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By considering the varying latency period of computer virus, we propose a novel model
for computer virus propagation in network. Under this model, we give the threshold value
determining whether or not the virus finally dies out, and study the local stability of the virus-
free and virus equilibrium. It is found that the model may undergo a Hopf bifurcation. Next,
we use different methods to prove the global asymptotic stability of the equilibria: the virus-free
equilibrium by using the direct Lyapunov method and virus equilibrium by using a geometric
approach. Finally, some numerical examples are given to support our conclusions.

1. Introduction

With the advance of computer software andhardware and communication technologies, the
number and sort of computer viruses have increased dramatically, which causes huge losses
to the human society. Therefore, establishing reasonable computer-virus-propagation models
by considering the characteristics of computer virus and, by model analysis, understanding
the spread law of the virus over the network, are a currently hot topic of research.

Towards this goal, the classical SIR (susceptible-infected-recovered) model [1, 2],
as well as its extensions [3–5], is extended to explore the behavior of computer virus
propagation in network. Based on these classical models and by considering the computer
virus fixed latent period, Mishra et al. [6, 7] proposed delayed SIRS, SEIR computer virus
models with a fixed period of temporary immunity, which accounts for the temporary
recovery from the infection of virus. In [8], Tan and Han proposed an SIRS computer virus
model with fixed latency and temporal immune periods, studied the effect of time delays
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on the stability of the equilibria, and gave some conditions for the equilibria to be locally
asymptotically stable for all delays.

Motivated by the previous work, this paper proposes and studies a computer-virus-
propagation model with varying latency period, known as the SIRC model. We obtain
the threshold value determining whether the virus dies out completely, study the local
asymptotic stabilities of the equilibria of the model and it is found that, model may undergo a
Hopf bifurcation. Next, we prove the global asymptotic stability of the virus-free equilibrium
by using the direct Lyapunov method, prove the global asymptotic stability of the virus
equilibrium by using a geometric approach. By introducing varying time delay, the model
may truly reflect the virus propagation and hence, the corresponding results may help
understand and prevent the spread of computer virus over a computer network.

The remaining materials of this paper are organized this way: Section 2 introduces the
mathematical model to be discussed; Section 3 studies the local stability of the virus-free and
virus equilibrium ofmodel, respectively, examines the stability switch for a virus equilibrium,
and shows that our model may admit a Hopf bifurcation; Section 4 uses different methods to
prove the global asymptotic stability of the equilibria. In Section 5, some numerical examples
are given to support our conclusions. We end the paper with a brief discussion in Section 6.

2. Mathematical Model

Consider the classical SIR computer virus model proposed in [1, 2]

dS

dt
= b − βS(t)I(t) − μS(t),

dI

dt
= βS(t)I(t) − (

γ + μ
)
I(t),

dR

dt
= γI(t) − μR(t).

(2.1)

Here it is assumed that all the computers connected to the network in concern are classified
into three categories: susceptible, infected, and recovered computers. Let S(t), I(t), and R(t)
denote their corresponding numbers at time t. This model involves four positive parameters:
b denotes the rate at which external computers are connected to the network, γ denotes the
recovery rate of infected computers due to the antivirus ability of the network, μ denotes the
rate at which one computer is removed from the network, β denotes the rate at which, when
having connection to one infected computer, one susceptible computer can become infected.
For some variants of this model, see [1–5, 9, 10].

The computer virus has latent and unpredictable characteristics [11]. A sophisticated
computer virus program, when entering into the computer system, does not immediately
break out. The longer the latency of a computer virus, the wider its spreading scope will be.
On one hand, the computer virus program can not be detected without use of the specialized
programs. The virus can stay quietly in the disk or CD a few days, even years, and when
the time comes, it will break out to reproduce, spread, and continue to harm. On the other
hand, there is a trigger mechanism within the computer virus, if the trigger conditions are
not met, the computer virus does not do any other damage. Only when the trigger conditions
are met, can the virus be activated to do some damages. Without loss of reality, the following
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assumptions are made:

(1) The virus in susceptible computer has a latency period. Moreover, this latency
period is varying, which can be reflected by the following expression:

∫ t

−∞
S(τ)D(t − τ)dτ, (2.2)

where D is the delay kernel [12], τ is the distributed delay, S(τ) indicates how S(t)
is affected by their previous values.

(2) Only when the virus breaks out can the susceptible computers become the infected
ones.

