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We prove the existence of a compact random attractor for the random dynamical system generated
by stochastic three-component reversible Gray-Scott system with a multiplicative white noise on
infinite lattices.

1. Introduction

Consider the following stochastic three-component reversible Gray-Scott system with a
multiplicative white noise on infinite lattices:

dui
dt

= d1(ui−1 − 2ui + ui+1) − (F + k)ui + u2i vi −Gu3i +Nwi + ui ◦ dW
dt

,

dvi
dt

= d2(vi−1 − 2vi + vi+1) + F(1 − vi) − u2i vi +Gu3i + vi ◦
dW

dt
,

dwi

dt
= d3(wi−1 − 2wi +wi+1) + kui − (F +N)wi +wi ◦ dW

dt
,

u(0) = u0 = (ui0)i∈Z
, v(0) = v0 = (vi0)i∈Z

, w(0) = w0 = (wi0)i∈Z
,

(1.1)
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where i ∈ Z (the set of integers), (ui)i∈Z
∈ �2, (vi)i∈Z

∈ �2, and (wi)i∈Z
∈ �2; all the parameters

are positive constants; W is a Brownian motion on (Ω,F,P) and ◦ denotes the Stratonovich
sense of the stochastic term.

System (1.1) can be considered as a discrete model of stochastic three-component
reversible Gray-Scott system in which the existence of a random attractor has been
established [1]. When there is no stochastic term, system (1.1) can be considered as a discrete
analogue of the following three-component reversible Gray-Scott system in R:

∂u

∂t
= d1Δu − (F + k)u + u2v −Gu3 +Nw,

∂v

∂t
= d2Δv + F(1 − v) − u2v +Gu3,

∂w

∂t
= d3Δw + ku − (F +N)w,

(1.2)

which was firstly introduced by Mahara et al. [2], then it was reduced to system (1.2) under
some nondimensional transformations in You [3]. Also, the existence of a global attractor for
the solution semiflow of (1.2) with Neumann boundary condition on a bounded domain of
space dimension n ≤ 3 was proved in [3].

When G = 0 and w = 0, system (1.2) becomes the two-components Gray-Scott
equations which was one of the models signified the seminal work of the Brussell school.
The model originated from describing an isothermal, cubic autocatalytic, continuously fed
and diffusive reactions of two chemicals (see [4–8]), but neglected the reversible factors.
Indeed, the reversibility in the interactions of multispecies is an indispensable factor in many
processes in natural and social sciences. If we take the reversibility into account, it yields
system (1.2).

Stochastic lattice differential equations have discrete spatial structures and take
random influences into account. These random effects are not only introduced to compensate
for the defects in some deterministic models, but are also rather intrinsic phenomena. Bates et
al. [9] initiated the consideration of stochastic lattice dynamical systems with additive noises
and Caraballo and Lu [10] was the first to consider the stochastic lattice dynamical systems
with a multiplicative noise, and Han et al. [11] generalized the results of [9, 10] to a more
general space. For more details and the quite recent results, we can refer to, for example,
[12–15].

Just like the models considered in biology, the discrete time models governed by
difference equations are more appropriate than the continuous ones; we can also deal with
the chemical and biochemical reactions in the same manner, see, for example, [16, 17] and
the references therein. However, very few investigations are on this topic, especially for the
stochastic three-component reversible Gray-Scott system on infinite lattices, is widely open,
to the best of our knowledge.

The paper is organized as follows. In Section 2, we present some preliminaries and
definitions. Section 3 is devoted to the existence of a random attractor.
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2. Preliminaries

Let (Ω,F,P) be a probability space, where Ω is a subset of C0(R,R) = {ω ∈ C(R,R) : ω(0) =
0}, which endowed with the compact open topology (see [18]), F is the Borel σ-algebra,
and P is the corresponding Wiener measure on Ω. Let θtω(·) = ω(· + t) − ω(t), t ∈ R, then
(Ω,F,P, (θt)t∈R) is an ergodic metric dynamical system. Throughout the paper, we denote

�2 =

{
x = (xi)i∈Z

: xi ∈ R,
∑
i∈Z

x2
i <∞

}
, (2.1)

the Hilbert space equipped with the usual inner product and norm:

〈
x, y

〉
=
∑
i∈Z

(
xi, yi

)
, ‖x‖2 = 〈x, x〉, ∀x = (xi)i∈Z

, y =
(
yi
)
i∈Z

∈ �2. (2.2)

For the reader’s convenience, we introduce some basic concepts related to random
dynamical systems and random attractor, which are taken from [11, 18, 19]. Let (H, ‖ · ‖H) be
a separable Hilbert space and (Ω0,F,P) a probability space.

Definition 2.1. A stochastic process {ϕ(t, ω)}t≥0,ω∈Ω0
is a continuous randomdynamical system

over (Ω0,F,P, (θt)t∈R) if ϕ is (B[0,∞) × F × B(H),B(H))-measurable, and for all ω ∈ Ω0,

(i) the mapping ϕ(t, ω) : H �→ H, x �→ ϕ(t, ω)x is continuous for every t ≥ 0,

(ii) ϕ(0, ω) is the identity onH,

(iii) (cocycle property) ϕ(s + t, ω) = ϕ(t, θsω)ϕ(s,ω) for all s, t ≥ 0.

