 2

√
2
)
c3 < c2 <

(
3 + 2

√
2
)
c3, (3.14)

while in the case (c2 − c3)
2/4c2c3 ≥ 1, that is,

0 < c2 ≤
(
3 − 2

√
2
)
c3 ∪ c2 ≥

(
3 + 2

√
2
)
c3, (3.15)

the condition (4) is fulfilled if

β <
4c2c3

(c2 − c3)2
, (3.16)

Inequalities (3.10)–(3.16) prove the result.

In fact, condition (4) indicates a Neimark-Sacker bifurcation. Comparing our
boundary equilibrium E1 with the boundary equilibrium E1 in model of Elabbasy et al.
[19, 20], their boundary equilibrium is a saddle point, but ours is asymptotically stable
under conditions (3.5). This is the consequence of isoelastic demand function and difference
between our model and the model of Elabbasy et al. [20].

3.1. Local Stability Analysis of the Nash Equilibrium Point

E∗ is somewhat complex. The coordinates of E∗ imply that in the Nash equilibrium the output
produced by the more efficient firm is higher than the rival’s one. The profits corresponding
to the Nash equilibrium are

∏

1

∗
=

c2 + c3 − c1
c1 + c2 + c3

,
∏

2

∗
=

c1 + c3 − c2
c1 + c2 + c3

,
∏

3

∗
=

c1 + c2 − c3
c1 + c2 + c3

. (3.17)

Obviously, themore efficient firm achieves a higher profit. Therefore, in theNash equilibrium,
in order to achieve a higher profit, it is not relevant the mechanism adopted to adjust
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the output but the efficiency of the firm. We promote Tramontana’s conclusion in [13] from
heterogeneous duopoly to fully heterogeneous triopoly.

Next, we investigate the local stability of the Nash equilibrium. The Jacobian matrix at
E∗ takes the form:

J(E∗) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 2αc1
c2 + c3 − c1
c1 + c2 + c3

α(c2 + c3 − c1)(c2 + c3 − 3c1)
2(c1 + c2 + c3)

α(c2 + c3 − c1)(c2 + c3 − 3c1)
2(c1 + c2 + c3)

β
c1 + c3 − 3c2

4c2
1 − β β

c1 + c3 − 3c2
4c2

c1 + c2 − 3c3
4c3

c1 + c2 − 3c3
4c3

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.18)

By calculation, we get the characteristic polynomial p(λ) of the matrix J(E∗) as follows:

p(λ) = λ3 +Aλ2 + Bλ + C, (3.19)

where

A = −
(

1 − 2αc1
c2 + c3 − c1
c1 + c2 + c3

)

− (1 − β
)
,

B =
(

1 − 2αc1
c2 + c3 − c1
c1 + c2 + c3

)
(
1 − β

) − α(c2 + c3 − c1)(c2 + c3 − 3c1)
2(c1 + c2 + c3)

β
c1 + c3 − 3c2

4c2

− α(c2 + c3 − c1)(c2 + c3 − 3c1)
2(c1 + c2 + c3)

c1 + c2 − 3c3
4c3

− β
c1 + c3 − 3c2

4c2

c1 + c2 − 3c3
4c3

,

C =
(

1 − 2αc1
c2 + c3 − c1
c1 + c2 + c3

)

β
c1 + c3 − 3c2

4c2

c1 + c2 − 3c3
4c3

− α(c2 + c3 − c1)(c2 + c3 − 3c1)
c1 + c2 + c3

β
c1 + c3 − 3c2

4c2

c1 + c2 − 3c3
4c3

+
α(c2 + c3 − c1)(c2 + c3 − 3c1)

2(c1 + c2 + c3)
(
1 − β

)c1 + c2 − 3c3
4c3

.

(3.20)

From the Jury stability criterion, the necessary and sufficient conditions for |λi| < 1, i = 1, 2, 3
are

1 +A + B + C > 0,

1 −A + B − sC > 0,

|C| < 1,

|B −AC| < 1 − C2.

(3.21)

The Nash equilibrium point E∗ of the system is locally asymptotically stable if the conditions
in inequalities (3.21) are all satisfied.

Inequalities (3.21) are very complex. It is too awkward to provide any simplified from.
We will give numerical simulations in Section 4.

Under conditions (3.5), E1 is asymptotically stable, which means in the long run firm
1 will drop out of the market so that the triopoly evolves into duopoly. However, it is very
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Figure 1: Oscillated convergence to the Nash equilibrium for β = 0.2, α = 16.0.
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Figure 2: Period-2 cycle for β = 0.2, α = 19.0.

interesting that E∗ will be stable if the parameters satisfy (3.21), since at the Nash equilibrium
every firm will stay in the market.

