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This paper considers a rumor transmission model with incubation that incorporates constant
recruitment and has infectious force in the latent period and infected period. By carrying out a
global analysis of the model and studying the stability of the rumor-free equilibrium and the
rumor-endemic equilibrium, we use the geometric approach for ordinary differential equations
which is based on the use of higher-order generalization of Bendixson’s criterion. It shows that
either the number of rumor infective individuals tends to zero as time evolves or the rumor
persists. We prove that the transcritical bifurcation occurs at R0 crosses the bifurcation threshold
R0 = 1 by projecting the flow onto the extended center manifold. Since the rumor endemic level
at the equilibrium is a continuous function of R0, as a consequence for successful eradication of
the rumor, one should simply reduce R0 continuously below the threshold value 1. Finally, the
obtained results are numerically validated and then discussed from both the mathematical and the
sociological perspectives.

1. Introduction

Rumor is an important form of social interaction, and its spreading has a significant impact
on human lives. Hayakawa [1] defines rumor as a kind of social phenomenon that a similar
remark spreads on a large scale in a short time through chains of communication. Shibutani
[2] regards rumor as collective problem solving, in which people “caught” in ambiguous
situations try to caught “construe a meaningful interpretation. . .by pooling their intellectual
resources.” Rumors may contain confidential information about public figures or news which
concerns important social issues; they can shape the public opinion of a society or a market
by affecting the individual beliefs of its members [3], and its spreading plays a significant
role in a variety of human affairs.
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Actually, the population dynamics underlying the diffusion of ideas holds many
qualitative similarities to those involved in the spread of infections. In this paper, we apply
a model similar to that used in epidemiology to the “transmission of a rumor.” To analyze
the spreading and cessation of them, rumor transmissions are often modeled as social
contagion processes. Pioneering contributions to their modeling are based on epidemiological
models [4–6]. Therefore, the tracks of works on rumor spreading are closely relevant to
epidemiological models [7–9], which involve the spread of a disease and the removal of
infectious individuals. These models typically divide a population into classes that reflect
the epidemiological status of individuals (e.g., susceptible, infected, recovered, etc.), who
in turn transit between classes via mutual contact at given average rates. In this way, the
models can capture average disease progression by tracking the mean number of people who
are infected, who are prone to catch the disease, and who have recovered over time.

In this paper, we apply models similar to those used in epidemiology to the spread of
rumor. By the term “rumor,” we refer generally to any concept that can be transmitted from
person to person. It may refer to uncertain information, which takes time to discern between
true and false, but it may also be amore fickle piece of information such as a colloquialism or a
piece of news.What is important is that it is possible to tell if someone has adopted the rumor,
understands and remembers it, and is capable of and/or active in spreading it to others.

The classical models for the spread of rumor were introduced by Daley and Kendall
[10] and Maki and Thompson [11], and then many researchers have used the model
extensively in the past for their quantitative studies [12–19]. In classical models, people are
divided into three classes: ignorants (those not aware of the rumor), spreaders (those who
are spreading it), and stiflers (those who know the rumor but have ceased communicating
it after meeting somebody already informed), and they interact by pairwise contacts. In
the Daley-Kendall (D-K) model, spreader-ignorant contact will convert the ignorant to
spreader; spreader-spreader contact will convert both spreaders to stiflers; spreader-stifler
contact will stifle the spreader. In the Maki-Thompson (M-T) model, the rumor is spread by
directed contact of the spreaders with other individuals. Hence, when a spreader contacts
another spreader, only the initiating one becomes a stifler. Bettencourt et al. [9] have
worked on the spreading process of multiple varying ideas. Huang [14] studied the rumor
spreading process with denial and skepticism, two models are established to accommodate
skeptics. Kawachi [18] proposed and mathematically analyzed deterministic models for
rumor transmission, which is extension of the deterministic D-K model. In Kawachi’s other
extension model [19], he and his cooperators studied a flexible spreader-ignorant-stifler
model where spreader-to-ignorant and stifler-to-spreader transitions are possible, while
Lebensztayn and Machado [20] investigated the case where a new uninterested class of
people exists. Pearce [21] and Gani [22] analyzed the probability generating functions in
the stochastic rumor models by means of block-matrix methodology. In addition, Dickinson
and Pearce [23] studied stochastic models for more general transient processes including
epidemics and economics. In fact, independently of this series of studies, deterministic
models for rumor transmission have been studied sporadically.

A number of studies proposed more complex models of rumor spreading based
on several classical models of social networks including homogeneous networks, Erdos-
Renyi (ER) random graphs, uncorrelated scale-free networks, and scale-free networks with
assortative degree correlations [24–33], in particular those which were mediated by the
internet, such as “virtual” communities and email networks. Those extended models include
a general class of Markov processes for generating time-dependent evolution, and studies
of the effects of social landscapes on the spread, either through Monte Carlo simulations
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over scale-free [34] or small-world [24] networks, but major shortcomings of these models
were that either they neglected the topological characteristics of social networks or some of
these models were not suitable for large-scale spreading process. Actually, Moreno et al. [34]
studied the stochastic D-K model on scale-free networks and insisted that the uniformity of
networks had a significant impact on the dynamic mechanism of rumor spreading. Isham
et al. [26] studied the final size distribution of rumors on general networks. Sudbury [27]
studied dynamic mechanisms of information transmission on social networks and insisted
that the dynamic behavior of rumor spreading matched SIR model. As for applications,
Zanette [24, 28] and Buzna et al. [31] established rumor spreading model on the small-
world networks and found the existence of rumor spreading critical value. Liu et al. [32]
revealed that the final percentage of population who heard the rumor decreases with a
network structure parameter p; this idea was continually studied in another paper [33].
Zhao et al. [35] considered forgetting mechanism and researched rumor spreading on Live
Journal.