We choose a typical class of kernels

D(t − τ) =

{
σn+1(t − τ)n exp[−σ(t − τ)]

}

n!
, t ≥ 0, n = 0, 1, 2, . . . , (2.3)

where σ is a positive constant indicating the average delay of the collected information on
the virus infection. In this paper, we simply take the weak kernel

D(t − τ) = σe−σ(t−τ), σ > 0, (2.4)

which implies that the effect of previous events decreases exponentially.
By incorporating these factors into model (2.1), we get the following model:

dS

dt
= b − β

∫ t

−∞
S(τ)D(t − τ)dτI(t) − μS(t),

dI

dt
= β

∫ t

−∞
S(τ)D(t − τ)dτI(t) − (

μ + γ
)
I(t),

dR

dt
= γI(t) − μR(t).

(2.5)

We define a new variable

C(t) =
∫ t

−∞
S(τ)D(t − τ)dτ, (2.6)
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which indicates in susceptible computer, the effect of latent virus on infection. Then model
(2.5) becomes

dS

dt
= b − βC(t)I(t) − μS(t),

dI

dt
= βC(t)I(t) − (

μ + γ
)
I(t),

dR

dt
= γI(t) − μR(t),

dC

dt
=

1
σ
S(t) − 1

σ
C(t).

(2.7)

Because S, I, and C are independent of variable R, this paper focuses on the following model:

dS

dt
= b − βC(t)I(t) − μS(t),

dI

dt
= βC(t)I(t) − (

μ + γ
)
I(t),

dC

dt
=

1
σ
S(t) − 1

σ
C(t).

(2.8)

Adding the first two equations of model (2.8), we can obtain

d(S + I)
dt

= b − μ(S + I) − γI, (2.9)

Therefore, S(t) and I(t) are bounded, that is, S + I ≤ b/μ. From the third equation of model
(2.8), we can obtain

dC

dt
=

1
σ
S − 1

σ
C ≤ b

σμ
− 1
σ
C. (2.10)

It is easy to see that C(t) is bounded, that is, C ≤ b/u. Thus, the set

Ω =
{
(S, I, C) ∈ R3

+, S + I ≤ b

μ
,C ≤ b

μ

}
(2.11)

is the positively invariant set of model (2.8).

3. The Equilibria and Local Stability

This section investigates the equilibria of model (2.8) and their stability. For that purpose, let
us introduce the basic reproduction number, which is defined as R0 = bβ/μ(μ + γ).
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First, model (2.8) has a virus-free equilibrium E0 = (b/μ, 0, b/μ). The characteristic
equation of the corresponding linearized system with respect to E0 is

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ − λ −βb
μ

0

0
βb

μ
− (

μ + γ
) − λ 0

1
σ

0 − 1
σ
− λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (3.1)

The three eigenvalues are −μ, −1/σ, and bβ/μ − (γ + μ). Thus, we immediately get

Theorem 3.1. Consider model (2.8).

(a) The virus-free equilibrium E0 is locally asymptotically stable if R0 < 1.

(b) E0 is unstable if R0 > 1.

Next, whenR0 > 1, model (2.8) has a positive virus equilibrium E∗ = (S∗, I∗, C∗), where

S∗ =
b

μR0
, I∗ =

μ(R0 − 1)
β

, C∗ =
b

μR0
. (3.2)

The characteristic equation of the corresponding linearized system near E∗ is

det

⎛

⎜⎜
⎝

−μ − λ −βC∗ −βI∗
0 −λ βI∗
1
σ

0 − 1
σ
− λ

⎞

⎟⎟
⎠ = 0, (3.3)

which equals

λ3 + p0λ
2 + p1λ + p2 = 0, (3.4)

where

p0 = μ +
1
σ
, p1 =

(
βI∗ + μ

) 1
σ
, p2 =

1
σ
β2C∗I∗. (3.5)

A simple calculation gives

p0p1 − p2 =
(
1
σ
+ μ

)
(
βI∗ + μ

) 1
σ
− β2C∗I∗

1
σ

=
1
σ

{
μ
(
βI∗ + μ

) − β2C∗I∗ +
(
βI∗ + μ

) 1
σ

}
.

(3.6)

If p0p1 − p2 > 0, that is, σ < σ∗, E∗ is locally asymptotically stable, where σ∗ = R0/(R0 − 1)(γ +
μ) − μR0, and σ∗ > 0 is equivalent to R0 > 1 + μ/γ . From the above analysis, we obtain the
following Theorem:
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Theorem 3.2. Consider model (2.8). Suppose R0 > 1 + μ/γ .

(a) The virus equilibrium E∗ is locally asymptotically stable if σ < σ∗.

(b) E∗ is unstable if σ > σ∗.

Remark 3.3. From the above analysis, we can see that that there exists a stability switch for E∗:
E∗ changes its stability when σ goes across the critical value σ∗, which may result in a Hopf
bifurcation and, hence, can be exploited to find an effective strategy for preventing the spread
of computer virus.

