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At first we find the solution of the functional equation Df (x1, . . . , xm) :=
∑m

k=2(
∑k

i1=2
∑k+1

i2=i1+1 · · ·∑m
im−k+1=im−k+1)f(

∑m
i=1,i /= i1 ,...,im−k+1 xi −

∑m−k+1
r=1 xir ) + f(

∑m
i=1 xi) − 2m−1f(x1) = 0, where m ≥ 2 is an in-

teger number. Then, we obtain the generalized Hyers-Ulam-Rassias stability in random normed
spaces via the fixed point method for the above functional equation.

1. Introduction and Preliminaries

A basic question in the theory of functional equations is as follows: “when is it true that a
function that approximately satisfies a functional equation must be close to an exact solution
of the equation?”

If the problem accepts a solution, we say the equation is stable. The first stability
problem concerning group homomorphismswas raised byUlam [1] in 1940 and affirmatively
solved by Hyers [2]. The result of Hyers was generalized by Aoki [3] for approximate addi-
tive function and by Rassias [4] for approximate linear functions by allowing the difference
Cauchy equation ‖f(x + y) − f(x) − f(y)‖ to be controlled by ε(‖x‖p + ‖y‖p). Taking into
consideration a lot of influence of Ulam, Hyers, and Rassias on the development of stability
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problems of functional equations, the stability phenomenon that was proved by Rassias is
called the Hyers-Ulam-Rassias stability. In 1994, a generalization of Rassias theorem was
obtained by Găvruţa [5], who replaced ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y)
(see also [6–24]).

In the sequel we adopt the usual terminology, notations, and conventions of the theory
of random normed spaces, as in [25–29]. Throughout this paper, let Δ+ be the space of
distribution functions, that is,

Δ+ := {F : R ∪ {−∞,∞} −→ [0, 1] : F is left-continuous,

nondecreasing on R, F(0) = 0 and F(+∞) = 1
} (1.1)

and the subset D+ ⊆ Δ+ is the set

D+ =
{
F ∈ Δ+ : l−F(+∞) = 1

}
, (1.2)

where l−f(x) denotes the left limit of function f at the point x. The space Δ+ is partially
ordered by the usual pointwise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t)
for all t ∈ R. The maximal element for Δ+ in this order is the distribution function given by

ε0(t) =

{
0 if t ≤ 0,
1 if t > 0.

(1.3)

Definition 1.1 (see [28]). A mapping T : [0, 1]×[0, 1] → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative,

(b) T is continuous,

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b), and
TL(a, b) = max(a + b − 1, 0) (the Łukasiewicz t-norm).

Recall (see [30, 31]) that if T is a t-norm and {xn} is a given sequence of numbers in
[0, 1], Tni=1xi is defined recurrently by

Tni=1xi =

{
x1 if n = 1,
T
(
Tn−1i=1 xi, xn

)
if n ≥ 2.

(1.4)

T∞
i=nxi is defined as T∞

i=1xn+i.
It is known [31] that for the Łukasiewicz t-norm the following implication holds:

lim
n→∞

(TL)∞i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1 − xn) <∞. (1.5)
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Definition 1.2 (see [29]). A random normed space (briefly, RN space) is a triple (X,Λ, T),
where X is a vector space, T is a continuous t-norm, and Λ is a mapping from X intoD+ such
that the following conditions hold:

(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0,

(RN2) Λαx(t) = Λx(t/|α|) for all x ∈ X, α/= 0,

(RN3) Λx+y(t + s) ≥ T(Λx(t),Λy(s)) for all x, y ∈ X and t, s ≥ 0.

Definition 1.3. Let (X,Λ,T) be an RN space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0,
there exists positive integerN such that Λxn−x(ε) > 1 − λwhenever n ≥N.

(2) A sequence {xn} in X is called Cauchy if, for every ε > 0 and λ > 0, there exists
positive integerN such that Λxn−xm(ε) > 1 − λwhenever n ≥ m ≥N.