The major difference between epidemiological models and rumor spreading models
is the removal mechanism. During the past decades, various mathematical models for
the propagation of a rumor within a population have been developed. Beyond obvious
qualitative parallels, there are also important differences between the spread of rumor and
diseases. The spread of rumor, unlike a disease, is usually an intentional act on the part of
the transmitter and/or the adopter. A core element associated with the rumor always lacks
effective verification, and some rumors that take time to identify, such as those involved in
the confirmation of the news. One should take active efforts to discern between true and false
and decide whether to transmit or not.

In information times, the network in people’s daily life plays an increasingly important
role, and people can read information from many sources. Because network information
has always suffered from a lack of credibility, people cannot believe it immediately, but are
able to believe news from their friends and relatives more easily. Especially, rumors mostly
come from network and then spread in real life mouth by mouth. Many rumors come from
network and are hidden in the depths of one’s heart for a period of time before he/she
becomes a spreader or a stifler in real life. Sometimes, many people would be better to
believe that it exists than it does not. Actually, some people would not distinguish uncertain
information from right and wrong; their interest is an important factor for deciding whether
to spread rumor or not. So the classical rumor transmission model needs to be improved and
perfected.

In this paper, we apply a general model, inspired by epidemiology and informed
by our knowledge of the sociology of the spread dynamics, to the diffusion of the rumor.
The paper deals with the rumor transmission model with incubation and varying total
population. We provide a more detailed and realistic description of rumor spreading process
with combination of incubation mechanism and the D-K model of rumor. The paper is
organized as follows. In the next section, we review the D-K model and introduce a model
with homogeneity in susceptibility and transmission. In Section 3, we introduce our general
rumor transmission model with incubation and having constant immigration and discuss
the existence of equilibrium. In Section 4, we carry out a qualitative analysis of the model.
Stability conditions for the rumor-free equilibrium and the endemic equilibrium are derived,
respectively. In Section 5, we draw simulations about the model and discuss the implications
of these results and, from this, conclude what parameters have impact on each system so that
we can come up with suggestions for possible preventative or control methods. Concluding
remarks are given in Section 6.
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2. Review of Daley-Kendall Framework

Daley and Kendall published a paper aiming to stochastically model the spread of rumors.
They considered a closed homogeneously mixing population ofN individuals. At any time,
an individual can be classified as one of three categories: X(t) denotes those individuals
who are ignorant of the rumor; Y (t) Denotes those individuals who are actively spreading
the rumor; Z(t) denotes those individuals who know the rumor but have ceased spreading
it. For all t, X(t) + Y (t) + Z(t) = N. They referred to these three types of individuals
as ignorants, spreaders, and stiflers, respectively [10]. The rumor is propagated through
the closed population by contact between ignorants and spreaders, following the law of
mass action. They assume that any spreader involved in any pairwise meeting “infects” the
“other.” If the “other” is an ignorant, then he/she will become a spreader; if the “other” is a
spreader or a stifler, then the spreader(s) will become a stifler(s). A stifler will never, under
any circumstances, infect a susceptible because of the definition of a spreader. Stiflers do not
transmit the rumor.

Next, Cintron-Arias [36] proposed the following deterministic version of the D-K
model:

dX

dt
= −βXY

N
,

dY

dt
= β

XY

N
− λY (Y + Z)

N
,

dZ

dt
= λ

Y (Y + Z)
N

.

(2.1)

This model has been extremely useful in the interpretation of the D-K because some
analytical analysis can be done on this deterministic version of themodel. Still, the D-Kmodel
makes some other assumptions. There is no inflow to the susceptible class or outflow from
any of the classes. The model also assumes that everybody should be spreader immediately
after they learn the rumor, and the process of thinking is virtually ignored. Along these same
lines, their model does not take into account the personality of the person who is spreading
or receiving the rumor. And finally, it does not allow for people who are “ignorant” to hear
the rumor and then choose not to spread it. Still, their model was extremely innovative and
is still very useful in the modeling and analysis of rumor spreading.

3. General Rumor Transmission Model with Incubation and
Having Constant Immigration

In the following, we will concentrate on the model, based on “homogeneous mixing” with
state variables as functions of time, which is more general than the XYZ type model and
needs to be studied to investigate the role of incubation in rumor transmission. However, the
transmission requires some time for individuals to pass from the infected to the spread state,
and we assume that an ignorant individual first goes through a latent period (and is said to
become exposed or in the class W) after infected before becoming spreaders or stiflers, and
resulting model is of XWYZ type.

We divide the population into four classes: the ignorant class, the incubation class,
the spreader class, and the stifler class. Each population densities at time t, respectively,
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Figure 1: The basic scheme of population dynamics models for the spread of rumor.

are denoted by X(t), W(t), Y (t), and Z(t), each of which we call rumor class. Those who
belong to the ignorant class, whom we call ignorants, do not know about the rumor. Those
who belong to the incubation class, whom we call incubators, know about the rumor and
require active effort to discern between true and false. In fact, someone would not distinguish
uncertain information from right and wrong; their interest is an important factor for deciding
whether to spread rumor or not, so incubation class also has infectious force. It is important
to note, though, that this infectious force is only valid for the ignorant but not for all, since
the incubator is not entirely dissuasive. Over time, someone firmly believes the rumor and
becomes spreader, others do not believe it and become stiflers. Those who belong to the
spreader class, whom we call spreaders, know about the rumor and spread it actively. Those
who belong to the stifler class, whomwe call stiflers, know about the rumor and do not spread
it. The total population size at time t is denoted byN(t), withN = X +W +Y +Z. We assume
that no transition of rumor class happens unless a spreader and incubator contact someone,
and there exists infectious force in the latent period and infected period. The transfer diagram
is depicted in Figure 1.