Indeed, when σ = σ∗, (3.4) has two complex conjugate roots, λ1,2 = α(T) ± iω(T). It is
noted that α(σ∗) = 0, ω(σ∗) = √

p1 > 0, and

Δ =
dα

dσ

∣
∣
∣
∣
σ∗

=
σ∗μ

(
γ + μ

)
(R0 − 1) − σ∗μ2R0 − 2μR0

2σ∗3(μ + 1/σ∗)2 + 2σ∗2μR0

. (3.7)

Let f(R0) = σ∗μ(γ + μ)(R0 − 1) − σ∗μ2R0 − 2μR0 /= 0, which leads to Δ/= 0. Thus, we obtain.

Theorem 3.4. If R0 > 1 + μ/γ , model (2.8) undergoes a Hopf bifurcation with respect to the virus
equilibrium when σ goes across the value of σ∗.

4. Global Stability

In this section, we will discuss the global stability of the model.

Theorem 4.1. when R0 < 1, the virus-free equilibrium E0 is global stability.

Proof. Define

V (S, I, C) =
1
2
I2. (4.1)

If R0 < 1, then

V̇ (S, I, C) =
[
βC − (

μ + γ
)]
I2 ≤

[
β
b

μ
− (

μ + γ
)
]
I2

≤ [(
μ + γ

)
(R0 − 1)

]
I2 ≤ 0.

(4.2)

Since all the model parameters are positive, it follows that V̇ (S, I, C) < 0 for R0 < 1 with
V̇ (S, I, C) = 0 if and only if I = 0 or R0 = 1. Hence, V is a Lyapunov function on Ω. Thus,
I → 0 as t → ∞. Using I = 0 in the first equation of (2.8) shows that S → b/μ as t → ∞.
Therefore, it follows from the Lasalle’s invariance principle, that every solution of the model,
starting from within Ω, approaches E0 as t → ∞.

In the following, we use the geometrical approach [13, 14] to discuss the global
stability of virus equilibrium E∗. First, we give a brief outline of this approach.
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Let x → f(x) ∈ Rn be aC1 function for x in an open setD ∈ Rn. Consider the following
equation:

ẋ = f(x). (4.3)

Denote by x(t, x0) the solution with x(t, x0) = x0. Then, the following assumptions are
made:

(H1) There exists a compact absorbing set K ⊂ D.

(H2) Equation (4.3) has a unique equilibrium x0 in D.

Let x → p(x) be an ( n
2 )× ( n

2 )matrix-valued function that is C1 for x ∈ D. Assume that
p−1(x) exists and is continuous for x ∈ K, the compact absorbing set. A quantity q2 is defined
as

q2 = lim sup
x→∞

sup
x0∈K

1
t

∫ t

0
μ(B(x(s, x0)))ds, (4.4)

where

B = pfp
−1 + p

∂f [2]

∂x
p−1. (4.5)

The matrix pf is obtained by replacing each entry of p by its derivative in the direction of f ,
and μ(B) is defined by

μ(B) = lim
h→ 0+

|I + hB| − 1
h

, (4.6)

which is the Lozinskil measure of B with respect to a vector norm | · | in RN .

From the above outline, a theorem can be given as follows:

Theorem 4.2 (see [13]). Assume that D is simply connected, and that the assumptions (H1) and
(H2) hold, if q2 < 0, then the unique equilibrium x0 of (4.3) is globally asymptotically stable.

Now, we discuss the global stability of the virus equilibrium E∗ of model (2.8).
Model (2.8) has a unique virus equilibrium E∗ in Ω, hence it satisfies the assumption

(H1). If R0 > 1, then virus-free equilibrium is not stable, and the solutions of model (2.8) are
bounded, which ensure model (2.8) has a compact set in Ω. Therefore, the assumption (H2)
is met.

The Jacobian matrix of model (2.8) is

J =

⎛

⎜⎜
⎝

−μ −βC −βI
0 βC − μ − γ βI

− 1
σ

0 − 1
σ

⎞

⎟⎟
⎠, (4.7)
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and its second additive compound matrix is

J[2] =

⎛

⎜
⎜
⎜
⎝

βC − 2μ − γ βI βI

0 −μ − 1
σ

−βC
− 1
σ

0 βC − (
μ + γ

) − 1
σ

⎞

⎟
⎟
⎟
⎠

. (4.8)

Set the function

P(X) = P(S, I, C) = diag
{
S

I
,
S

I
,
S

I

}
. (4.9)