(3) An RN space (X,Λ, T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point inX. A complete RN space is said to be a random Banach
space.

Theorem 1.4 (see [28]). If (X,Λ, T) is an RN space and {xn} is a sequence such that xn → x, then
limn→∞Λxn(t) = Λx(t) almost everywhere.

Theorem 1.5 (see [32, 33]). Let (S, d) be a complete generalized metric space, and let J : S → S
be a strictly contractive mapping with Lipschitz constant L < 1. Then, for each given element x ∈ S,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.6)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, for all n ≥ n0,
(2) the sequence {Jnx} converges to a fixed point y∗ of J ,

(3) y∗ is the unique fixed point of J in the set Ω = {y ∈ S | d(Jn0x, y) <∞},
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Ω.

The theory of random normed spaces (RN spaces) is important as a generalization
of deterministic result of linear normed spaces and also in the study of random operator
equations. The notion of an RN space corresponds to the situations when we do not know
exactly the norm of point and we know only probabilities of possible values of this norm.
The RN spaces may also provide us the appropriate tools to study the geometry of nuclear
physics and have important application in quantum particle physics. The generalized Hyers-
Ulam stability of different functional equations in random normed spaces (RN spaces) and
fuzzy normed spaces has been recently studied in, Alsina [34], Mirmostafaee et al. [35–38],
Miheţ and Radu [26, 27, 39, 40], Miheţ et al. [41, 42], Baktash et al. [43] and Saadati et al. [44].
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In this paper, we consider them-dimensional additive functional equation

m∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
m∑

im−k+1=im−k+1

)

f

⎛

⎝
m∑

i=1,i /= i1,...,im−k+1

xi −
m−k+1∑

r=1

xir

⎞

⎠ + f

(
m∑

i=1

xi

)

= 2m−1f(x1),

(1.7)

wherem ≥ 2 is an integer number. It is easy to see that the function f(x) = ax is a solution of
the functional equation (1.7).

As a special case, ifm = 2 in (1.7), then the functional equation (1.7) reduces to

f(x1 + x2) + f(x1 − x2) = 2f(x1). (1.8)

Also by puttingm = 3 in (1.7), we obtain

2∑

i1=2

3∑

i2=i1+1

f

⎛

⎝
3∑

i=1,i /= i1,i2

xi −
2∑

r=1

xir

⎞

⎠ +
3∑

i1=2

f

⎛

⎝
3∑

i=1,i /= i1

xi − xi1

⎞

⎠ + f

(
3∑

i=1

xi

)

= 22f(x1), (1.9)

that is,

f(x1 − x2 − x3) + f(x1 − x2 + x3) + f(x1 + x2 − x3) + f(x1 + x2 + x3) = 4f(x1). (1.10)

The main purpose of this paper is to prove the stability of (1.7) in random normed
spaces via the fixed point method.

2. Results in RN spaces via Fixed Point Method

Lemma 2.1. Let X and Y be real vector spaces. A function f : X → Y with f(0) = 0 satisfies (1.7)
if and only if f : X → Y is additive.

Proof. Let f satisfy the functional equation (1.7). Hence, according to (1.7), we get

2∑

i1=2

3∑

i2=i1+1

· · ·
m∑

im−1=im−2+1

f

⎛

⎝
m∑

i=1,i /= i1,...,im−1

xi −
m−1∑

r=1

xir

⎞

⎠

+
3∑

i1=2

4∑

i2=i1+1

· · ·
m∑

im−2=im−3+1

f

⎛

⎝
m∑

i=1,i /= i1,...,im−2

xi −
m−2∑

r=1

xir

⎞

⎠ + · · · +
m∑

i1=2

f

⎛

⎝
m∑

i=1,i /= i1

xi − xi1

⎞

⎠

+ f

(
m∑

i=1

xi

)

= 2m−1f(x1)

(2.1)
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for all x1, . . . , xm ∈ X. Setting xi = 0 (i = 2, . . . , m − 1) in (2.1), we have

f(x1 − xm) +
((

m − 2
1

)

f(x1 − xm) +
(
m − 2
m − 2

)

f(x1 + xm)
)