For the meantime, and we assume the rumor is “constant,” that is, the same remark is
transmitted at all times. First, we consider the transmission of a constant rumor with variable
population size, we assume that the transmission of a constant rumor in a population with
constant immigration and emigration. All recruitment is into the ignorant class and occurs at
a constant Λ, and the emigration rate is μ. Thus, the maximum value that 1/μ can take is the
average lifespan of the rumor within a generation of researchers in the relevant community.
We assume that Λ, μ are positive constants, and that emigration is independent of rumor
class. When a spreader or incubator contacts an ignorant, the spreader or incubator transmits
the rumor at a constant frequency, and the ignorant gets to know about it and requires time to
discern between true and false and becomes rumor latent. Then the incubator does not always
become a spreader, but may doubt its credibility and consequently become a stifler. And so,
we assume that β10XYΔt/N and β20XWΔt/N are ignorants and incubators that change their
rumor class and become exposed during the small interval (t, t + Δt), respectively, where β10
and β20 are positive constant numbers representing the product of the contact frequency and
the probability of transmitting the rumor.We assume that α0W incubators change their rumor
class and become spreaders at a constant rate θ ∈ (0, 1], and others become stiflers at rate 1−θ,
where α0 is a positive constant number representing the proportion of incubators change
their rumor-class. When two spreaders contact with each other, both of them transmit the
rumor at a constant frequency. Hearing it again and again, the spreader gets bored, gradually
loses interest in it, and consequently becomes a stifler. And so, we assume that λ0Y 2Δt/N
spreaders become stiflers during the small interval (t, t + Δt), where λ0 is a positive constant
number. When a spreader contacts a stifler, the spreader transmits the rumor at a constant
frequency, and after hearing it, the spreader tries to remove it, because the stifler shows no
interest in it or denies it. As a result, the spreader becomes a stifler. And so, we assume that
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λ0YZΔt/N spreaders become stiflers during the small interval (t, t + Δt). Any spreader may
automatically lose interest in spreading, and it becomes a stifler at rate γ0.

The model is described by the following system of differential equations:

dX

dt
= Λ − β10XY

N
− β20XW

N
− μX,

dW

dt
= β10

XY

N
+ β20

XW

N
− α0W − μW,

dY

dt
= θα0W − λ0 (Y + Z)Y

N
− γ0Y − μY,

dZ

dt
= (1 − θ)α0W + λ0

(Y + Z)Y
N

+ γ0Y − μZ.

(3.1)

Since the total population size,N(t) satisfies the equation dN/dt = Λ − μN, andN(t)
varies over time and approaches a stable fixed point,Λ/μ, as t → ∞. We can obtain analytical
results by considering the limiting system of (3.1) in which the total population is assumed
to be constantN = N0 = Λ/μ (similar as in [37]). Let x = X/N, y = Y/N, z = Z/N, τ = μt,
β1 = β10/μ, β2 = β20/μ, α = α0/μ, λ = λ0/μ, and γ = γ0/μ. It is easy to verify that x,w, y, and
z satisfy the system of differential equations

dx

dτ
= 1 − β1xy − β2xw − x,

dw

dτ
= β1xy + β2xw − αw −w,

dy

dτ
= θαw − λ(y + z

)
y − γy − y,

dz

dτ
= (1 − θ)αw + λ

(
y + z

)
y + γy − z,

(3.2)

subject to the restriction x + w + y + z = 1. Also, we rewrite τ as t, determining z from
z = 1 − x −w − y.

Then the reduced limiting dynamical system is given by

dx

dt
= 1 − β1xy − β2xw − x � f1

(
x,w, y

)
,

dw

dt
= β1xy + β2xw − αw −w � f2

(
x,w, y

)
,

dy

dt
= θαw − λ(1 − x −w)y − γy − y � f3

(
x,w, y

)
.

(3.3)
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Letting the right side of each of the differential equations be equal to zero in system
(3.3) gives the equation

f1
(
x,w, y

)
= 1 − β1xy − β2xw − x = 0,

f2
(
x,w, y

)
= β1xy + β2xw − αw −w = 0,

f3
(
x,w, y

)
= θαw − λαwy − γy − y = 0.

(3.4)

The feasible region for (3.4) is R3
+, and we study (3.4) in closed set

A =
{(
x,w, y

) ∈ R3
+ | 0 ≤ x +w + y ≤ 1

}
, (3.5)

where R3
+ denotes the nonnegative cone and its lower dimensional faces. It can be verified

thatA is positively invariant with respect to (3.3). We denote by ∂A and Å the boundary and
the interior of A in R3

+, respectively.
Adding the first and second equations of system (3.4), and then substituting it into the

last equation of system (3.4), we have

x = 1 − (α + 1)w,

y =
θαw

λαw +
(
γ + 1

) .
(3.6)

Substituting (3.6) into the second equation of (3.4),w satisfies the following equation:

[

β1
θαw

λαw +
(
γ + 1

) + β2w

]

[1 − (α + 1)w] = (α + 1)w. (3.7)

So the system (3.4) always has the rumor-free equilibrium(RFE) P0 = (1, 0, 0) and
unique rumor-endemic equilibrium(REE) P ∗ = (x∗, w∗, y∗), where w yields

aw∗2 + bw∗ + c = 0 (3.8)

with a = −β2λα(α+1); b = β2λα−(α+1)[β1θα+β2(γ+1)+λα]; c = [β1θα+β2(γ+1)]−(α+1)(γ+1) =
(α + 1)(γ + 1)[R0 − 1], where R0 = (β1θα + β2(γ + 1))/((α + 1)(γ + 1)).