Then

PfP
−1 = diag

{
S′

S
− I ′

I
,
S′

S
− I ′

I
,
S′

S
− I ′

I

}
, (4.10)

and the matrix B = PfP
−1 + PJ[2]P−1 can be written as

B =
(

B11 B12

B21 B22

)
, (4.11)

where B11 = S′/S − I ′/I + βC − 2μ − r, B12 = (βI, βI), B12 = (0, 1/σ)T , and

B22 =

⎛

⎜
⎝

S′

S
− I ′

I
− μ − 1

σ
−βC

0
S′

S
− I ′

I
− μ − γ − 1

σ
+ βC

⎞

⎟
⎠. (4.12)

Select the norm in R3 as the following:

|u, v,ω| = max{|u|, |v| + |ω|}, (4.13)

where (u, v,ω) denotes the vector in R3, let μ denote the Lozinskii measure with respect to
this norm, then

μ(B) ≤ sup
{
g1, g2

}
= sup

{
μ(B11) + |B12|, μ(B22) + |B21|

}
, (4.14)

where |B12|, |B21| are matrix norms with respect to the L1 vector norm. Thus,

μ(B11) =
S′

S
− I ′

I
+ βC − 2μ − r,

|B12| = βI,

|B21| = 1
σ
.

(4.15)
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Under the condition of C ≤ γ/2β,

μ(B22) =
S′

S
− I ′

I
− μ − 1

σ
. (4.16)

Therefore

g1 =
S′

S
− I ′

I
+ βC + βI − 2μ − r,

g2 =
S′

S
− I ′

I
− μ.

(4.17)

According to the second equation of model (2.8), we can obtain

I ′

I
= βC − μ − r. (4.18)

Hence,

g1 =
S′

S
− I ′

I
+ βI + βC − 2μ − γ ≤ S′

S
−
(
2μ + γ − bβ

μ

)
,

g2 =
S′

S
− I ′

I
− μ ≤ S′

S
− μ − (

μ + γ
)
(R0 − 1) ≤ S′

S
− μ.

(4.19)

Therefore,

μ(B) ≤ S′

S
− b. (4.20)

For t ≥ t1, where b = min{μ, 2μ + γ − bβ/μ}.
This leads to

1
t

∫ t

0
μ(B)ds =

1
t

∫ t1

0
μ(B)ds +

1
t

∫ t

t1

μ(B)ds

≤ 1
t

∫ t1

0
μ(B)ds +

1
t
log

S(t)
S(t1)

− b,

(4.21)

which implies that q2 ≤ −b/2 < 0.
From the above discussions, we can obtain the following theorem:

Theorem 4.3. When R0 > 1, if then the unique equilibrium E∗ is globally asymptotically stable.
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Figure 1: I versus S, where b = 20, β = 0.01, γ = 0.4, μ = 0.2, σ = 5, and R0 ≈ 0.83 satisfy stable condition
for the virus-free equilibrium E0(50.00, 0).
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Figure 2: Distribution of computers versus time when b = 10, β = 0.02, γ = 0.6, μ = 0.1, and σ = 4, where
R0 = 2.86 > 1 and σ∗ ≈ 5.91 > σ, satisfy the stable condition for the virus equilibrium E∗(35.00,9.29).

5. Numerical Simulations

In this section, we make some numerical simulations to understand the obtained theorems.
Let b = 20, β = 0.01, γ = 0.4, μ = 0.2, and σ = 5, then R0 ≈ 0.83 < 1. Hence, the virus-
free equilibrium E0(50.00, 0) is asymptotically stable (see Figure 1), that is, the virus would
extinguish after a period of time. In contrast, let b = 20, β = 0.02, γ = 0.6, and μ = 0.1 yield
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Figure 3: Distribution of computers versus time when b = 20, β = 0.02, γ = 0.6, μ = 0.1, and σ = 7.5,
where R0 = 2.86 > 1 and σ∗ ≈ 5.91 < σ satisfies the unstable condition for the virus equilibrium E∗.

σ∗ ≈ 5.91. In this case, when σ = 4 < σ∗ and σ = 7.5 > σ∗, the virus equilibrium E∗(35.00, 9.29)
would become stable (see Figure 2) and unstable (see Figure 3), respectively.

6. Discussions

In this paper, by considering varying latency period of computer virus, we propose a model
for computer virus propagation in network. First, we give the threshold valueR0 determining
whether the virus extinguishes, and study the local stabilities of the virus-free equilibrium E0

and virus equilibrium E∗ under this model. It is found that R0 changes the stability of E0 and
time delay parameter σ changes the stability of E∗, and that the model may undergo a Hopf
bifurcation. Next, we use two different methods to prove the global asymptotic stabilities
of the equilibria: the virus-free equilibrium by using the direct Lyapunov method and virus
equilibrium by using a geometric approach. Finally, some numerical examples are given to
support our conclusions.
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