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This paper investigates the stability of stochastic delay differential systems with two kinds of
impulses, that is, destabilizing impulses and stabilizing impulses. Both the pth moment and almost
sure exponential stability criteria are established by using the average impulsive interval.When the
impulses are regarded as disturbances, a lower bound of average impulsive interval is obtained; it
means that the impulses should not happen too frequently. On the other hand, when the impulses
are used to stabilize the system, an upper bound of average impulsive interval is derived; namely,
enough impulses are needed to stabilize the system. The effectiveness of the proposed results is
illustrated by two examples.

1. Introduction

Impulsive dynamical systems have attracted considerable interest in science and engineering
in recent years because they provide a natural framework for mathematical modeling of
many real-world problems where the reactions undergo abrupt changes [1–3]. These systems
have been found to have important applications in various fields, such as control systems
with communication constraints [4], network system [5, 6], sampled-data systems [7, 8], and
mechanical systems [9]. On the other hand, impulsive control based on impulsive systems
can provide an efficient way to deal with plants that cannot endure continuous control inputs
[3]. In recent years, the impulsive control theory has been generalized from deterministic
systems to stochastic systems and has been shown to have extensive applications [10, 11].

Stability is one of the most important issues in the study of impulsive stochastic differ-
ential systems (see, e.g., [12–20]). When the continuous dynamical system is unstable, there
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is some literature that is concerned with the pth moment exponential stability with stabilizing
impulses. For example, several criteria on the global exponential stability and instability are
obtained in [17]. The pthmoment exponential stability is discussed in [18] by using the vector
Lyapunov functions. The authors in [19] investigated impulsive stabilization of stochastic
delay differential systems, and both pth moment and almost sure exponential stability criteria
are established by using the Lyapunov-Razumikhin method. Recently, both continuous dy-
namical stable system and continuous dynamical unstable system are studied in [20].

The average impulsive interval was proposed in [21], and it is useful to study the
synchronization problem of dynamical networks with destabilizing impulses (see, e.g., [21–
23]). The average impulsive interval can be used to control frequency of the impulsive
occurrence. When the continuous dynamical system is stable and the impulsive effects are de-
stabilizing, in order to maintain the stability of the system, the impulses should not happen
too frequently. Therefore, there should exist a lower bound; if the average impulsive interval
is not less than the bound, the stability can be maintained. On the other hand, when the con-
tinuous dynamical system is unstable, and the impulses are used to stabilize the unstable sys-
tem, there should exist enough impulses to stabilize the system, that is, the frequency of im-
pulsive occurrence should exceed a lower bound. Thus there exists an upper bound of the
average impulsive interval; if the average interval is less than the upper bound, the system is
stabilized by the impulses.

In this paper, by using the average impulsive interval, we investigate the pth moment
and almost sure exponential stability for stochastic delay differential systems with two kinds
of impulses, that is, destabilizing impulses and stabilizing impulses. When the continuous
dynamical system is stable, the lower bound of the average impulsive interval is obtained, by
which we can estimate how intensive impulsive disturbance the stable system can endure.
On the other hand, when the continuous dynamical system is unstable, the upper bound of
the average impulsive interval is derived. From this bound, we can estimate the minimum
impulsive frequency needed to stabilize the system. The effectiveness of the proposed results
is illustrated by two examples.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations and definitions. We establish several stability criteria for impulsive stochastic
delay differential systems in Section 3. In Section 4, two examples are given to illustrate the
effectiveness of our results.

2. Preliminaries

Throughout this paper, let (Ω,F, P) be a complete probability space with some filtration
{Ft}t�0 satisfying the usual conditions (i.e., the filtration is increasing and right continuous
while F0 contains all P -null sets). Let B = (B(t), t ≥ 0) be an m-dimensional Ft-adapted
Brownian motion.