If β2 > 0, so that (3.8) is quadratic, and if R0 > 1, then we have c > 0, and there is
a unique positive real root of (3.8), and thus, it is a unique rumor-endemic equilibrium. If
R0 ≤ 1, it implies that β2 ≤ (α + 1) − (β1θα/(γ + 1)) < (α + 1), then

b = β2λα − (α + 1)
[
β1θα + β2

(
γ + 1

)
+ λα

]
= λα

[
β2 − (α + 1)

] − (α + 1)
[
β1θα + β2

(
γ + 1

)]
< 0.
(3.9)
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There is no positive solution for above quadratic (3.8) because the a < 0 and c <
0, which means that the model has no positive equilibrium in this case. These results are
summarized below.

(i) If R0 ≤ 1, then there is no positive equilibrium.

(ii) If R0 > 1, then there is a unique positive equilibrium P ∗ = (x∗, w∗, y∗).

In the next section, we will study the property of these equilibria and perform a global
qualitative analysis of system (3.3).

4. Mathematical Analysis

The reduced limiting dynamical system (3.3) with initial conditions: x(0) = x0 > 0, w(0) =
w0 > 0, and y(0) = y0 > 0, and the local stability for both the equilibria are established as
follows.

Theorem 4.1. The rumor-free equilibrium (RFE) P0 is

(i) locally asymptotically stable if R0 < 1,

(ii) unstable (saddle point) if R0 > 1,

(iii) a transcritical bifurcation occurs at R0 = 1.

Proof. The variational matrix of system (3.3) at DFE is given by

J(P0) =

⎛

⎜⎜
⎝

−1 −β2 −β1
0 β2 − (α + 1) β1

0 αθ −(γ + 1
)

⎞

⎟⎟
⎠. (4.1)

The variational matrix leads to the characteristic equation

(
ϕ − 1

)[−ϕ2 +
(
β2 −

(
α + γ + 2

))
ϕ + (α + 1)

(
γ + 1

)
(R0 − 1)

]
= 0. (4.2)

It follows that one eigenvalue is negative, that is, ϕ1 = −1. Clearly, if R0 < 1 and β2 < (α + 1) −
(β1θα/(γ + 1)) < (α + γ + 2), then the other two eigenvalues of J(P0) have negative real parts.
If R0 > 1, then two eigenvalues of J(P0) have negative real parts, and one eigenvalue has
positive real part. Hence, RFE is locally asymptotically stable if R0 < 1 and unstable (saddle
point) if R0 > 1. The proof is completed for parts (i) and (ii).

Observing that

R0 = 1 ⇐⇒ θ =

(
α + 1 − β2

)(
γ + 1

)

β1α
= θ∗, (4.3)

it follows that the RFE P0 is locally stable when θ < θ∗, whereas it loses its stability when
θ > θ∗. As a consequence, the critical value θ = θ∗ is a bifurcation value. Next step is to
investigate the nature of the bifurcation involving the rumor-free equilibrium P0 at θ = θ∗ (or
equivalently at R0 = 1).
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In the following, we will make use of Theorem A.1, summarized in the appendix,
which has been obtained in [38] and is based on the use of the center manifold theory [39].
Theorem A.1 prescribes the role of the coefficients m and n of the normal form representing
the system dynamics on the central manifold, in deciding the direction of the transcritical
bifurcation occurring at φ = 0 (see Appendices A and B and the notation defined therein).
More precisely, ifm < 0 and n > 0, then the bifurcation is forward.

We apply Theorem A.1 to show that system (3.3) may exhibit a forward bifurcation
when θ = θ∗. First of all, observe that the eigenvalues of the matrix

J(P0, θ∗) =

⎛

⎜
⎜
⎜
⎜
⎝

−1 −β2 −β1
0 β2 − (α + 1) β1

0 α

(
α + 1 − β2

)(
γ + 1

)

β1α
−(γ + 1

)

⎞

⎟
⎟
⎟
⎟
⎠

(4.4)

are given by

ϕ1 = −1, ϕ2 = β2 −
(
α + γ + 2

)
= −(γ + 1

) − β1θα
(
γ + 1

) , ϕ3 = 0. (4.5)

Thus, ϕ3 = 0 is a simple zero eigenvalue, and the other eigenvalues are real and negative.
Hence, when θ = θ∗ (or equivalently when R0 = 1), the RFE P0 is a nonhyperbolic
equilibrium: the assumption (I) of Theorem A.1 is then verified.

Now denote by ω = (ω1, ω2, ω3)
T a right eigenvector associated with the zero

eigenvalue ϕ3 = 0. It follows

−ω1 − β1ω3 − β2ω2 = 0,
(
β2 − α − 1

)
ω2 + β1ω3 = 0,

α

(
α + 1 − β2

)(
γ + 1

)

β1α
ω2 −

(
γ + 1

)
ω3 = 0,

(4.6)

so that

ω = (ω1, ω2, ω3)T =
(
− β1(α + 1)
α + 1 − β2 ,

β1
α + 1 − β2 , 1

)T
. (4.7)

Furthermore, the left eigenvector η = (η1, η2, η3) satisfying η ·ω = 1 is given by

−η1 = 0,

−η1β2 − η2
(
α + 1 − β2

)
+ η3α

(
α + 1 − β2

)(
γ + 1

)

β1α
= 0,

−η1β1 + η2β1 − η3
(
γ + 1

)
= 0,

(4.8)
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so that

η =
(
η1, η2, η3

)
=

(

0,

(
α + 1 − β2

)(
γ + 1

)

β1
(
α + γ + 2 − β2

) ,
α + 1 − β2

α + γ + 2 − β2

)