+ · · · +
((

m − 2
m − 3

)

f(x1 − xm) +
(
m − 2
2

)

f(x1 + xm)
)

+
((

m − 2
m − 2

)

f(x1 − xm) +
(
m − 2
1

)

f(x1 + xm)
)

+ f(x1 + xm) = 2m−1f(x1),

(2.2)

that is,

(

1 +
m−2∑

�=1

(
m − 2
�

))
(
f(x1 + xm) + f(x1 − xm)

)
= 2m−1f(x1) (2.3)

for all x1, xm ∈ X. On the other hand, we have the relation

1 +
m−j∑

�=1

(
m − j
�

)

=
m−j∑

�=0

(
m − j
�

)

= 2m−j (2.4)

for allm > J . Hence, we obtain from (2.3) and (2.4) that

f(x1 + xm) + f(x1 − xm) = 2f(x1) (2.5)

for all x1, xm ∈ X. Setting xm = x1 in (2.5) we get f(2x1) = 2f(x1) for all x1 ∈ X. Replacing
x1 and xm by x1 + xm and x1 − xm in (2.5), respectively, and then using f(2x1) = 2f(x1), we
obtain that

f(x1 + xm) = f(x1) + f(xm) (2.6)

for all x1, xm ∈ X, which implies that f is additive.
Conversely, suppose that f is additive, and thus f satisfies the equation f(x1 + x2) =

f(x1) + f(x2). Hence we have f(0) = 0 and f(2x1) = 2f(x1) for all x1 ∈ X. Replacing x1 and
x2 by x1 + x2 and x1 − x2 in the additive equation and then using f(2x1) = 2f(x1) lead to

f(x1 + x2) + f(x1 − x2) = 2f(x1) (2.7)

for all x1, x2 ∈ X.
Now, we are going to prove our assumption by induction onm ≥ 2. It holds form = 2;

see (2.7). Assume that (1.7) holds for the case, wherem = p; that is, we have

p∑

k=2

⎛

⎝
k∑

i1=2

k+1∑

i2=i1+1

· · ·
p∑

ip−k+1=ip−k+1

⎞

⎠f

⎛

⎝
p∑

i=1,i /= i1,...,ip−k+1

xi −
p−k+1∑

r=1

xir

⎞

⎠ + f

(
p∑

i=1

xi

)

= 2p−1f(x1)

(2.8)
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for all x1, . . . , xp ∈ X. Replacing x1 by x1 + xp+1 in (2.8), we obtain

p∑

k=2

⎛

⎝
k∑

i1=2

k+1∑

i2=i1+1

· · ·
p∑

ip−k+1=ip−k+1

⎞

⎠f

⎛

⎝x1 + xp+1 +
p∑

i=2,i /= i1,...,ip−k+1

xi −
p−k+1∑

r=1

xir

⎞

⎠

+ f

(
p+1∑

i=1

xi

)

= 2p−1f
(
x1 + xp+1

)

(2.9)

for all x1, . . . , xp ∈ X. Replacing xp+1 by −xp+1 in (2.9), we obtain

p∑

k=2

⎛

⎝
k∑

i1=2

k+1∑

i2=i1+1

· · ·
p∑

ip−k+1=ip−k+1

⎞

⎠f

⎛

⎝x1 − xp+1 +
p∑

i=2,i /= i1,...,ip−k+1

xi −
p−k+1∑

r=1

xir

⎞

⎠

+ f

(
p∑

i=1

xi − xp+1
)

= 2p−1f
(
x1 − xp+1

)
(2.10)

for all x1, . . . , xp+1 ∈ X. Adding (2.9) to (2.10), one gets

p+1∑

k=2

⎛

⎝
k∑

i1=2

k+1∑

i2=i1+1

· · ·
p+1∑

ip−k+2=ip−k+1+1

⎞

⎠f

⎛

⎝
p+1∑

i=1,i /= i1,...,ip−k+2

xi −
p−k+2∑

r=1

xir

⎞

⎠ + f

(
p+1∑

i=1

xi

)

= 2p−1
(
f
(
x1 + xp+1

)
+ f
(
x1 − xp+1

))
(2.11)

for all x1, . . . , xp+1 ∈ X. Therefore, it follows from (2.7) and (2.11) that (1.7) holds form = p+1.
This completes the proof of the theorem.