For x ∈ R
d, |x| denotes the Euclidean norm of x. For −∞ < a < b < ∞, we say that a

function from [a, b] to R
d is piecewise continuous if the function has at most a finite number

of jumps discontinuous on (a, b] and continuous from the right for all points in [a, b). Given
τ > 0, PC([−τ, 0];Rd) denotes the family of piecewise continuous functions from [−τ, 0] to R

d

with norm ‖ϕ‖ = sup−τ≤θ≤0ϕ(θ). For p > 0 and t ≥ t0, let L
p

Ft
([−τ, 0];Rd) be the family of Ft-

adapted and PC([−τ, 0];Rd)-valued random variables ϕ such that E‖ϕ‖p < ∞. Let N = 1, 2, . . .
and R

+ = [0,+∞).



Discrete Dynamics in Nature and Society 3

In this paper, we consider the following impulsive stochastic delay differential sys-
tems:

dx(t) = f(t, xt)dt + g(t, xt)dB(t), t /= tk, t ≥ t0,

Δx(tk) = x(tk) − x
(
t−k
)
= I

(
tk, x

(
t−k
))
, k ∈ N,

xt0 = ξ(t0 + θ), −τ ≤ θ ≤ 0,

(2.1)

where {tk, k ∈ N} is a strictly increasing sequence such that tk → ∞ as (k → ∞) and
x(t−) = lims↑tx(s). xt is defined by xt(θ) = x(t + θ), −τ ≤ θ ≤ 0. The mappings I : R

+ ×
PC([−τ, 0];Rd) → R

d, f : R
+ × PC([−τ, 0];Rd) → R

d, and g : R
+ × PC([−τ, 0];Rd) → R

d×m

are all Borel-measurable functions.
As a standing hypothesis, f , g, and I are assumed to satisfy necessary assumptions

so that, for any ξ ∈ L
p

Ft0
([−τ, 0];Rd), system (2.1) has a unique global solution x(t) ∈

L
p

Ft
([−τ, 0];Rd). In addition, we suppose that f(t, 0) ≡ 0, g(t, 0) ≡ 0, and I(t, 0) ≡ 0 for all

t ≥ t0. Then system (2.1) admits a trivial solution x(t) ≡ 0.
Let C1,2(R+;Rd × [t0 − τ,∞)) denote the family of all nonnegative functions V (t, x)

on [t0 − τ,∞) × R
d that are continuously twice differentiable in x and once in t. For each

V ∈ C1,2(R+;Rd × [t0 − τ,∞)), define an operator LV : R
+ × PC([−τ, 0];Rd) → R

d for system
(2.1) by

LV (t, xt) = Vt(t, x) + Vx(t, x)f(t, xt) +
1
2
trace

[
gT (t, xt)Vxx(t, x)g(t, xt)

]
, (2.2)

where

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

(
∂V (t, x)
∂x1

, . . . ,
∂V (t, x)
∂xd

)
,

Vxx(t, x) =

(
∂2V (t, x)
∂xi∂xj

)

d×d
.

(2.3)

The purpose of this paper is to discuss the stability of system (2.1). Let us begin with
the following definitions.

Definition 2.1. The trivial solution of system (2.1) is said to be

(1) pth moment exponentially stable if for any initial data ξ ∈ L
p

Ft0
([−τ, 0];Rd), the

solution x(t) satisfies

E|x(t)|p ≤ CE‖ξ‖pe−λ(t−t0), (2.4)

where λ and C are positive constants independent of t0,

(2) almost exponentially stable if the solution x(t) satisfies

lim sup
t→∞

1
t
log|x(t)| < −λ, (2.5)

for any initial data ξ ∈ L
p

Ft0
([−τ, 0];Rd) and λ > 0.
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Definition 2.2. The average impulsive interval of the impulsive sequence {tk}k∈N
is equal to a

positive number Ta if there exists a positive integer N0 such that

t − t0
Ta

−N0 ≤ N(t, t0) ≤ t − t0
Ta

+N0, t ≥ t0, (2.6)

where N(t, t0) denotes the number of impulsive times of the impulsive sequence {tk}k∈N
on

the interval (t0, t).