. (4.9)

The coefficientsm and n defined in Theorem A.1,

m =
3∑

k,i,j=1

ηkωiωj
∂2fk

∂ωi∂ωj
(P0, θ∗), n =

3∑

k,i=1

ηkωi
∂2fk
∂ωi∂θ

(P0, θ∗), (4.10)

may be now explicitly computed. Taking into account system (3.3) and considering only the
nonzero components of the left eigenvector v, it follows that

m = η2
[
2β1ω1ω3 + 2β2ω1ω2

] − 2λαη3ω1ω2 = − 2β1Φ
(
α + 1 − β2

)(
α + γ + 2 − β2

) ,

n = αη3ω2 =
β1α

α + γ + 2 − β2 ,
(4.11)

whereΦ = α2(1+γ +λ)+α(2+2γ +λ−β2λ)+γ +1 = (α+1)2(γ +1)+λα(α+1−β2). Since R0 = 1,
β2 = (α+ 1)− (β1θα/(γ + 1)) < (α+ 1), andΦ > 0, then the coefficient n is always positive, and
the coefficientm is negative.

Now, by applying Theorem A.1, we may conclude that system (3.3) exhibits a
transcritical bifurcation at R0 = 1.

Theorem 4.2. If R0 > 1, the rumor-endemic equilibrium (REE) P ∗ of the system (3.3) is locally
asymptotically stable.

Proof. The Jacobian matrix at REE P ∗ is given by

J(P ∗) =

⎛

⎜⎜
⎝

−1 − β1y∗ − β2w∗ −β2x∗ −β1x∗

β1y
∗ + β2w∗ β2x

∗ − (α + 1) β1x
∗

λy∗ αθ + λy∗ −λ(1 − x∗ −w∗) − (γ + 1
)

⎞

⎟⎟
⎠. (4.12)

Its characteristic equation is det(ϕE − J(P ∗)) = 0, where E is the unit matrix and

x∗ = 1 − (α + 1)w∗, y∗ =
θαw∗

λαw∗ +
(
γ + 1

) . (4.13)
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So the characteristic equation becomes ϕ3 + C1ϕ
2 + C2ϕ + C3 = 0, where

C1 =
1
x∗ +

β1x
∗y∗

w∗ +
θαw∗

y∗ ,

C2 =
β1y

∗

w∗ + β1(1 − x∗) +
θαw∗

x∗y∗ ,

C3 =
(
β1θα + β2

θαw∗

y∗

)
(1 − x∗) + λβ1x∗y∗

(
−1 + β1x

∗y∗

w∗ + β2x∗
)

=
(
β1θα + β2

θαw∗

y∗

)
(1 − x∗) + λαβ1x∗y∗.

(4.14)

We have

C1C2 − C3 =
β1y

∗

x∗w∗ +
β1

2x∗y∗2

w∗2 + β2
(

1
x∗ − 1

)
+
β1β2x

∗y∗

w∗ (1 − x∗)

+
θαw∗

x∗2y∗ + β1θα(1 + x∗) +
θ2α2w∗2

x∗y∗2 + λβ1x∗y∗
(
1 − β1x

∗y∗

w∗ − β2x∗
)

=
β1y

∗

x∗w∗ +
β1

2x∗y∗2

w∗2 + β2
(

1
x∗ − 1

)
+
β1β2x

∗y∗

w∗ (1 − x∗)

+
θαw∗

x∗2y∗ + β1θα +
θ2α2w∗2

x∗y∗2 +
β1x

∗y∗(γ + 1
)

w∗ .

(4.15)

Since 1 − x∗ > 0, then C1 > 0, C2 > 0, C3 > 0, and C1C2 − C3 > 0. Hence, by
Routh-Hurwitz criterion, the rumor-endemic equilibrium point P ∗ is locally asymptotically
stable.

We analyze the global stability of the rumor-free and rumor-endemic steady states.
Firstly, we consider the global stability of rumor-free equilibrium point. Here, we use the
method developed by Castillo-Chavez et al. [40]. Now, we state two conditions which
guarantee the global stability of the rumor-free state. Rewrite the model system (3.3) as

du

dt
= F(u, v),

dv

dt
= G(u, v) G(u, 0) = 0,

(4.16)

where u = (x) and v = (w,y), with u ∈ R denotes the number of uninfected individuals and
v ∈ R2 denoting (its components) the number of infected individuals including the latent
and the infectious. The rumor-free equilibrium is now denoted by P0 = (u0, 0). The following
conditions (H1) and (H2)must be met to guarantee a local asymptotic stability:

(H1) for du/dt = F(u, 0), u0 is globally asymptotically stable;

(H2) G(u, v) = B Z − Ĝ(u, v), where Ĝ(u, v) ≥ 0, for (u, v) ∈ Ω,
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where B = DZG(u0, 0) is an M-matrix (the off-diagonal elements of B are nonnegative), and
Ω is the region where the model makes sociological sense. Then, the following lemma holds.

Lemma 4.3. The fixed point P0 = (u0, 0) is a globally asymptotic stable equilibrium of (4.16) provided
that R0 < 1 and that assumptions (H1) and (H2) are satisfied.

Theorem 4.4. Suppose R0 < 1. The rumor-free equilibrium P0 is globally asymptotically stable.

Proof. let u = (x), v = (w,y), and P0 = (u0, 0), where u0 = 1, then du/dt = F(u, v) = 1−β1xy−
β2xw − x. At x = x0, F(u, 0) = 0 and du/dt = F(u, 0) = 1 − u. As t → ∞, u → u0. Hence,
u = u0 is globally asymptotically stable.