Definition 2.2. (i) A set-valued mapping ω �→ B(ω) ⊂ H (we may write it as B(ω) for short)
is said to be a random set if the mapping ω �→ distH(x, B(ω)) is measurable for any x ∈ H,
where distH(x,D) is the distant inH between the element x and the set D ⊂ H.

(ii) A random set B(ω) is said to be bounded if there exist x0 ∈ H and a random
variable r(ω) > 0 such that B(ω) ⊂ {x ∈ H : ‖x − x0‖H ≤ r(ω), x0 ∈ H} for all ω ∈ Ω0.

(iii) A random set B(ω) is called a compact random set if B(ω) is compact for all
ω ∈ Ω0.

(iv) A random bounded set B(ω) ⊂ H is called tempered with respect to (θt)t∈R if for
a.e. ω ∈ Ω0, limt→+∞e−γtsupx∈B(θ−tω)‖x‖H = 0 for all γ > 0. A random variable ω �→ r(ω) ∈ R
is said to be tempered with respect to (θt)t∈R if for a.e. ω ∈ Ω0, limt→+∞supt∈Re

−γtr(θ−tω) =
0 for all γ > 0.

We consider a continuous random dynamical system (RDS) {ϕ(t, ω)}t≥0,ω∈Ω0
over

(Ω0,F,P, (θt)t∈R) and D(H) the set of all tempered random sets of D(H).

Definition 2.3. A random setK is called an absorbing set in D(H) if for all B ∈ D(H) and a.e.
ω ∈ Ω0 there exists tB(ω) > 0 such that

ϕ(t, θ−tω)B(θ−tω) ⊂ K(ω) ∀t ≥ tB(ω). (2.3)
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Definition 2.4. A random set A is called a global random D(H) attractor (pullback D(H)
attractor) for {ϕ(t, ω)}t≥0,ω∈Ω0

if the following hold:

(i) A is a random compact set, that is, ω �→ d(x,A(ω)) is measurable for every x ∈ H
andA(ω)) is compact for a.e. ω ∈ Ω0;

(ii) A is strictly invariant, that is, for ω ∈ Ω0 and all t ≥ 0, ϕ(t, ω)A(ω) = A(θtω);

(iii) A attracts all sets in D(H), that is, for all B ∈ D(H) and a.e. ω ∈ Ω0, we have

lim
t→+∞

d
(
ϕ(t, θ−tω)B(θ−tω),A(ω)

)
= 0, (2.4)

where d(X,Y ) = supx∈X infy∈Y‖x − y‖H is the Hausdorff semimetric (X ⊆ H,Y ⊆ H).

Proposition 2.5 (see [11]). Suppose that

(a) there exists a random bounded absorbing set K(ω) ∈ D(�2), ω ∈ Ω0, such that for any
B(ω) ∈ D(�2) and all ω ∈ Ω0, there exists T(ω,B) > 0 yielding ϕ(t, θ−tω, B(θ−tω)) ⊂
K(ω) for all t ≥ T(ω,B);

(b) the RDS {ϕ(t, ω)}t≥0,ω∈Ω0
is random asymptotically null on K(ω), that is, for any ε > 0,

there exist T(ε,ω,K) > 0 and I0(ε,ω,K) ∈ N such that

sup
u∈K(ω)

∑
|i|>I0(ε,ω,K(ω))

∣∣ϕ(t, θ−tω, u(θ−tω))i∣∣2 ≤ ε2, ∀t ≥ T(ε,ω,K(ω)). (2.5)

Then the RDS {ϕ(t, ω, ·)}t≥0,ω∈Ω0
possesses a unique global random D(H) attractor given by

Ã(ω) =
⋂

τ≥T(ω,K)

⋃
t≥τ
ϕ(t, θ−tω,K(θ−tω)). (2.6)

3. Existence of a Random Attractor

In this section, we will derive the random attractor of the stochastic three-component
reversible Gray-Scott lattice system (1.1)with a multiplicative white noise.

For x = (xi)i∈Z
, we define A,B, B∗ to be linear operators from �2 to �2 for i ∈ Z, as

follows:

(Ax)i = −xi−1 + 2xi − xi+1, (Bx)i = xi+1 − xi, (B∗x)i = xi−1 − xi. (3.1)

It is easy to show that A = BB∗ = B∗B, (B∗x, x′) = (x, Bx′) for all x, x′ ∈ �2, which implies that
(Ax, x) ≥ 0.
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In the sequel, we rewrite the system (1.1) with initial values (u0, v0, w0) :=
(u0i, v0i, w0i)i∈Z

∈ �2 × �2 × �2 = H as the following integral equations inH for t ≥ 0, ω ∈ Ω :

u(t) = u0 +
∫ t
0

[
−d1Au(s) − (F + k)u(s) + u2(s)v(s)

−Gu3(s) +Nw(s)
]
ds +

∫ t
0
u(s) ◦ dW,

v(t) = v0 +
∫ t
0

[
−d2Av(s) + F(1 − v(s)) − u2(s)v(s) +Gu3(s)

]
ds +

∫ t
0
v(s) ◦ dW,

w(t) = w0 +
∫ t
0
[−d3Aw(s) + ku(s) − (F +N)w(s)]ds +

∫ t
0
w(s) ◦ dW,

(3.2)

where W is a two-sided Brownian motion on the same probability space (Ω,F,P). To prove
that this system (3.2) generates a random dynamical system, we will transform it into a
random differential equation system inH.