3. Main Results

In this section, we will establish some stability criteria of stochastic delay differential system
with destabilizing impulses or stabilizing impulses. The first theorem addresses the case
where the continuous dynamics in the system (2.1) is stable. It is shown that under some
conditions the impulsive disturbance do not destroy the stability of system (2.1).

Theorem 3.1. Assume that there exist positive constants c1, c2, p, γ1 such that

(H1) c1|x|p ≤ V (t, x) ≤ c2|x|p,
(H2) for t ∈ [tk−1, tk), k ∈ N,

ELV
(
t, ϕ(θ)

) ≤ −γ1EV
(
t, ϕ(0)

)
(3.1)

provided ϕ ∈ L
p

Ft
([−τ, 0];Rd) satisfying that EV (t+θ, ϕ(θ)) ≤ qEV (t, ϕ(0)), θ ∈ [−τ, 0],

(H3) there exists a positive constant μ > 1 such that

EV (tk, x + I(tk, x)) ≤ μEV
(
t−k, x

)
, (3.2)

(H4) eγ1τ ≤ q, Ta > lnμ/γ1.

Then the trivial solution of system (2.1) is pth moment exponentially stable.

Proof. According to (H1), we see that

EV (t, x(t)) ≤ Me−γ1(t−t0), t ∈ [t0 − τ, t0], (3.3)

where M = c2E‖ξ‖p. We will show that

EV (t, x(t)) ≤ Me−γ1(t−t0), t ∈ (t0, t1). (3.4)

Suppose (3.4) is not true. Then there exist some t ∈ (t0, t1) such that EV (t, x(t)) > Me−γ1(t−t0).
Set t∗ = inf{t ∈ [t0, t1) : EV (t, x(t)) > Me−γ1(t−t0)}. It follows that t∗ ∈ [t0, t1) and EV (t∗, x(t∗)) =
Me−γ1(t

∗−t0). Moreover, there is a sequence {sm}m≥1 and sm ↓ t∗ such that

EV (sm, x(sm)) > Me−γ1(sm−t0), sm ∈ (t∗, t1). (3.5)
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Consequently,

EV
(
t∗ + θ, ϕ(θ)

) ≤ e−γ1θEV (t∗, x(t∗)) ≤ qEV (t∗, x(t∗)), (3.6)

which implies that

ELV
(
t∗, ϕ(θ)

)
< −γ1EV

(
t∗, ϕ(0)

)
. (3.7)

Noticing that the solution x(t) and functionals V , LV are continuous on [t∗, t1), thus we
obtain

ELV
(
t, ϕ(θ)

) ≤ −γ1EV
(
t, ϕ(0)

)
, t ∈ [t∗, t∗ + h], (3.8)

for sufficiently small h > 0. Using Itô’s formula, we derive

EV (t∗ + h) = EV (t∗) +
∫ t∗+h

t∗
ELV

(
s, ϕ(θ)

)
ds

≤ EV (t∗) +
∫ t∗+h

t∗
E
[−γ1V

(
s, ϕ(0)

)]
ds,

(3.9)

which yields that

EV (t∗ + h) ≤ Me−γ1(t
∗−t0)e−γ1h. (3.10)

This contradicts (3.5). Therefore (3.4) holds. Now, we assume that

EV (t, x(t)) ≤ Mμk−1e−γ1(t−t0), t ∈ [tk−1, tk). (3.11)

We will prove that

EV (t, x(t)) ≤ Mμke−γ1(t−t0), t ∈ [tk, tk+1). (3.12)

In view of (3.11) and (H3), we get (3.11) holds for t = tk. Suppose (3.12) is not true; then, there
exist some t ∈ (tk, tk+1) such that EV (t, x(t)) > Mμke−γ1(t−t0). Seting t∗ = inf{t ∈ [tk, tk+1) :
EV (t, x(t)) > Mμke−γ1(t−t0)}, we have t∗ ∈ [tk, tk+1) and EV (t∗, x(t∗)) = Mμke−γ1(t

∗−t0).
Moreover, there is a sequence {sm}m≥1 and sm ↓ t∗ such that

EV (sm, x(sm)) > Mμke−γ1(sm−t0), sm ∈ (t∗, tk+1). (3.13)

