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Smale horseshoes, curvilinear rectangles and their U-shaped images patterned on Smale’s famous
example, provide a rigorous way to study chaos in dynamical systems. The paper is devoted
to constructing them in two-dimensional diffeomorphisms with the existence of transversal
homoclinic saddles. We first propose an algorithm to automatically construct “horizontal” and
“vertical” sides of the curvilinear rectangle near to segments of the stable and of the unstable
manifolds, respectively, and then apply it to four classical chaotic maps (the Duffing map, the
Hénon map, the Ikeda map, and the Lozi map) to verify its effectiveness.

1. Introduction

Among a variety of mathematical characteristics of chaos, the existence of a horseshoe (by S.
Smale) has been recognized as the most important signature of chaos from geometrical point
of view. The horseshoe theory is based on the geometry of continuous maps on some subsets
of interest in state space. Here the images of the subsets can be computed reliably, so rigorous
investigation of chaos becomes possible even for systems without explicit solutions.

Although the theory provides a powerful tool for many rigorous studies of chaos, such
as estimating topological entropy, verifying existence of chaos, and revealing invariant sets of
chaotic attractors, it has not been used extensively like many other numerical methods, such
as computing Lyapunov exponents or bifurcation diagrams. Beside of reliable computation
based on interval arithmetic, another main reason is probably because it is not as convenient
to find horseshoes in practical systems as other nonrigorous methods. In recent years,
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much work has been done in providing more applicable criteria to guarantee the existence
of horseshoes [1–4]. The criteria have been applied to many dynamical systems [3, 5–7].
Recently, a progress wasmade in [8]which proposed amethod for finding horseshoes in two-
dimensional (2D) chaotic maps (or Poincaré maps). The method was implemented with A
MATLAB GUI program (http://www.mathworks.com/matlabcentral/fileexchange/14075)
to help readers to improve efficiency and has been successfully applied to some novel cases,
for example, a hyperchaotic spacecraft circuit [9], the fractional-order unified system [10],
and so forth. However, researches still need to find horseshoes manually with their own
experiences. So this paper proposes a simple algorithm to automatically detect the Smale
horseshoes in 2D chaotic maps.

The paper is organized as follows. Section 2 revisits the Smale horseshoe and tries
finding some key points; Section 3 introduces our algorithm as well as some classical
examples; Section 4 draws conclusions.

2. The Smale Horseshoe

First let us recall the notion of the Smale horseshoe. Consider a square S ⊂ R2 with four
vertices A, B, C, and D. The diffeomorphism

h : S −→ h(S) ⊂ R2 (2.1)

is defined as follows: First the map contracts the square S horizontally with a factor less than
1/2, stretches it vertically with a factor greater than 2, then folds it like a horseshoe, and puts
it back on the square S, as shown in Figure 1, where h sends A to A’, B to B′, C to C’, and D to
D’.

As shown in Figure 1, p is a period-1 saddle point, Ws and Wu are the corresponding
stable manifold {z : hn(z) → p as n → +∞} and unstable manifold {z : hn(z) → p ass n →
−∞} of p. Another intersection q is what Poincaré called a homoclinic point. The homoclinic
point here is transverse in the sense that the stable and unstable manifolds are not tangent at
q.

The main point in the Smale horseshoe is not the shape of the square S and its image
of under h, but the “crossing” relation that h(S) goes through S twice between AD and CB
while any point of A′B′ and C′D′ does not locate inside of S, which guarantees the existence
of the two disjoint blocks S0 and S1. So the Smale horseshoes can be used extensively in many
practical systems, where Swill no longer be a square.

3. The Algorithm for Finding the Smale Horseshoes in 2D Maps

For convenience, we use a subscript to denote the iteration times, for example, q1 = h(q),
q0 = q, q−1 = h−1(q), and use a combination of two points with a different cap to denote a
piece of a different manifold between them; for example, p̂q denotes the piece of Wu from p

to q, and
︸︸

qp denotes the piece of Ws from q to p.
The key to detecting a Smale horseshoe is the boundary of S. For the standard case

demonstrated in Figure 1, the process is very easy.Whenwe iterate each point of
︸ ︸

qq1 reversely

from q to q1,
︸ ︸

q−1q = h−1(
︸ ︸

qq1) must intersect p̂q three times at least. The first and last
intersection points are q−1 and q, respectively. We denote the second one with r−1. Let SW be
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Figure 1: Smale horseshoe.

a block with four sides: p̂q−1,
︸ ︸

q−1r−1, r̂−1q, and
︸︸

qp . The map h sends the sides to p̂q,
︸︸

qr, r̂q1,

and
︸ ︸

q1p, respectively. Here,
︸ ︸

q−1r−1 and r̂q1 intersect twice at s and s, respectively. It is obvious
that h(SW) and SW also satisfy the relation of the Smale horseshoe.