Before performing this transformation, we need to recall some properties of the
Ornstein-Uhlenbeck processes. Let

z(θtω) = −
∫0

−∞
eτθtω(τ)dτ, t ∈ R, ω ∈ Ω. (3.3)

We know that z(θtω) is an Ornstein-Uhlenbeck process on (Ω,F,P, (θt)t∈R) and solves the
following one-dimensional stochastic differential equation (see [20] for details):

z = −zdt + dw(t), z(−∞) = 0, ∀t ≥ 0, ω ∈ Ω, (3.4)

where w(t)(ω) = w(t, ω) = ω(t) for ω ∈ Ω, t ∈ R. In fact, we have the following.

Lemma 3.1 (see [10, 18]). There exists a θt-variant set Ω̃ ∈ F of C0(R,R) of full P measure such
that, for ω ∈ Ω̃, one has

(i) the random variable |z(ω)| is tempered;

(ii) the mapping

(t, ω) �−→ z(θtω) = −
∫0

−∞
esω(t + s)ds +ω(t) (3.5)

is a stationary solution of Ornstein-Uhlenbeck equation (3.4) with continuous trajectories;

(iii)

lim
t→±∞

|z(θtω)|
t

= 0, lim
t→±∞

1
t

∫ t
0
z(θsω)ds = 0, (3.6)

lim
t→±∞

1
t

∫ t
0
|z(θsω)|ds = E|z| <∞. (3.7)
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Obviously, ez(θtω)1dH is clearly a homeomorphism in H, and the inverse operator
e−z(θtω)1dH is well defined. It easily follows from (3.6) that ‖ez(θtω)1dH‖H and ‖e−z(θtω)1dH‖H
have subexponential growth as t → ±∞ for all ω ∈ Ω̃, which implies that they are tempered.
Since the mapping of θ on Ω̃ has the same properties as the original one if we choose the trace
σ-algebra with respect to Ω̃ to be denoted also by F, we can change our metric dynamical
system with respect to Ω̃, and still denoted by the symbols (Ω,F,P, (θt)t∈R).

Let

g̃(t, ω) = e−z(θtω)1dHg(t, ω), ω ∈ Ω, (3.8)

where g̃(t, ω) = (ũ(t, ω), ṽ(t, ω), w̃(t, ω)), and g(t, ω) = (u(t, ω), v(t, ω), w(t, ω)) is a solution
of (3.2). Then system (1.1) can be written as the following random system with random
coefficients but without white noise:

dũ

dt
= −d1Aũ − (F + k − z(θtω))ũ + e2z(θtω)ũ2ṽ −Ge2z(θtω)ũ3 +Nw̃,

dṽ

dt
= −d2Aṽ + Fe−z(θtω) − (F − z(θtω))ṽ − e2z(θtω)ũ2ṽ +Ge2z(θtω)ũ3,

dw̃

dt
= −d3Aw̃ + kũ − (F +N − z(θtω))w̃

(3.9)

and an initial condition

g̃0(ω) = (ũ(0), ṽ(0), w̃(0)) = (ũ0, ṽ0, w̃0) ∈ H. (3.10)

Now we establish the following result.

Theorem 3.2. Let T > 0 and g̃0(ω) ∈ H be fixed. Then the following properties hold:

(i) for every ω ∈ Ω, system (3.9) admits a unique solution g̃(·, ω, g̃0) ∈ C([0, T],H),

(ii) the solution g̃(t, ω) of system (3.9) depends continuously on the initial data g̃0, that is, for
each ω ∈ Ω, the mapping g̃0 ∈ H �→ g̃(·, ω, g̃0) ∈ C([0, T],H) is continuous.

Proof. (1) Denote

L
(
g̃
)
=

⎛
⎝−(d1A + F + k)ũ 0 Nw̃

0 −(d2A + F)ṽ 0
kũ 0 −(d3A + F +N)w̃

⎞
⎠,

Ψ
(
g̃, θtω

)
=

⎛
⎝ z(θtω)ũ + e2z(θtω)ũ2ṽ −Ge2z(θtω)ũ3
Fe−z(θtω) + z(θtω)ṽ − e2z(θtω)ũ2ṽ +Ge2z(θtω)ũ3

z(θtω)w̃

⎞
⎠.