For −τ ≤ θ ≤ 0, there exists an integer j ∈ [0, k] such that t∗ + θ ∈ [tj , tj+1). Hence

EV (t∗ + θ) ≤ Mμje−γ1(t
∗+θ−t0) ≤ e−γ1θMμke−γ1(t

∗−t0) ≤ qEV (t∗ + θ). (3.14)
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Thus, from (H2), we have

ELV
(
t∗, ϕ(θ)

)
< −γ1EV

(
t∗, ϕ(0)

)
. (3.15)

Similarly, this can lead to a contradiction, which implies that (3.12) holds. FromDefinition 2.2,
we see that

t − t0
Ta

−N0 ≤ N(t, t0) ≤ t − t0
Ta

+N0, t ≥ t0. (3.16)

Consequently,

EV (t, x(t)) ≤ MμN(t,t0)e−γ1(t−t0) ≤ MμN0e((t−t0) lnμ)/Tae−γ1(t−t0) = MμN0e−λ(t−t0), (3.17)

where λ = γ1 − lnμ/Ta > 0. This completes the proof.

Remark 3.2. Theorem 3.1 gives the conditions under which the impulsive disturbances do
not destroy the stability of system (2.1). When the impulsive effects are destabilizing, the
impulses should not happen too frequently. Therefore, in order to maintain the stability of
continuous dynamical system, the average impulsive interval is used to control the impulsive
frequency.

Remark 3.3. In Theorem 3.1, the impulses are regarded as disturbance; therefore, the condition
μ > 1 is reasonable. It is worth pointing out that in Theorem 3.1, for arbitrary small ε and any
Ta > 0, the impulsive interval can be less than ε and simultaneously the average impulsive
intervals are not less than Ta. That is, high-density impulses are allowed to happen in a certain
interval, but we need low-density impulses to follow as a compensation.

In the following theorem, when the continuous dynamics in the system (2.1) is
unstable, it is shown that the system (2.1) can be stabilized by impulses.

Theorem 3.4. Let β = infk∈N{tk − tk−1} and there is a positive integer l such that (l − 1)β < τ ≤ lβ.
Assume that there exist positive constants c1, c2, p, γ2 such that

(H1) c1|x|p ≤ V (t, x) ≤ c2|x|p,
(H2) for t ∈ [tk−1, tk), k ∈ N,

ELV
(
t, ϕ(θ)

)
< γ2EV

(
t, ϕ(0)

)
(3.18)

provided ϕ ∈ L
p

Ft
([−τ, 0];Rd) satisfying that EV (t, ϕ(θ)) ≤ qEV (t, ϕ(0)), θ ∈ [−τ, 0],

(H3) there exists a positive constant μ < 1 such that

EV (tk, x + I(tk, x)) ≤ μEV
(
t−k, x

)
, (3.19)

(H4) qμl ≥ 1, Ta < − lnμ/γ2.

Then the trivial solution of system (2.1) is pth moment exponentially stable.
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Proof. In view of (H1), we obtain

EV (t, x(t)) ≤ Meγ2(t−t0), t ∈ [t0 − τ, t0], (3.20)

where M = c2E‖ξ‖peγ2τ . We will show that

EV (t, x(t)) ≤ Meγ2(t−t0), t ∈ [t0, t1). (3.21)

Suppose (3.21) is not true. Then there exist some t ∈ (t0, t1) such that EV (t, x(t)) > Meγ2(t−t0).
Set t∗ = inf{t ∈ (t0, t1) : EV (t, x(t)) > Meγ2(t−t0)}, which yields that EV (t, x(t)) ≤ Meγ2(t−t0) for
t ∈ [t0, t∗) and EV (t∗, x(t∗)) = Meγ2(t

∗−t0). Moreover, there is a sequence {sm}m≥1 and sm ↓ t∗

such that

EV (sm, x(sm)) > Meγ2(sm−t0), sm ∈ (t∗, t1). (3.22)