From now on, let X be a linear space and (Y,Λ, TM) a complete RN space. For con-
venience, we use the following abbreviation for a given function f : X → Y :

Df(x1, . . . , xm) =
m∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

. . .
m∑

im−k+1=im−k+1

)

f

⎛

⎝
m∑

i=1,i /= i1,...,im−k+1

xi −
m−k+1∑

r=1

xir

⎞

⎠

+ f

(
m∑

i=1

xi

)

− 2m−1f(x1)

(2.12)

for all x1, . . . , xm ∈ X, wherem ≥ 2 is an integer number.

Theorem 2.2. Let Φ : X ×X × · · · ×X︸ ︷︷ ︸
m-terms

→ D+ be a function (Φ(x1, . . . , xm) is denoted by Φx1,...,xm)

such that, for some 0 < α < 2,

Φ2x1,...,2xm(αt) ≥ Φx1,...,xm(t) (2.13)



Discrete Dynamics in Nature and Society 7

for all x1, . . . , xm ∈ X and all t > 0. Suppose that a function f : X → Y with f(0) = 0 satisfies the
inequality

ΛDf (x1,...,xm)(t) ≥ Φx1,...,xm(t) (2.14)

for all x1, . . . , xm ∈ X and all t > 0. Then, there exists a unique additive function A : X → Y such
that

Λf(x)−A(x)(t) ≥ Φx,x,0, . . . , 0
︸ ︷︷ ︸

m−2

(
2m−2(2 − α)t

)
(2.15)

for all x ∈ X and all t > 0.

Proof. Letting xi = 0 (i = 3, . . . , m) in (2.14), we get

Λ(1+
∑m−2

�=1

(
m−2
�

)
)(f(x1+x2)+f(x1−x2))−2m−1f(x1)

(t) ≥ Φx1,x2,0,...,0(t) (2.16)

for all x1, x2 ∈ X and all t > 0. Setting x1 = x2 = x in (2.16), we obtain from (2.4) and f(0) = 0
that

Λ2m−2f(2x)−2m−1f(x)(t) ≥ Φx,x,0,...,0(t) (2.17)

for all x ∈ X and all t > 0, or

Λf(2x)/2−f(x)(t) ≥ Φx,x,0,...,0

(
2m−1t

)
(2.18)

for all x ∈ X and all t > 0. Let S be the set of all functions h : X → Y with h(0) = 0 and
introduce a generalized metric on S as follows:

d(h, k) = inf
{
u ∈ R

+ : Λh(x)−k(x)(ut) ≥ Φx,x,0,...,0(t), ∀x ∈ X, ∀t > 0
}
, (2.19)

where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is a generalized complete metric
space [26, 45].

Now we consider the function J : S → S defined by

Jh(x) :=
h(2x)
2

(2.20)

for all h ∈ S and x ∈ X.
Now let g, f ∈ S such that d(f, g) < ε. Then,

ΛJg(x)−Jf(x)
(αε

2
t
)
= Λg(2x)−f(2x)(αεt) ≥ Φ2x,2x,0,...,0(αt) ≥ Φx,x,0,...,0(t), (2.21)
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that is, if d(f, g) < ε, we have d(Jf, Jg) < (α/2)ε. This means that

d
(
Jf, Jg

) ≤ α

2
d
(
f, g
)

(2.22)

for all f, g ∈ S, that is, J is a strictly contractive self-function on Swith the Lipschitz constant
α/2.