(3.11)

Then system (3.9) can be written as

dg̃

dt
= L

(
g̃
)
+ Ψ

(
g̃, θtω

)
. (3.12)
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Since z(θtω) is continuous with respect to t, define

Ψ
(
g̃, ω

)
=

⎛
⎝ z(ω)ũ + e2z(ω)ũ2ṽ −Ge2z(ω)ũ3
Fe−z(ω) + z(ω)ṽ − e2z(ω)ũ2ṽ +Ge2z(ω)ũ3

z(ω)w̃

⎞
⎠, (3.13)

then

∥∥Ψ(g̃, ω)∥∥H ≤ 2F
∣∣∣e−z(ω)∣∣∣ + 2

(
|z(ω)| +max{1, G}e2z(ω)

)∥∥g̃∥∥H
+ 3(1 +G)e2z(ω)

∥∥g̃∥∥2
H.

(3.14)

For any g = (u, v,w) = (ui, vi,wi)i∈Z
, g̃ = (ũ, ṽ, w̃) = (ũi, ṽi, w̃i)i∈Z

∈ H,

∥∥Ψ(g,ω) −Ψ
(
g̃, ω

)∥∥
H ≤ 2

(
‖z(ω)| + 3(1 +G)e2z(ω)

(∥∥g∥∥2
H +

∥∥g̃∥∥2
H

))∥∥g − g̃∥∥H. (3.15)

For any bounded set D ∈ H with supg∈D‖g‖H ≤ r, define a random variable �D(ω) by

�D(ω) = 2
(
|z(ω)| + 3(1 +G)e2z(ω)r +max{1, G}e2z(ω)

)
r + 2F

∣∣∣e−z(ω)∣∣∣ ≥ 0. (3.16)

Then

∫ τ+1
τ

�D(θtω)dt = 2
∫ τ+1
τ

((
|z(θtω)| + 3(1 +G)e2z(θtω)r +max{1, G}e2z(θtω)

)
r + Fe−z(θtω)

)
dt

< ∞, ∀τ ∈ R,
(3.17)

and, for any g, g, g̃ ∈ D, we have

∥∥Ψ(g,ω)∥∥H ≤ �D(ω),
∥∥Ψ(g,ω) −Ψ

(
g̃, ω

)∥∥
H ≤ �D(ω)

∥∥g − g̃∥∥H. (3.18)

Then we obtain that L(g̃) + Ψ(g̃, θtω) is locally Lipschitz in g̃ from H to H. By Proposition
2.1.1 in [19], problem (3.12) possesses a unique local solution g̃(·, ω, g̃0) ∈ C1((0, Tmax),H),
where (0, Tmax) is the maximal interval of existence of the solution of (3.12). Now, we will
show that the local solution is a global one. Define

r̃(t) =
N

k
w̃(t), μ =

k

N
, (3.19)
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then system (3.9) can be written as

dũ

dt
= −d1Aũ − (F + k − z(θtω))ũ + e2z(θtω)ũ2ṽ −Ge2z(θtω)ũ3 + kr̃,

dṽ

dt
= −d2Aṽ + Fe−z(θtω) − (F − z(θtω))ṽ − e2z(θtω)ũ2ṽ +Ge2z(θtω)ũ3,

μ
dr̃

dt
= −μd3Ar̃ + kũ − (μF + k − z(θtω)

)
r̃.

(3.20)

Taking the inner products of (3.20) with Gũ(t), ṽ(t) and Gw̃(t), respectively, and adding up
the resulting equalities, we get

1
2
d

dt

(
G‖ũ‖2 + ‖ṽ‖2 + μG‖r̃‖2

)
+GF‖ũ‖2 + F

2
‖ṽ‖2 + μGF‖r̃‖2

≤ z(θtω)
(
G‖ũ‖2 + ‖ṽ‖2 +G‖r̃‖2

)
+
F

2
e−2z(θtω),

(3.21)

which implies that

d

dt

(
G‖ũ‖2 + ‖ṽ‖2 + G

μ
‖w̃‖2

)
+ 2GF‖ũ‖2 + F‖ṽ‖2 + 2GF

μ
‖w̃‖2

≤ 2z(θtω)
(
G‖ũ‖2 + ‖ṽ‖2 + G

μ2 ‖w̃‖2
)
+ Fe−2z(θtω).

(3.22)

Setting

λ =
Fmin

{
1, 2G, 2G/μ

}
max

{
1, G,G/μ

} , C1 =
2max

{
1, G,G/μ2}

min
{
1, G,G/μ

} , C2 =
F

min
{
1, G,G/μ

} , (3.23)

then (3.22) yields

d

dt

∥∥g̃(t)∥∥2
H + (λ − C1z(θtω))

∥∥g̃(t)∥∥2
H ≤ C2e

−2z(θtω). (3.24)

Applying Gronwall’s lemma to (3.24), we obtain that, for t ≥ 0,

∥∥g̃(t, ω, g̃0(ω))∥∥2
H ≤ e−λt+C1

∫ t
0 z(θsω)ds

∥∥g̃0(ω)∥∥2
H

+ C2e
−λt+C1

∫ t
0 z(θsω)ds

∫ t
0
e−2z(θsω)+λs+C1

∫0
s z(θτω)dτds.