Noticing that

EV (t∗ + θ) ≤ Meγ2(t
∗+θ−t0) ≤ eγ2θEV (t∗, x(t∗)) ≤ qEV (t∗, x(t∗)), (3.23)

we derive

ELV
(
t∗, ϕ(0)

)
< γ2EV

(
t∗, ϕ(0)

)
. (3.24)

Since the solution x(t) and functionals V , LV are continuous on [t∗, t1), we see that

ELV
(
t, ϕ(θ)

) ≤ γ2EV
(
t, ϕ(0)

)
, t ∈ [t∗, t∗ + h] (3.25)

for sufficiently small h > 0. Using Itô’s formula, we obtain

EV (t∗ + h) = EV (t∗) +
∫ t∗+h

t∗
ELV

(
s, ϕ(θ)

)
ds

≤ EV (t∗) +
∫ t∗+h

t∗
E
[
γ2V

(
s, ϕ(0)

)]
ds,

(3.26)

which implies

EV (t∗ + h) ≤ Meγ2(t
∗−t0)eγ2h. (3.27)

This contradicts (3.22). Thus (3.21) holds. Now, we assume that

EV (t, x(t)) ≤ Mμk−1eγ2(t−t0), t ∈ [tk−1, tk). (3.28)
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We will prove that

EV (t, x(t)) ≤ Mμkeγ2(t−t0), t ∈ [tk, tk+1). (3.29)

Using (H2) and (3.28) implies that (3.29) holds for t = tk. Suppose (3.29) is not true. Then,
there exist some t ∈ [tk, tk+1) such that EV (t, x(t)) > Mμkeγ2(t−t0). Seting t∗ = inf{t ∈ [tk, tk+1) :
EV (t, x(t)) > Mμkeγ2(t−t0)}, we have t∗ ∈ [tk, tk+1) and EV (t∗, x(t∗)) = Mμkeγ2(t

∗−t0). Moreover,
there is a sequence {sm}m≥1 and sm ↓ t∗ such that

EV (sm, x(sm)) > Mμkeγ2(sm−t0), sm ∈ (t∗, tk+1). (3.30)

For −τ ≤ θ ≤ 0, there exists an integer j such that t∗ + θ ∈ [tj , tj+1), k − l ≤ j ≤ k; then,

EV (t∗ + θ) ≤ Mμk−leγ2(t
∗+θ−t0) ≤ μ−lMμkeγ2(t

∗−t0) ≤ qEV (t∗, x(t∗)). (3.31)

It follows that

ELV
(
t∗, ϕ(θ)

)
< γ2EV

(
t∗, ϕ(0)

)
. (3.32)

Similarly, this can lead to a contradiction, which implies that (3.29) holds.
According to (3.16), we obtain

EV (t, x(t)) ≤ MμN(t,t0)eγ2(t−t0) ≤ Mμ−N0e((t−t0) lnμ)/Taeγ2(t−t0) = Mμ−N0e−λ(t−t0), (3.33)

where λ = −(lnμ/Ta + γ2) > 0. This completes the proof.

Remark 3.5. Theorem 3.4 shows that an unstable stochastic delay differential system can be
successfully stabilized by impulses. The average impulsive interval is used to estimate the
impulsive frequency; namely, the impulsive frequency should exceed a lower bound so that
there exist enough impulses to stabilize the unstable continuous dynamical system.

In Theorem 3.4, we need to assume that qμl ≥ 1 and μ < 1, which means the
impulsive interval cannot be small enough. However, if system (2.1) is an impulsive
stochastic differential system without delay, then the system can still be exponential stability
when infk∈N{tk − tk−1} is extremely small.

Corollary 3.6. Let θ ≡ 0 and τ = 0 in system (2.1). Assume that there exist positive constants
c1, c2, p, γ2 such that

(H1) c1|x|p ≤ V (t, x) ≤ c2|x|p,
(H2) for t ∈ [tk−1, tk), k ∈ N,

ELV (t, x(t)) < γ2EV (t, x(t)), (3.34)
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(H3) there exists a positive constant μ < 1 such that

EV (tk, x + I(tk, x)) ≤ μEV
(
t−k, x

)
, (3.35)

(H4) lnμ/Ta + γ2 < 0.