However, for a practical chaotic map f : R2 → R2, we will face the following five
difficulties. (1) There are many saddle points with all periods; we have to pick a proper
one to ensure the rest computation, but p in Figure 1 is only period-1. (2) Both Ws and Wu

have two branches, but Figure 1 only illustrates one of them. (3) The two eigenvalues of f
at p can be positive or negative, but Figure 1 only illustrates the positive one. (4) h has a
horseshoe, but f may not. (5) SW cannot be applied in rigorous studies of chaos because
there exist unavoidable numerical errors in practical computations. An algorithm which can
automatically detect a Smale horseshoe must handle the above difficulties.

So in our algorithm, we first find a transverse homoclinic point, then we locate SW

using the stable and unstable manifolds, and last we extend the boundary of SW outside to
get S. The algorithm is as follows with its detailed flowchart illustrated in Figure 2.

(1) Find a periodic point p at first. Supposing that p has period N, we compute the
eigenvalues of the Jacobian matrix of fN at p. If one eigenvalue locates in the inside
of the unit circle and the other one locates outside the unit circle, then p is a saddle
point of fN ; otherwise, we need to find another p and try again. If any of the
eigenvalues is negative, then we take I = 2; otherwise, I = 1. Let g = fIN ; then,
we find a transverse homoclinic point q by computing the corresponding stable
and unstable manifolds of p.

(2) Detect SW by finding a proper iteration time M and a proper intersection point r
with the following procedure. LetM = 1 and r = p, that is, r1−M = p. Iterate themap

g reversely for each point of
︸ ︸

q1−Mr1−M from q1−M to r1−M until
︸ ︸

q−Mr−M intersects
p̂q again (not q−M). If the new intersection point is not in r̂1−Mq, then set r−M to be
r1−M, M = M + 1 and try it again; otherwise, set r−M to be the point and compute
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Figure 2: The flowchart of the algorithm.

the image of r̂−Mq under the map gM. If r̂qM does not intersect the new
︸ ︸

q−Mr−M
twice, we increase M with step 1 and try it again; otherwise, we take the manifold

pieces p̂q−M,
︸ ︸

q−Mr−M, r̂−Mq, and
︸︸

qp as the boundary of SW .

(3) Extend the boundary of SW outward with an equally small distance of δ to get a
new boundary S. Then we compute the image of S under gM, and check whether
the condition of the Smale horseshoe is satisfied. Generally, the smaller the δ is,
the easier the condition can be satisfied; therefore we should decrease δ when the
condition fails.

Remark 3.1. The algorithm is based on a saddle with transversal homoclinic. Whether it is
fully automatic depends on the procedure to detect this saddle via the periodic orbit and
the manifolds computation in the first step. Fortunately, they are both fundamental problems
in numerical study of dynamical systems, and there are many good algorithms and software
packages in the literature to do this, for example, [11, 12]. So it can be handled by the detailed
control flow shown in Figure 2.



Discrete Dynamics in Nature and Society 5

Remark 3.2. The intersection of the stable manifold and the unstable manifold must be
transversal (not tangential), which guarantees that the algorithm will terminate in a finite
number of steps according to the general geometry described by Wiggins [13].

Nowwe demonstrate the ability and efficiency of this algorithm by finding horseshoes
of several classical chaotic maps in the following four examples.

Example 1 (the Duffing map). The Duffing map is a discrete version of the Duffing equation
[13]. It takes a point (xn, yn) in the plane and maps it to a new point given by

xn+1 = yn,

yn+1 = −bxn + ayn − y3
n,

(3.1)

where the two parameters usually set to a = 2.75 and b = 0.2 to produce chaotic behavior.
Numerical computation shows that the map has three fixed saddle points. Among them, the
Jacobian matrix at the origin has two positive eigenvalues, λ1 ≈ 0.07476 and λ2 ≈ 2.67524.
Clearly, I = N = 1, then we find a homoclinic point q = (1.6057128, 0.1206999). After a
process illustrated in Figure 3, where the solid lines (blue) indicate the stable manifold and
the dot lines (red) indicate the unstable manifold, we detect Sw at M = 3, and finally find a
horseshoe, as illustrated in Figure 4.

Example 2 (the Hénonmap). The Hénonmap, as a discrete model of the Lorenz system, is one
of the most studied dynamical systems that exhibit chaotic behavior. It maps a point (xn, yn)
in the plane to a new point given by

xn+1 = yn + 1 − ax2
n,

yn+1 = bxn,
(3.2)

where the two parameters canonically take a = 1.4 and b = 0.3 [14]. Our computation
shows that the map has two fixed saddle points. We randomly choose one, that is, p =
(0.6313545, 0.1894063). The corresponding Jacobian matrix has one positive eigenvalue of
λ1 ≈ 0.155946 and one negative eigenvalue of λ2 ≈ −1.92374. So N = 1 and I = 2. Then
we find a homoclinic point q = (0.584132, 0.101649). When M = 1, we find a horseshoe
illustrated in Figure 5.