It follows from (2.18) that

ΛJf(x)−f(x)

(
t

2m−1

)

≥ Φx,x,0,...,0(t) (2.23)

for all x ∈ X and all t > 0, which implies that d(Jf, f) ≤ 1/2m−1.
Due to Theorem 1.5, there exists a function A : X → Y such that A is a fixed point of

J , that is, A(2x) = 2A(x) for all x ∈ X.
Also, d(Jnf,A) → 0 as n → ∞, implies the equality

lim
n→∞

f(2nx)
2n

= A(x) (2.24)

for all x ∈ X. If we replace x1, . . . , xm with 2nx1, . . . , 2nxm in (2.14), respectively, and divide by
2n, then it follows from (2.13) that

ΛDf (2nx1,...,2nxm)/2n(t) ≥ Φ2nx1,...,2nxm(2
nt) = Φ2nx1,...,2nxm

(

αn
(
2
α

)n
t

)

≥ Φx1,...,xm

((
2
α

)n
t

)

(2.25)

for all x1, . . . , xm ∈ X and all t > 0. By letting n → ∞ in (2.25), we find that ΛDA(x1,...,xm)(t) = 1
for all t > 0, which impliesDA(x1, . . . , xm) = 0, and thusA satisfies (1.7). Hence by Lemma 2.1,
the function A : X → Y is additive.

According to the fixed point alterative, since A is the unique fixed point of J in the set
Ω = {g ∈ S : d(f, g) <∞}, A is the unique function such that

Λf(x)−A(x)(ut) ≥ Φx,x,0,...,0(t) (2.26)

for all x ∈ X and all t > 0. Again using the fixed point alterative gives

d
(
f,A
) ≤ 1

1 − Ld
(
f, Jf

) ≤ 1
2m−1(1 − L) =

1
2m−1(1 − α/2) , (2.27)

which implies the inequality

Λf(x)−A(x)

(
t

2m−2(2 − α)
)

≥ Φx,x,0,...,0(t) (2.28)



Discrete Dynamics in Nature and Society 9

for all x ∈ X and all t > 0. So,

Λf(x)−A(x)(t) ≥ Φx,x,0,...,0

(
2m−2(2 − α)t

)
(2.29)

for all x ∈ X and all t > 0. This completes the proof.

Now, we present a corollary that is an application of the last theorem in the classical
case.

Corollary 2.3. Let (X, ‖ · ‖) and (Y, ‖ · ‖), normed linear spaces, define

Λx(t) =
t

t + ‖x‖ (2.30)

for x ∈ X and t > 0. Define

Φx1,...,xm(t) =
t

t +
∑m

i=1 ‖xi‖p
(2.31)

for all x1, . . . , xm ∈ X and all t > 0 in which p < 1. Now, for α = 2p, (2.13) holds for all x1, . . . , xm ∈
X and all t > 0. Suppose that an odd function f : X → Y satisfies (2.14) for all x1, . . . , xn ∈ X and
all t > 0. Then, by the last theorem there exists a unique additive function A : X → Y such that

t

t +
∥
∥f(x) −A(x)

∥
∥
≥ t

t + 1/2m−2(1 − 2p−1
)‖x‖p (2.32)

for all x ∈ X and all t > 0. Hence,

∥
∥f(x) −A(x)

∥
∥ ≤ 1

2m−2(1 − 2p−1
)‖x‖p (2.33)

for all x ∈ X.

Theorem 2.4. Let Φ : X ×X × · · · ×X︸ ︷︷ ︸
m-terms

→ D+ be a function such that, for some 0 < α < 3,

Φ3x1,...,3xm(αt) ≥ Φx1,...,xm(t) (2.34)

for all x1, . . . , xm ∈ X and all t > 0. Suppose that an odd function f : X → Y satisfies (2.14) for all
x1, . . . , xn ∈ X and all t > 0. Then, there exists a unique additive function A : X → Y such that

Λf(x)−A(x)(t) ≥ Φx,x,x,0, . . . , 0
︸ ︷︷ ︸

m−3

(
2m−3(3 − α)t

)
(2.35)

for all x ∈ X and all t > 0.
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Proof. Letting xi = 0 (i = 4, . . . , m) in (2.14), we get