Then the trivial solution of system (2.1) is pth moment exponentially stable.

Proof. The proof is similar to the proof given in Theorem 3.4, so we omit the detailed proof.

The following theorem shows that the trivial solution of system (2.1) is almost surely
exponentially stable, under some additional conditions.

Theorem 3.7. Assume that p ≥ 1, β = infk∈N{tk − tk−1} and there exists a positive integer l such that
(l − 1)β < τ ≤ lβ. Suppose that the conditions in Theorem 3.1 or Theorem 3.4 hold. Moreover, there
exists a constant L > 0, such that

E
(∣∣f

(
t, ϕ

)∣∣p +
∣∣g
(
t, ϕ

)∣∣p +
∣∣I
(
t, ϕ

)∣∣p) < L sup
−τ≤θ≤0

E
∣∣ϕ(θ)

∣∣p. (3.36)

Then the trivial solution of system (2.1) is almost surely exponentially stable.

Proof. By Theorem 3.1 or Theorem 3.4, we derive that the trivial solution of system (2.1) is pth
moment exponentially stable. Therefore, there exists a positive constant M1 such that

E|x(t)|p ≤ M1e
−λ(t−t0). (3.37)

It is obvious that

E

(

sup
0≤s≤τ

|x(t + s)|p
)

≤ 4p−1
(

E|x(t)|p + E

(∫ t+τ

t

∣∣f(s, xs)
∣∣ds

)p

+ E

∣∣∣∣∣
sup
0≤s≤τ

∫ t+s

t

g(u, xu)dB(u)

∣∣∣∣∣

p

+E

∣∣∣∣∣

∑

t≤tk≤t+τ
I
(
t−k, x

(
t−k
))
∣∣∣∣∣

p)

.

(3.38)

Combining the Hölder inequality with (3.36) and (3.37) implies that

E

∫ t+τ

t

∣∣f(s, xs)
∣∣pds ≤ Lτp−1

∫ t+τ

t

sup
−τ≤θ≤0

E|x(s + θ)|pds

≤ M1Lτ
pe−λ(t−τ−t0).

(3.39)
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By virtue of the Burkholder-Davis-Gundy inequality, (3.36), and (3.37), we have

E

(

sup
0≤s≤τ

∫ t+s

t

∣
∣g(u, xu)

∣
∣dB(u)

)p

≤ Lτp/2−1C
(
p
)
∫ t+τ

t

sup
−τ≤θ≤0

E|x(s + θ)|pds

≤ M1C
(
p
)
Lτp/2e−λ(t−τ−t0),

(3.40)

where C(p) is a positive constant depending on p only. Thanks to (3.36) and (3.37), we see
that

E

(
∑

t≤tk≤t+τ

∣
∣I
(
t−k, x

(
t−k
))∣∣

)p

≤ lpE sup
t≤tk≤t+τ

∣
∣I
(
t−k, x

(
t−k
))∣∣p

≤ lpLM1e
−λ(t−τ−t0).

(3.41)

Substituting (3.39)–(3.41) into (3.38) gives that

E

(

sup
0≤s≤τ

|x(t + s)|p
)

≤ M2e
−λt, (3.42)

where M2 is a positive constant. Then for an arbitrary ε ∈ (0, λ) and n ∈ N, we derive

P

(

ω : sup
0≤s≤τ

|x(nτ + s)|p > e−(λ−ε)nτ
)

≤ M2e
−εnτ . (3.43)

Using the Borel-Cantelly lemma, we see that there exists an n0(ω) such that for almost all
ω ∈ Ω, n ≥ n0(ω),

sup
0≤s≤τ

|x(t + s)|p ≤ e−(λ−ε)nτ , (3.44)

where nτ ≤ t ≤ (n + 1)τ . It follows that

lim sup
n→∞

log supnτ≤t≤(n+1)τ |x(t)|
(n + 1)τ

≤ −(λ − ε)
p

, a.s. (3.45)

Consequently,

lim sup
t→∞

log|x(t)|
t

≤ −(λ − ε)
p

, a.s. (3.46)

Let ε → 0. Then the result follows.
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Figure 1: Impulses of Example 4.1.