4. Numerical Simulations

Only a few of simple dynamic system can be concluded as the dynamic characters by
analytical method, so the numerical analysis is the prime method in the research on the
complicated dynamical behaviors of the discrete dynamical system (2.9). In addition, we will
explore the difference between heterogeneous triopoly game with linear demand function
and isoelastic. We show some numerical results such as period cycles, bifurcation diagrams,
phase portraits, strange attractors, and sensitive dependence on initial conditions.
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Figure 3: periodic-4 cycle for β = 0.2, α = 21.0.
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Figure 4: Chaotic values of q1 versus time for β = 0.2, α = 23.1.

In order to study local stability properties of the Nash equilibrium points, it is
convenient to take the model parameters as follows: q1(0) = 2.0, q2(0) = 1.5, q3(0) = 1.0
and c1 = 0.11, c2 = 0.15, c3 = 0.17 which satisfy (3.3), that is, to say no one firm will drop out
the market. Now, the Nash equilibrium point E∗ is (2, 2715, 1.4062, 0.9735) and

A =
231α
2150

+ β − 2,

B =
427αβ
4000

− 63357α
584800

− 53β
48

+ 1,

C = −63αβ
5440

+
21α
23392

+
5β
48

.

(4.1)
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Figure 5: Bifurcation diagram for β = 0.4.
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Figure 6: Bifurcation diagram with respect to β for α = 18.0.

Figure 1 shows that the convergence to the Nash equilibrium is oscillating. That is to
say, the output of the firm 1 is in some period above and in others below the equilibrium
level. Figures 2–4 show the value of the output of the bounded rational player respecting
to time. Figure 2 is periodic of period 2; the periodicity of Figure 3 is 4; Figure 4 becomes
chaotic. Theoretically, as β = 0.2 and α > 18.44, the Nash equilibrium point becomes unstable.
Period 2 and period 4 bifurcations appear and finally chaotic behaviors occur. Figure 5 also
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Figure 8: Bifurcation diagram with respect to β for α = 21.1.

shows this kind of evolution direction. Figures 1–4 and Figure 5 are just two ways to show
the evolutionary process of system (2.9). From Figures 1–5, everyone can see that the Nash
equilibrium point is locally stable for small value of parameter of different α, which other
authors also concluded. Conversely, a high level of the speed of adjustment of the bounded
rational player leads the system to instability.
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Figure 9: Strange attractor when β = 0.2, α = 23.1.
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Figure 10: Strange attractor when β = 0.2, α = 23.1.

Figures 6, 7 and 8 show the bifurcation diagrams with respect to the parameter β and
for different α. From these figures, we can see that system (2.9) transforms from stable to
unstable and chaotic eventually when the value of parameter α increases gradually. That is to
say, the market will become more and more confused.

Figures 9, 10, 11 and 12 show the strange attractors for system (2.9). Figures 9–11
show the two-dimension strange attractors. Figure 12 shows the strange attractor from three
dimensions.

Using (4.1) and conditions (3.21), we get Figure 13 which shows the stability region of
the Nash equilibrium point in the plane (α, β). One can see the stability region in this paper is
very large compared with respect to the model of Elabbasy et al. [20] and closes to a rectangle
region.
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Figure 11: Strange attractor when β = 0.2, α = 23.1.
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Figure 12: Strange attractor when β = 0.2, α = 23.1.

From Figures 1–5 and Figure 13, one can deduce that system (2.9) has similar evolu-
tionary process when 0.4 < β < 1.

From Figures 6–8 and Figure 13, one can conclude that the Nash equilibrium point is
either stable or unstable. That is to say, the speed of adjustment of adaptive player β has no
effect on stability of the market or not. This constitutes a quite relevant difference between
our model and the one proposed by Elabbasy et al. [20].

Sensitive dependence on initial conditions is one of the features of chaotic system.
In order to demonstrate sensitive dependence on initial conditions of system (2.9), when
(c1, c2, c3, α, β) = (0.11, 0.15, 0.17, 23.1, 0.2), we simulated two orbits in Figure 14. The red and
blue curves start from the initial points (q1(0), q2(0), q3(0)) = (2.0, 1.5, 1.0) and (q1(0), q2(0),
q3(0)) = (2.0001, 1.5, 1.0), respectively. It shows that, at the beginning, they are indistinguish-
able, but after a number of iterations, the difference between them builds up rapidly.
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Figure 14: Sensitive dependence on initial conditions for system (2.9).

5. Conclusion

In this paper, we propose a fully heterogeneous (bounded rational, adaptive, and naı̈ve
expectations) triopoly gamemodel with nonlinear demand function and linear cost functions.
The boundary equilibrium point is asymptotically stable under some conditions. The
existence condition of the Nash equilibrium point is that the outputs of the three firms must
be able to constitute a triangle. Stability region of the Nash equilibrium point is very large
compared with respect to heterogeneous triopoly game model with linear demand function
and approaches to a rectangle region. The outputs and profits of the firms are not relevant for
the decision mechanism the three players adopt in the Nash equilibrium. But the stability of
the Nash equilibrium strongly depends on the kind of adjustment adopted. Precisely, it only
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depends on the speed of adjustment of bounded rational player and is not relevant for the
adaptive player.
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