(3.25)
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Denoting

α(ω) = C1

∫T
0
|z(θsω)|ds,

β(ω) = C2 max
t∈[0,T]

(
e−λt+C1

∫ t
0 z(θsω)ds

∫ t
0
e−2z(θsω)+λs+C1

∫0
s z(θτω)dτds

)
,

(3.26)

we get

∥∥g̃(t, ω, g̃0(ω))∥∥2
H ≤ ∥∥g̃0(ω)∥∥2

He
α(ω) + β(ω), (3.27)

which implies that the solution g̃ is defined in any interval [0, T].
(2) Let g0, g̃0 ∈ H and

X(t) := g
(
t, ω, g0

)
, Y (t) := g̃

(
t, ω, g̃0

)
(3.28)

be the corresponding solutions of (3.12). Then, denoting Z(t) = (Z1, Z2, Z3) = X(t) − Y (t) =
(u − ũ, v − ṽ, w − w̃), we have

dZ1

dt
= −d1AZ1 − (F + k − z(θtω))Z1 +NZ3 + e2z(θtω)

(
u2v − ũ2ṽ

)
−Ge2z(θtω)

(
u3 − ũ3

)
,

dZ2

dt
= −d2AZ2 − (F − z(θtω))Z2 − e2z(θtω)

(
u2v − ũ2ṽ

)
+Ge2z(θtω)

(
u3 − ũ3

)
,

dZ3

dt
= −d3AZ3 + kZ1 − (F +N − z(θtω))Z3.

(3.29)

Taking the inner product of (3.30) with Z1, Z2 and Z3, respectively, it yields

d

dt

(
‖Z1‖2 + ‖Z2‖2 + ‖Z3‖2

)

≤ 2z(θtω)
(
‖Z1‖2 + ‖Z2‖2 + ‖Z3‖2

)
+
N

2
‖Z1‖2 + k

2
‖Z3‖2

+ 2e2z(θtω)
(
u2v − ũ2ṽ, Z1 − Z2

)
− 2Ge2z(θtω)

(
u3 − ũ3, Z1 − Z2

)
.

(3.30)

Due to (3.28), we have

e2z(θtω)
(
u2v − ũ2ṽ, Z1 − Z2

)
−Ge2z(θtω)

(
u3 − ũ3, Z1 − Z2

)

≤ 2(1 +G)e2z(θtω)
(∥∥g∥∥2

H +
∥∥g̃∥∥2

H

)(
‖Z1‖2 + ‖Z2‖2

)

≤ 4(1 +G)e2z(θtω)
∥∥g̃∥∥2

H

(
‖Z1‖2 + ‖Z2‖2 + ‖Z3‖2

)
.

(3.31)
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Denoting δ = (1/2)max{N,k}, we obtain that

d

dt

(
‖Z1‖2 + ‖Z2‖2 + ‖Z3‖2

)

≤
(
δ + z(θtω) + 8(1 +G)e2z(θtω)

∥∥g̃∥∥2
H

)(
‖Z1‖2 + ‖Z2‖2 + ‖Z3‖2

)
.

(3.32)

By Gronwall’s lemma, for t ∈ [0, T], we have

‖Z1‖2 + ‖Z2‖2 + ‖Z3‖2 ≤
(
‖Z1(0)‖2 + ‖Z2(0)‖2 + ‖Z3(0)

)
eδ

′t+8(1+G)
∫ t
0 e

2z(θsω)‖g̃(s,ω,g̃0(ω))‖2Hds,

(3.33)

where δ′ = δ +maxt∈[0,T]|z(θtω)|. According to (3.26), for t ∈ [0, T],

∫ t
0
e2z(θsω)

∥∥g̃(s,ω, g̃0(ω))∥∥2
Hds

≤ ∥∥g̃0(ω)∥∥2
H

∫ t
0
e2z(θsω)+C1

∫s
0 z(θτω)dτds

+ C2

∫ t
0
e2z(θsω)+C1

∫s
0 z(θτω)dτ

∫s
0
e−2z(θτω)−C1

∫ t
0 z(θςω)dςdτds

:=
∥∥g̃0(ω)∥∥2

H

∫ t
0
ξ(θsω)ds + C2

∫ t
0
ξ(θsω)

∫s
0
ξ−1(θτω)dτds,

(3.34)

where ξ(θtω) = e2z(θtω)+C1
∫ t
0 z(θτω)dτ . Obviously, t �→ ln ξ(θtω) is continuous P-a.s. Also, we

have limt→+∞(ln ξ(θtω)/t) = 0, which implies that ξ(θtω) is a tempered random variable.
Then by Proposition 4.3.3, [18], for given ε > 0, there is an ε-slowly varying random variable
R(ω) for which

e−ε|t|R(ω) ≤ ξ(θtω) ≤ eε|t|R(ω), ∀t ∈ R, ω ∈ Ω, (3.35)

where R(ω), ω ∈ Ω satisfies

e−ε|t|R(ω) ≤ R(θtω) ≤ eε|t|R(ω) ∀t ∈ R, ω ∈ Ω. (3.36)