4. Numerical Examples

In this section, two numerical examples are given to show the effectiveness of themain results
derived in the preceding section.

Example 4.1. Consider an impulsive stochastic delay differential system as follows:

dx(t) = [−x(t) + 0.125x(t − 0.5)]dt + 0.5x(t − 0.5)dB(t), t /= tk, t ≥ t0,

Δx(tk) = 0.2x
(
t−k
)
, k ∈ N,

x(t0) = 1.2.

(4.1)

Choosing p = 2, V (t, x) = x2, c1 = c2 = 1, and q = 4/3 in Theorem 3.1, then we have

ELV (t, x) = −2E|x(t)|2 + 0.25Ex(t)x(t − 0.5) + 0.25E|x(t − 0.5)|2

≤ −1.5E|x(t)|2 + 3q
4
E|x(t)|2 = −0.5E|x(t)|2.

(4.2)

Seting γ1 = 0.49, then ELV (t, x) < −γ1EV (t, x). It is clear that μ = 1.44, eγ1τ = 1.278 < q = 4/3,
Ta ≥ lnμ/γ1 = 0.744. For all ε > 0, we let t2k−1 − t2(k−1) = 1.488, t2k − t2k−1 = ε, k ∈ N. Thus, by
Theorem 3.1 the trivial solution of system (4.1) is pth moment exponential stability. Set ε =
0.05, which yields l = 10 in Theorem 3.7. Obviously, for system (4.1), condition (3.36) holds.
Then by Theorem 3.7, the trivial solution of system (4.1) is also almost surely exponential
stability.

Figure 1 describes the destabilizing impulsive sequence in the system (4.1) when ε =
0.05. It can be seen from Figure 2 that the destabilizing impulses do not destroy the stability
of system (4.1).
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Figure 2: Impulsive disturbance of Example 4.1.

Example 4.2. Consider an impulsive stochastic delay differential system as follows:

dx(t) = 0.25x(t − 0.2)dt + 0.5x(t − 0.2)dB(t), t /= tk, t ≥ t0,

Δx(tk) = −0.5x(t−k
)
, k ∈ N,

x(t0) = 1.2.

(4.3)

Clearly, for system (4.3), condition (3.36) holds. Let p = 2, V (t, x) = x2, c1 = c2 = 1, and q = 4
in Theorem 3.4. Then we have

ELV (t, x) = 0.5Ex(t)x(t − 0.2) + 0.25E|x(t − 0.2)|2

≤ E|x(t)|2 + 0.75qE|x(t − 0.2)|2

≤ 4E|x(t)|2.

(4.4)

Seting γ2 = 4.1, then ELV (t, x) < γ2EV (t, x). It follows that μ = 0.25, Ta < − lnμ/γ2 = 0.338.
Thus, we can choose t2k−1 − t2(k−1) = 0.2, t2k − t2k−1 = 0.45, k ∈ N, which follows Ta = 0.325,
l = 1, and qμl = 1 ≥ 1. Then by Theorems 3.4 and 3.7, the trivial solution of system (4.3) is pth
moment and almost sure exponential stability.

The stabilizing impulsive sequence in the system (4.3) is described in Figure 3. It can be
seen from Figure 4 that unstable continuous dynamics in the system (4.3) can be successfully
stabilized by the impulses.
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Figure 3: Impulses of Example 4.2.
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Figure 4: Impulsive control of Example 4.2.

5. Conclusion

The pth moment and almost sure exponential stability are investigated in this paper. By
using the average impulsive interval, several sufficient conditions are established for stability
of stochastic delay differential systems with destabilizing impulses or stabilizing impulses.
Finally, two numerical simulation examples are offered to verify the effectiveness of the main
results.
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