Now

G(u.v) = B

(
w

y

)

− Ĝ(u, v), (4.17)

where B =
( −(α+1)+β2x0 β1x0

θ α −(γ+1)
)
and Ĝ(u, v) =

(
β1y(x0−x)+β2w(x0−x)

λ(1−x−w)y

)
.

Clearly, Ĝ(u, v) ≥ 0, and B is an M-matrix; hence, above conditions (H1) and (H2) are
satisfied, and hence by Lemma 4.3, the rumor-free equilibrium P0 is globally asymptotically
stable if R0 < 1.

In the following, using the geometrical approach of Li and Muldowney in [41],
we obtain simple sufficient conditions that the rumor-endemic steady state is globally
asymptotically stable, we give a brief outline of this geometrical approach in Appendix B.

Theorem 4.5. If R0 > 1, then the rumor-endemic equilibrium P ∗ of the system (3.3) is globally stable
in Ω.

Proof. From Theorem 4.2, it is clear that R0 > 1 implies the existence and uniqueness (as
an interior equilibrium) of the rumor endemic equilibrium P ∗, also P ∗, if exists, is locally
asymptotically stable. From Theorem 4.1 when R0 > 1, P0 is unstable. The instability of P0,
together with P0 ∈ ∂Ω, implies the uniform persistence, that is, there exists a constant c > 0
such that limt→∞ inf ξ(t) > c, ξ = (x,w, y).

The uniform persistence, because of boundedness ofΩ, is equivalent to the existence of
a compact set in the interior ofΩwhich is absorbing for the system (3.3). Hence, the condition
(H3) in Appendix B is satisfied. Now, the second additive compound matrix J[2](x,w, y) is
given by

J[2](P) =

⎛

⎜⎜
⎝

J
[2]
11 β1x β1x

θα + λy J
[2]
22 −β2x

−λy β1y + β2w β2x − α − γ − 2 − λ(1 − x −w)

⎞

⎟⎟
⎠, (4.18)

where J[2]11 = β2x − β1y − β2w − α − 2; J[2]22 = β1y − β2w − 2 − γ − λ(1 − x −w).
We consider the function P = P(x,w, y) = diag{1, w/y,w/y}, so that PgP−1 =

diag{0, (w′/w) − (y′/y), (w′/w) − (y′/y)}.
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Then,

B = PgP−1 + PJ[2]P−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J
[2]
11

β1xy

w

β1xy

w
w

y

(
θα − λy) J

[2]
11 +

β1xy

w
− wθα

y
−β2x

−λw β1y + β2w
β1xy

w
− wθα

y
− 2 − 2α + 2β2x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.19)

Let

B =

(
B11 B12

B21 B22

)

, (4.20)

where B11 = β2x − β1y − β2w − α − 2, B12 = [β1xy/w, β1xy/w], B21 = [w/y(θα − λy),−λw]T ,

B22 =

⎛

⎜⎜
⎝

β1xy

w
− wθα

y
− β2x − β1y − β2w − α − 2 −β2x

β1y + β2w
β1xy

w
− wθα

y
− 2 − 2α + 2β2x

⎞

⎟⎟
⎠. (4.21)

Now consider the norm in R3 as |(ε1, ε2, ε3)| = max{|ε1|, |ε2 + ε3|}, where (ε1, ε2, ε3)
denotes vector in R3 and denote by ψ the Lozinskiǐ measure with respect to this norm. It
follows [41] that

ψ(B) ≤ sup{k1, k2} = sup
{
ψ1(B11) + |B12|, ψ1(B22) + |B21|

}
, (4.22)

where |B12|, |B21| are matrix norms with respect to the L1 vector norm, and ψ1 denotes the
Lozinskiǐmeasure with respect to the L1 norm.

Then,

k1 = ψ1(B11) + |B12|

= β2x − β1y − β2w − α − 2 +
β1xy

w

=
β1xy − β2xw − (α + 1)w

w
− 1 − β1y − β2w

≤ w′

w
− 1,
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k2 = |B21| + ψ1(B22)

= −λw +max
{
θαw

y
, 0
}
− θαw

y
+
β1xy

w
+ β2x − (α + 1) +max{−1,−α − 1}

= −λw +
θαw

y
− θαw

y
+
β1xy

w
+ β2x − (α + 1) − 1

≤ w′

w
− 1.

(4.23)

Therefore,

ψ(B) ≤ sup{k1, k2} =
w′

w
− 1. (4.24)

Along each solution (x(t), w(t), y(t)) of the system with (x(0), w(0), y(0)) ∈ Q, where
Q is the compact absorbing set we have

1
t

∫ t

0
ψ
(
B
(
ξ
(
ρ, ξ0
)))

dρ ≤ 1
t
log

w(t)
w(0)

− 1, (4.25)

which implies that

q = lim
t→∞

sup sup
ξ∈K

1
t

∫ t

0
ψ
(
B
(
ξ
(
ρ, ξ0
)))

dρ ≤ −1
2
< 0. (4.26)

Summarizing Theorems 4.1–4.5, we have the following results on the dynamics of the
original system (3.3).

Theorem 4.6. (i) If R0 < 1, then system (3.3) has a unique rumor-free equilibrium P0 = (1, 0, 0),
which is a global attractor in the first octant.

(ii) If R0 = 1, a transcritical bifurcation occurs at θ = θ∗.
(iii) If R0 > 1, then system (3.3) has two equilibria, a rumor-free equilibrium (RFE) P0 =

(1, 0, 0) and an rumor-endemic equilibrium P ∗ = (x∗, w∗, y∗). The rumor-endemic equilibrium
(REE) P ∗ is a global attractor in the interior of the first octant.
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Table 1: Dimension of parameters and variables used in simulations.