Combining with (3.35) and (3.36), we easily conclude that for t ∈ [0, T],

∫ t
0
e2z(θsω)

∥∥g̃(s,ω, g̃0(ω))∥∥2
Hds ≤

∥∥g̃0(ω)∥∥2
H

ε
R(ω)eεT +

C2

2ε2
e2εT , (3.37)
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which implies

sup
t∈[0,T]

‖X(t) − Y (t)‖2 ≤
(
‖u0 − ũ0‖2 + ‖v0 − ṽ0‖2 + ‖w0 − w̃0‖2

)
eδ

′′T , (3.38)

where δ′′ = δ′ + 8(1+G)((‖g̃0(ω)‖2H/εT)R(ω)eεT + (C2/2ε2T)e2εT) <∞. If u0 = ũ0, v0 = ṽ0 and
w0 = w̃0, then the above inequality shows the uniqueness and continuous dependence on the
initial data of the solution of (3.12). So the both results of the theorem hold.

Theorem 3.3. System (3.12) generates a continuous random dynamical system (ϕ(t))t≥0 over (Ω,
F,P, (θt)t∈R), where ϕ(t, ω, g0) = g̃(t, ω, g0) for g0 ∈ H, t ≥ 0 and for all ω ∈ Ω. Moreover, if one
defines ϕ by

ψ
(
t, ω, g0

)
= ez(θtω)ϕ

(
t, ω, e−z(ω)g0

)
(3.39)

for g0 ∈ H, t ≥ 0 and for all ω ∈ Ω, then ψ is another random dynamical system for which the process
(ω, t) �→ ψ(t, ω, g0) solves (3.2) for any initial condition g0 ∈ H.

Proof. The fact that ϕ is continuous random dynamical system follows from Theorem 3.2. The
measurability of ψ follows from the properties of the transformation (see [18, 19]). It follows
directly the other statements.

Note that the two random dynamical systems are equivalent. It is easy to check that
ψ has a random attractor provided ϕ possesses a random attractor. Then, we only need to
consider the random dynamical system ϕ.

Now, we are in the position to study the existence of tempered random bounded
absorbing set and global random attractor for the RDS ϕ inH.

Lemma 3.4. There exists a random bounded ball K(ω) ∈ D(H) centered at 0 with random radius
ρ(ω) > 0 such that K(ω) ∈ D(H) is a random absorbing set for ϕ in D(H); that is, for any B(ω) ∈
D(H) and ω ∈ Ω, there exists TB(ω) > 0 yielding ϕ(t, θ−tω, B(θ−tω)) ⊂ K(ω), for all t ≥ TB(ω).

Proof. By substituting ω by θ−tω in (3.26), we have

∥∥g̃(t, θ−tω, g̃0(θ−tω))∥∥2
H

≤ e−λt+C1
∫ t
0 z(θs−tω)ds

∥∥g̃0(θ−tω)∥∥2
H + C2e

−λt+C1
∫ t
0 z(θs−tω)ds

∫ t
0
e−2z(θs−tω)+λs+C1

∫0
s z(θτ−tω)dτds

≤ e−λt+C1
∫ t
0 z(θs−tω)ds

∥∥g̃0(θ−tω)∥∥2
H + C2

∫0

−t
e−2z(θsω)+λ(s−t)+C1

∫ t
s z(θτω)dτds

≤ e−λt+C1
∫0
−t z(θsω)ds

∥∥g̃0(θ−tω)∥∥2
H + C2

∫0

−t
e−2z(θsω)+λs+C1

∫0
s z(θτω)dτds

≤ e−λt+C1
∫0
−t z(θsω)ds

∥∥g̃0(θ−tω)∥∥2
H + C2

∫0

−∞
e−2z(θsω)+λs+C1

∫0
s z(θτω)dτds.

(3.40)
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By the properties of the Ornstein-Uhlenbeck process,

∫0

−∞
e−2z(θsω)+λs+C1

∫0
s z(θτω)dτds < +∞. (3.41)

Notice that {B(ω)} ∈ D(H) is tempered, then for g̃0(ω) ∈ B(θ−tω),

lim
t→+∞

e−λt+C1
∫0
−t z(θsω)ds

∥∥g̃0(θ−tω)∥∥2
H = 0. (3.42)

We can choose

ρ2(ω) = 1 + C2

∫0

−∞
e−2z(θsω)+λs+C1

∫0
s z(θτω)dτds, (3.43)

thenK(ω) is a random absorbing set for ϕ inD(H), andK(ω) ∈ D(H). Here, we remain only
to check that

lim
t→+∞

e−γtρ2(θ−tω) = 0. (3.44)