Λ(1+
∑m−3

�=1

(
n−3
�

)
)(f(x1+x2+x3)+f(x1−x2+x3)+f(x1+x2−x3)+f(x1−x2−x3))−2m−1f(x1)

(t) ≥ Φx1,x2,x3,0,...,0(t) (2.36)

for all x1, x2, x3 ∈ X and all t > 0. Setting x1 = x2 = x3 = x in the last inequality, we obtain by
using oddness of f and (2.4) that

Λ2m−3f(3x)+f(x)−2m−1f(x)(t) ≥ Φx,x,x,0,...,0(t) (2.37)

for all x ∈ X and all t > 0, or

Λ(f(3x)/3)−f(x)(t) ≥ Φx,x,x,0,...,0

(
3.2m−3t

)
(2.38)

for all x ∈ X and all t > 0. Let S be the set of all odd functions h : X → Y , and introduce a
generalized metric on S as follows:

d(h, k) = inf
{
u ∈ R

+ : Λh(x)−k(x)(ut) ≥ Φx,x,x,0,...,0(t), ∀x ∈ X, ∀t > 0
}
. (2.39)

It is easy to show that (S, d) is a generalized complete metric space [26, 45]. Let J : S → S be
the function defined by

Jh(x) :=
h(3x)
3

(2.40)

for all h ∈ S and x ∈ X. One can show that

d
(
Jf, Jg

) ≤ α

3
d
(
f, g
)

(2.41)

for all f, g ∈ S, that is, J is a strictly contractive self-function on Swith the Lipschitz constant
α/3.

It follows from (2.38) that

ΛJf(x)−f(x)

(
t

3.2m−3

)

≥ Φx,x,x,0,...,0(t) (2.42)

for all x ∈ X and all t > 0, which implies that d(Jf, f) ≤ (1/3.2m−3).
Due to Theorem 1.5, the sequence {Jn} converges to a fixed point A of J , that is,

A : X −→ Y, A(x) = lim
n→∞

Jnf(x) = lim
n→∞

f(3nx)
3n

, (2.43)

and A(3x) = 3A(x) for all x ∈ X.
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Also, A is the unique fixed point of J in the set Ω = {g ∈ S : d(f, g) <∞}, and

d
(
f,A
) ≤ 1

1 − Ld
(
f, Jf

) ≤ 1
3.2m−3(1 − L) =

1
3.2m−3(1 − α/3) (2.44)

implies the inequality

Λf(x)−A(x)

(
t

2m−3(3 − α)
)

≥ Φx,x,x,0,...,0(t) (2.45)

for all x ∈ X and all t > 0. This implies that inequality (2.35) holds. Furthermore, we can
obtain that the functionA : X → Y satisfies (1.7). Hence by Lemma 2.1, we get that the func-
tion A : X → Y is additive.

Now, we present a corollary that is an application of the last theorem in the classical
case.

Corollary 2.5. Let (X, ‖ · ‖) and (Y, ‖ · ‖), normed linear spaces, define

Λx(t) =
t

t + ‖x‖ (2.46)

for x ∈ X and t > 0. Define

Φx1,...,xm(t) =
t

t +
∑m

i=1 ‖xi‖p
(2.47)

for all x1, . . . , xm ∈ X and all t > 0 in which p < 1. Now, for α = 3p, (2.34) holds for all x1, . . . , xm ∈
X and all t > 0. Suppose that an odd function f : X → Y satisfies (2.14) for all x1, . . . , xn ∈ X and
all t > 0. Then, by the last theorem there exists a unique additive function A : X → Y such that

t

t +
∥
∥f(x) −A(x)

∥
∥
≥ t

t + 1/2m−3(1 − 3p−1
)‖x‖p (2.48)

for all x ∈ X and all t > 0. Hence,

∥
∥f(x) −A(x)

∥
∥ ≤ 1

2m−3(1 − 3p−1
)‖x‖p (2.49)

for all x ∈ X.
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