Variable or parameter Dimension Implication

x,w, y, z Dimensionless Proportional population
X,W,Y,Z Hundred thousand Day−1 Number of Population
Λ Hundred thousand Day−1 The number of immigration population
βi0 (i = 1, 2) Unity Day−1 Rumor transmission coefficient
λ0 Unity Day−1 Rumor stifler coefficient
α0 Dimensionless Change rate for exposed
γ0 Dimensionless Change rate for spreaders
θ Dimensionless Believe and spread rate
μ Dimensionless The emigration rate
N Hundred thousand Total population
Where x = X/N, y = Y/N, z = Z/N, β = β0/μ, α = α0/μ, λ = λ0/μ, and γ = γ0/μ.

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

w(t)
y(t) z(t)

t

x(t)

Figure 2: β10 = 0.1, β20 = 0.2, λ0 = 0.1, α10 = 0.2, γ0 = 0.1, θ = 0.5, μ = 0.1, and R0 = 0.83.

5. Discussions and Simulations

This paper deals with the rumor transmission model with incubation and varying total
population. It concerns rumor with latent period, for example, many rumors come from
network and are hidden in the depths of one’s heart for a period of time before he/she
becomes a spreader or a stifler in real life. Our main results present the global dynamics
of rumor transmission model with incubation and its transformed proportionate system, the
process of communication correlations between the two systems in rumor eradication and
persistence, and the effects of different management strategies on the rumor control.

Numerical simulations (parameters and variables used in simulations are summarized
in Table 1) carried out for system (3.3) show that the rumor “dies out” when the basic
reproduction number R0 < 1 (the threshold) (Figure 2), and the rumor persists at an
“endemic” level when R0 > 1 (Figure 3). We prove that the transcritical bifurcation occurs at
R0 = 1 (Figure 4) by projecting the flow onto the extended center manifold. Those parameters
can be set according to rumors control requirements.

Rewriting R0, we have

R0 =
β1θ + β2

((
1 + γ

)
/α
)

(1 + (1/α))
(
1 + γ

) . (5.1)
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Figure 3: β10 = 0.1, β20 = 0.6, λ0 = 0.01, α10 = 0.1, γ0 = 0.01, θ = 0.5, μ = 0.1, and R0 = 3.23.
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Figure 4: Bifurcation diagram in the plan (R0, y
∗). The solid lines denote stability; the dashed lines denote

instability.

The threshold R0 is increasing with the rumor transmission coefficient βi, i = 1, 2, the
belief, and spread rate θ. If there exist many active members who believe and spread the
rumor actively, then βi, i = 1, 2 and θ will be sufficiently large, then R0 > 1 is easily, and the
rumor will persist at an “endemic” level. Conversely, if the managers induct public views
and remind the public of not relying on rumors more carefully, increasing the public’s ability
to distinguish, then the parameters βi, i = 1, 2, and θ will become smaller and make the
threshold R0 < 1, and the rumor will “die out.”

When the rate of the incubators believe the rumor reaches its critical value

θ =

(
α + 1 − β2

)(
γ + 1

)

β1α
= θ∗, (5.2)

then R0 = 1. So the condition required to eradicate the rumor from the population is
that believe and spread rate (θ) must be lesser than the critical vaccination coverage (θ∗);
otherwise, the rumor persists in the population.

Though the number of those who believe the rumor does not depend on θ explicitly,
the believe and spread rate of the rumor is proportional to the “endemic” level of rumor.
The effect of θ on the size of infected class is shown in Figure 5 for constant of other
parameters. Numerical simulations indicate that the steady-state value y∗ of the rumor
infectives increases as θ increases (see Figure 5).
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Figure 5: Size of infected class for different values of θ for β10 = 0.2, β10 = 0.4, λ0 = 0.1, α10 = 0.2, γ0 = 0.1,
and μ = 0.1.

Actually, R0 is an increasing function of the parameter β2 and β1. Thus, it is
necessary and important for emergency management to control the rumor by decreasing
the transmission force βi, i = 1, 2, and make R0 less than one, with the aggressive control
measures and policies, such as improving the ability of the signature verification for rumors
and enhancing the transparency of the information in an emergency event, then the rumor
transmission can be effectively controlled. Sometimes information disclosure can achieve
management aims for rumor transmission more effectively and at far lower cost than
traditional regulation.

If β2 = 0, people could not spread the rumor before becoming spreaders or stiflers, it
means that one should try to find out the truth of the matter and decide to believe the rumor
or not. Actually, in that case, R0 = β1θα/(1+α)(1+ γ) < R0, and this means it is easier to make
the threshold less that one, then the rumor will “die out” faster.

In the special cases when the population size remains constant (i.e., Λ = 0, and μ = 0),
the latent period is negligible, and themodel (3.1) reduces to a D-K rumormodel with bilinear
incidence.

6. Concluding Remarks

In the paper, a deterministic model for the transmission dynamics of rumor is developed
and analyzed. We discuss the XWYZ model with constant immigration and incubation; this
analysis results meet the actual circs better, more external, and easier to be understood. We
derive a basic reproduction number R0 and that it determines the global dynamics of system
(3.3); if R0 < 1, the rumor-free equilibrium(RFE) P0 is globally asymptotically stable in A,
and rumor can be eradicated; if R0 > 1, a unique rumor endemic equilibrium (REE) P ∗ is
globally asymptotically stable in the interior of the feasible region so that the rumor persists
at the rumor endemic equilibrium level if it is initially present. As the bifurcation diagram
(see Figure 4) shows, the occurrence of transcritical bifurcation (forward) has important
consequences from the point of view of rumor control and thus for the eradication of the
rumor. When the bifurcation parameter R0 crosses the bifurcation threshold R0 = 1, a rumor-
endemic equilibrium enters the positive orthant. Since the “endemic” level at the equilibrium
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is a continuous function of R0, as a consequence for successfully eradication of the rumor, one
should simply reduce R0 continuously below the threshold value 1.