Indeed, obviously we have

e−γtρ2(θ−tω) = e−γt + C2e
−γt

∫0

−∞
e−2z(θs−tω)+λs+C1

∫0
s z(θτ−tω)dτds

= e−γt︸︷︷︸
→ 0 as t→+∞

+ C2e
−γt

∫−t

−∞
e−2z(θsω)+λs+C1

∫−t
s z(θτω)dτds︸ ︷︷ ︸

→ 0 as t→+∞

.
(3.45)

Lemma 3.5. The RDS {ϕ(t, ω, ·)}t≥0,ω∈Ω generated by (3.9) is random asymptotically null onK(ω);
that is, for any ε > 0, there exist T(ε,ω,K) > 0, ∀t ≥ T(ε,ω,K(ω)), andM(ε,ω,K(ω)) ∈ N such
that

sup
ϕ0∈K(ω)

∑
|i|>M(ε,ω,K(ω))

∣∣ϕ(t, θ−tω, ϕ0(θ−tω)
)
i

∣∣2
H

≤ ε2. (3.46)

Proof. Choose a smooth cut-off function satisfying 0 ≤ ρ(s) ≤ 1 for s ∈ R
+ and ρ(s) = 0 for

0 ≤ s ≤ 1, ρ(s) = 1 for s ≥ 2. Suppose there exists a constant c such that |ρ′(s)| ≤ c for s ∈ R
+.

Set x = (ρ(|i|/M)ũi)i∈Z
, y = (ρ(|i|/M)ṽi)i∈Z

, and z = (ρ(|i|/M)w̃i)i∈Z
. By taking the

inner product of (3.20) with Gx, y, and Gz, respectively, we get

G

2
d

dt

∑
i∈Z

ρ

( |i|
M

)
|ũi|2 = −Gd1(Aũ, x) −G(F + k − z(θtω))

∑
i∈Z

ρ

( |i|
M

)
|ũi|2

+ kG(r̃, x) +Ge2z(θtω)
(
ũ2ṽ, x

)
−G2e2z(θtω)

(
ũ3, x

)
,
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1
2
d

dt

∑
i∈Z

ρ

( |i|
M

)
|ṽi|2 = − d2

(
Aṽ, y

) − (F − z(θtω))
∑
i∈Z

ρ

( |i|
M

)
|ṽi|2

−Ge2z(θtω)
(
ũ2ṽ, y

)
+G2e2z(θtω)

(
ũ3, y

)
+
(
e−z(θtω), y

)
,

μG

2
d

dt

∑
i∈Z

ρ

( |i|
M

)
|r̃i|2 = − μGd3(Ar̃, z) −G

(
μF + k − z(θtω)

)∑
i∈Z

ρ

( |i|
M

)
|r̃i|2

+ kG(ũ, z).

(3.47)

Due to [9, 10], we have

−(Aũ, x) ≤ 2c‖ũ‖2
M

, −(Aṽ, y) ≤ 2c‖ṽ‖2
M

, −(Ar̃, z) ≤ 2c‖r̃‖2
M

. (3.48)

Combining with (3.48) to (3.49), we obtain

1
2
d

dt

∑
i∈Z

ρ

( |i|
M

)(
G|ũi|2 + |ṽi|2 + μG|r̃i|2

)
+G(F − z(θtω))

∑
i∈Z

ρ

( |i|
M

)
|ũi|2

+
(
F

2
− z(θtω)

)∑
i∈Z

ρ

( |i|
M

)
|ṽi|2 +G

(
μF − z(θtω)

)∑
i∈Z

ρ

( |i|
M

)
|r̃i|2

≤ 2c
M

(
Gd1‖ũ‖2 + d2‖ṽ‖2 + μGd3‖r̃‖2

)
+
F

2
e−2z(θtω),

(3.49)

that is,

d

dt

∑
i∈Z

ρ

( |i|
M

)(
G|ũi|2 + |ṽi|2 + G

μ
|w̃i|2

)
+ 2GF

∑
i∈Z

ρ

( |i|
M

)
|ũi|2

+ F
∑
i∈Z

ρ

( |i|
M

)
|ṽi|2 + 2GF

μ

∑
i∈Z

ρ

( |i|
M

)
|w̃i|2

≤ 2z(θtω)
∑
i∈Z

ρ

( |i|
M

)(
G|ũi|2 + |ṽi|2 + G

μ2 |w̃i|2
)

+
4c
M

(
Gd1‖ũ‖2 + d2‖ṽ‖2 + G

μ
d3‖w̃‖2

)
+ Fe−2z(θtω).

(3.50)

Denote

C3 = 2cmax{d1, d2, d3}C1, (3.51)
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then (3.51) yields

d

dt

∑
i∈Z

ρ

( |i|
M

)∣∣g̃i∣∣2H + (λ − C1z(θtω))
∑
i∈Z

ρ

( |i|
M

)∣∣g̃i∣∣2H ≤ C3

M

∥∥g̃∥∥2
H + C2e

−2z(θtω). (3.52)

By using Gronwall’s lemma, for t ≥ TK = TK(ω), we have

∑
i∈Z

ρ

( |i|
M

)∣∣g̃i(t, ω, g̃0(ω))∣∣2H
≤ e−λ(t−TK)+C1

∫ t
Tk
z(θsω)ds

∑
i∈Z

ρ

( |i|
M

)∣∣g̃i(Tk,ω, g̃0(ω))∣∣2H
+
C3

M

∫ t
Tk

e−λ(t−s)+C1
∫ t
s z(θτω)dτ

∥∥g̃(s,ω, g̃0(ω))∥∥2
Hds

+ C2

∫ t
Tk

e−λ(t−s)−2z(θsω)+C1
∫ t
s z(θτω)dτds.