Example 3 (the Ikeda map). The Ikeda map is a discrete-time dynamical system simplified
from a plane-wave model. The map is given by

xn+1 = 1 + u
(

xn cos tn − yn sin tn
)

,

yn+1 = u
(

xn sin tn + yn cos tn
)

,
(3.3)

where tn = 0.4 − 6/(1 + x2
n + y2

n) and u is a parameter [15]. The map has a strange
attractor for u = 0.9. Our computation only finds one fixed saddle point, that is,
p = (0.5327546, 0.2468968). The corresponding Jacobianmatrix has two negative eigenvalues,
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Figure 3: The process of detecting Sw.
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Figure 4: A Smale horseshoe found in the Duffing map.
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Figure 6: A Smale horseshoe found in the Ikeda map.

λ1 ≈ −0.33896 and λ2 ≈ −2.38969. Therefore, we set N = 1 and I = 2, and then find a
homoclinic point q = (0.5370113, −0.8444263). When M = 1, we find a horseshoe, illustrated
in Figure 6. Because the boundary of S is automatically generated by the algorithm, it appears
very different from other horseshoes in the literature where the boundaries usually are
polygons.

Example 4 (the Lozi map). The Lozi map is a two-dimensional map similar to the Hénon map
but with the term x2

n replaced by |xn|. It is given by the equations

xn+1 = 1 − a|xn| + yn,

yn+1 = bxn,
(3.4)

where the two parameters also take a = 1.4 and b = 0.3. Our computation shows that the map
has two fixed saddle points. However, the stable and unstable manifolds of each point do
not intersect. In order to find a homoclinic point, we try period two. Consequently, we only
find one period-2 obit, that is, p = (0.8571429, −0.0857143), and the corresponding Jacobian
matrix has two negative eigenvalues with λ1 ≈ −0.06975 and λ2 ≈ −1.2902. Obviously, N = 2
and I = 2; then, we find a homoclinic point q = (0.849499, −0.0943964). WhenM = 1, we find
a horseshoe, illustrated in Figure 7, finally.

Remark 3.3. The “crossing” relation between h(S) and S is the key to the existence of
horseshoe. The relation remains unchanged if we map h(S) and S to their images by a
homeomorphism. Therefore, if we find a horseshoe with a certain homoclinic point q, then we
have infinitly many horseshoes just by iterating Swith the system map f . On the other hand,
if we find a different homoclinic point, then we may get a different horseshoe, which may be
transformed from the original S under some iterations of the system map. For example, we
can get a new horseshoe of the Duffing map only by changing q to (0.1207000, 0.00902376).
A horseshoe similar to this one, for example, that in Figure 8, can be gotten by Figure 2 under
two time iterations of the Duffing map.
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Figure 7: A Smale horseshoe found in the Lozi map.
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Table 1: The time consumed for all examples in MATLAB. (The code is downloadable from http://www
.mathworks.com/matlabcentral/fileexchange/authors/27275).

Chaotic maps Saddle detection (S) Horseshoe detection (S) Total (S)

The Duffing map 0.43 2.96 3.39

The Hénon map 0.27 0.73 1.00

The Ikeda map 0.48 0.92 1.40

The Lozi map 1.20 3.24 4.44

4. Conclusions

We have proposed an algorithm for finding the Smale horseshoes in 2D chaotic maps.
Numerical studies for four classical maps suggest that this algorithm can effectively find
their horseshoes. Comparing with [8], this method is dedicated to the Smale horseshoes in
2D maps. The advantage of the algorithm is that horseshoes can be found automatically by
only a few given parameters, which is less dependent on researchers’ experience. In [8], one
has to find a horseshoe manually by a lot of trials, which may take hours sometime. The time
consumed for the above examples is shown in Table 1, which takes a few seconds at most. So
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the algorithm is more efficient. In the algorithm, each side of the boundaries is a curve taken
parallel along a stable or unstable manifold. This way, the existence of a Smale horseshoe is
guaranteed. From this point of view, the algorithm is more applicable than methods using
rectangles or polygons to compose boundaries, for example, [8].
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[14] M. Hénon, “A two-dimensional mapping with a strange attractor,” Communications in Mathematical
Physics, vol. 50, no. 1, pp. 69–77, 1976.

[15] S. Hammel, C. Jones, and J. Moloney, “Global dynamical behavior of the optical field in a ring cavity,”
Optical Society of America, Journal B: Optical Physics, vol. 2, pp. 552–564, 1985.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