Since some rumors spread in a certain group of people; we then can assume that the
transmission coefficient is a function of parameters for special populations and time, which
may take the nonautonomous system instead of the autonomous system, we leave this for
the future work.

Appendices

A.

Theorem A.1. Let us consider a general system of ODEs with a parameter ϑ

x′ = f(x, ϑ), f : Rn × R −→ Rn, f ∈ C2(Rn × R). (A.1)

Without loss of generality, we assume that ϑ = 0 is an equilibrium for (A.1).
Assume that

(I) A = Dxf(0, 0) is the linearization matrix of system (A.1) around the equilibrium x = 0
with ϑ = 0 evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A
have negative real parts;

(II) matrix A has a (nonnegative) right eigenvector u and a left eigenvector v corresponding to
the zero eigenvalue. Let fk denote the kth component of f and

m =
3∑

k,i,j=1

vkuiuj
∂2fk
∂ui∂uj

(0, θ∗), n =
3∑

k,i=1

vkui
∂2fk
∂ui∂ϑ

(0, 0), (A.2)

then the local dynamics of system (A.1) around x = 0 are totally determined bym and n:

(i) m > 0, n > 0. When ϑ < 0, with |ϑ| � 1, x = 0 is locally asymptotically stable, and there
exists a positive unstable equilibrium; when 0 < ϑ � 1, x = 0 is unstable, and there exists
a negative and locally asymptotically stable equilibrium;

(ii) m < 0, n < 0. When ϑ < 0, with |ϑ| � 1, x = 0 is unstable; when 0 < ϑ � 1, x = 0 is
locally asymptotically stable, and there exists a positive unstable equilibrium;

(iii) m > 0, n < 0. When ϑ < 0, with |ϑ| � 1, x = 0 is unstable and there exists a locally
asymptotically stable negative equilibrium; when 0 < ϑ � 1, x = 0 is stable and a positive
unstable equilibrium appears;

(iv) m < 0, n > 0. When ϑ < 0 changes from negative to positive, x = 0 changes its stability
from stable to unstable. Correspondently, a negative unstable equilibrium becomes positive
and locally asymptotically stable.

Proof. See [38].
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B.

Consider the autonomous dynamical system

ξ = g(ξ), (B.1)

where g : D → Rn,D ⊂ Rn open set and simply connected and g ∈ C1(D). Denote by ξ(t, ξ0)
the solution to (B.1) such that ξ(0, ξ0) = ξ0. Let ξ∗ be an equilibrium of (B.1), that is, g(ξ∗) = 0.
Assume that the following hypotheses hold:

(H3) there exists a compact absorbing set K ⊂ D,

(H4) equation (B.1) has a unique equilibrium ξ∗ in D.

We recall that ξ∗ is said to be globally stable inD if it is locally stable, and all trajectories
in D converge to ξ∗. For n ≥ 2, by a Bendixson criterion, we mean a condition satisfied
by g which precludes the existence of nonconstant periodic solutions of (B.1). The classical
Bendixson’s condition div g(ξ) < 0 for n = 2 is robust under C1 local perturbations of g(ξ).
For higher-dimensional systems, the C1 robust properties are discussed in [41].

A point ξ0 ∈ D is wandering for (B.1) if there exists a neighborhood U of ξ0 and T > 0
such thatU∩ξ(t,U) is empty for all t > T . Thus, for example, all equilibria and limit points are
nonwandering. The following global-stability principle is established in Li and Muldowney
[41] for autonomous systems in any finite dimension.

Lemma B.1. Suppose that assumptions (H3) and (H4) hold. Assume that (B.1) satisfies a Bendixson
criterion that is robust under C1 local perturbations of g(ξ) at all nonequilibrium nonwandering
points for (B.1), then ξ∗ is globally stable in D provided it is stable.

The following Bendixson criterion is given in [41] and shown to have the robustness
required by Lemma B.1. Let P(ξ) be a ( n2 ) × ( n2 ) matrix-valued function that is C1 on D.
Assume that P−1 exists and is continuous for ξ ∈ K, the compact absorbing set. A quantity q
is defined as

q = lim
t→∞

supsup
ξ∈K

1
t

∫ t

0
ψ
(
B
(
ρ, ξ(ξ0)

))
dρ, (B.2)

where B = PgP
−1 + PJ[2]P−1, the matrix Pg is (Pij(ξ))g = (∂Pij(ξ)/∂x)

T · g(ξ) = ∇Pijg(ξ)
and the matrix J[2] is the second additive compound matrix of the Jacobian matrix J , that is,
J(ξ) = Dg(ξ). Let ψ(B) be the Lozinskiĭmeasure of B with respect to a vector norm | · | in RN ,
N = ( n2 ) defined by

ψ(B) = lim
h→ 0+

|I + hB| − 1
h

. (B.3)

It is shown in [41] that, if D is simply connected, the condition q < 0 rules out the
presence of any orbit that gives rise to a simple closed rectifiable curve that is invariant for
(B.1), such as periodic orbits, homoclinic orbits, and heteroclinic cycles. Moreover, it is robust
under C1 local perturbations of g(ξ) near any nonequilibrium point that is nonwandering. In
particular, the following global-stability result is proved in Li and Muldowney [41].
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Lemma B.2. Assume thatD is simply connected and that the assumptions (H3) and (H4) hold. Then
the unique equilibrium ξ∗ of (B.1) is globally stable in D if q < 0.
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