(3.53)

Replace ω by θ−tω. We then estimate each term on the right-hand side of (3.54). From (3.26)
with t replaced by TK and ω by θ−tω, respectively, it then follows that

e
−λ(t−TK)+C1

∫ t
Tk
z(θs−tω)ds

∑
i∈Z

ρ

( |i|
M

)∣∣g̃i(Tk, θ−tω, g̃0(θ−tω))∣∣2H
≤ e−λt+C1

∫ t
0 z(θs−tω)ds

∥∥g̃0(ω)∥∥2
H + C2

∫TK
0
e−2z(θs−tω)+λ(s−t)+C1

∫ t
s z(θτ−tω)dτds

≤ e−λt+C1
∫0
−t z(θsω)ds

∥∥g̃0(ω)∥∥2
H + C2

∫TK−t
−t

e−2z(θsω)+λs+C1
∫0
s z(θτω)dτds.

(3.54)

Hence, by using (3.6), there is a T1(ε,ω,K(ω)) > TK(ω), such that if t > T1(ε,ω,K(ω)),

e
−λ(t−TK)+C1

∫ t
Tk
z(θs−tω)ds

∑
i∈Z

ρ

( |i|
M

)∣∣g̃i(Tk, θ−tω, g̃0(θ−tω))∣∣2H <
ε2

3
. (3.55)
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Next, we estimate

C3

M

∫ t
Tk

e−λ(t−s)+C1
∫ t
s z(θτ−tω)dτ

∥∥g̃(s, θ−tω, g̃0(θ−tω))∥∥2
Hds

≤ C3

M
(t − TK)e−λt+C1

∫ t
0 z(θr−tω)dr

∥∥g̃0(ω)∥∥2
H +

C2C3

M

∫ t
TK

∫s
0
e−2z(θτ−tω)−λ(t−τ)+C1

∫ t
τ z(θr−tω)drdτds

≤ C3

M
(t − TK)e−λt+C1

∫0
−t z(θrω)dr

∥∥g̃0(ω)∥∥2
H +

C2C3

M

∫ t
TK

∫ s−t

−t
e−2z(θτω)+λτ+C1

∫0
τ z(θrω)drdτds

≤ C3

M
(t − TK)e−λt+C1

∫0
−t z(θrω)dr

∥∥g̃0(ω)∥∥2
H +

C2C3

M
(t − TK)

∫0

−t
e−2z(θτω)+λτ+C1

∫0
τ z(θrω)drdτ.

(3.56)

By using (3.7), there exist T2(ε,ω,K(ω)) > TK(ω) and M1(ε,ω,K(ω)) > 0, such that if t >
T2(ε,ω,K(ω)) andM >M1(ε,ω,K(ω)), then

C3

M

∫ t
Tk

e−λ(t−s)+C1
∫ t
s z(θτ−tω)dτ

∥∥g̃(s, θ−tω, g̃0(θ−tω))∥∥2
Hds ≤

ε2

3
. (3.57)

By using (3.7) again, there exists T3(ε,ω,K(ω)) > 0, such that if T > T3(ε,ω,K(ω)), we have

C2

∫ t
Tk

e−λ(t−s)−2z(θsω)+C1
∫ t
s z(θτω)dτds ≤ ε2

3
. (3.58)

Therefore, by letting

T(ε,ω,K(ω)) = max{T1(ε,ω,K(ω)), T2(ε,ω,K(ω)), T3(ε,ω,K(ω))},
M(ε,ω,K(ω)) =M1(ε,ω,K(ω)),

(3.59)

we obtain, for t > T(ε,ω,K(ω)) andM >M(ε,ω,K(ω)),

∑
|i|≥2M

∣∣g̃i(t, θ−tω, g̃0(θ−tω))∣∣2H ≤
∑
i∈Z

ρ

( |i|
M

)∣∣g̃i(t, θ−tω, g̃0(θ−tω))∣∣2H ≤ ε2, (3.60)

which implies

∑
|i|>M(ε,ω,K(ω))

∣∣(ϕ(t, θ−tω, ϕ0(θ−tω)
)
i

∣∣2
H

≤ ε2, ∀t ≥ T(ε,ω,K(ω)). (3.61)

The proof is completed.

Now, we have the main result.
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Theorem 3.6. The random dynamical system ϕ generated by system (3.9) has a unique global random
attractor.

Proof. It is obvious from Lemmas 3.4, and 3.5, and Proposition 2.5.
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