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The combination of linear and nonlinear methods is widely used in the prediction of time series
data. This paper analyzes track irregularity time series data by using gray incidence degree models
and methods of data transformation, trying to find the connotative relationship between the
time series data. In this paper, GM (1, 1) is based on first-order, single variable linear differential
equations; after an adaptive improvement and error correction, it is used to predict the long-term
changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman
filtering model, and artificial neural network model are applied to predict the short-term changing
trend of track irregularity at unit section. Both long-term and short-term changes prove that the
model is effective and can achieve the expected accuracy.

1. Introduction

Track irregularity is a serious threat to the safety of train operation. Track irregularity
data includes environmental variables (gauge, longitudinal level, cross level, alignment,
and twist) and effective variables (vertical acceleration and horizontal acceleration). The
developing and changing process of the track irregularity state is random, which cannot
be defined by identified function. Generally, it can be researched with the combination of
probability theory and analysis methodwithin a certain range. Nowadays, most studies focus
on the overall indicators which evaluate the changes of the track’s state, but a few studies
focus on the changes of specific geometric parameters’ changes and the laws behind them.
This is a basic difficulty.

Linear and nonlinear methods are two groups of models employed to estimate time
series. DENG Julong [1] proposed the gray system theory in 1982. Gray system theory has
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been widely applied to the field of controlling, forecasting, and decision making, and the GM
(1, 1) model is its core essence. G. Liu and Yu [2] studied the main factors that could affect
MLF generation by using the method of gray correlation coefficient. Marcellino et al. [3] and
Ding et al. [4] studied the autoregressive model (AR) to forecast macroeconomic time series
and parameter estimation problems. AR is a main model of random process, which can only
reflect the target through historical values of the time series, without being constrained by the
mutually independent variables, eliminating the difficulties caused by independent variables
selection in ordinary regression prediction and multicollinearity, and so forth. Kalman [5]
proposed Kalman filter model in 1960. In the study of Feil et al. [6] and Kandepu et al. [7],
Kalman model was applied to monitoring process transitions and nonlinear state estimation.
Rumelhart and McClelland [8] studied the neural network years ago. Balestrassi et al. [9]
studied neural network’s training for nonlinear time series forecasting. Khashei et al. [10]
studied artificial neural networks in hybrid models. The hybrid method is widely used on
predicting time series predictions now. Zhang [11] proposed to take advantage of the unique
strengths of ARIMA and ANN models in linear and nonlinear modeling. H. Liu et al. [12]
studied hybrid methods in the prediction of wind speed based on time series, artificial neural
networks (ANNs), and Kalman filter (KF). Areekul et al. [13] studied hybrid methodology
which combined both autoregressive integrated moving average (ARIMA) and artificial
neural network (ANN)models to predict short-term electricity prices. Khashei et al. [14] and
Khashei and Bijari [15] proposed hybrid method that could yield more accurate results with
incomplete data sets based on the basic concepts of ANNs and fuzzy; he also proposed hybrid
model of artificial neural networks by using autoregressive integrated moving average
(ARIMA) models in order to yield a more accurate forecasting model compared to artificial
neural networks. Aladag et al. [16] proposed a hybrid approach combined with Elman’s
Recurrent Neural Networks (ERNNs) and ARIMA models and applied the approach to
Canadian Lynx data. In practical prediction, research methods are often composed of two
types of models.

In this paper, three aspects are studied on trends of track cross level state changes. First,
it analyzes track irregularity time series data and tries to find the connotative relationships
between time series data with the application of seven gray incidence degree theories;
secondly, it predicts long-term track level changes at fixedmeasuring point; finally, it predicts
changes of tracks over time at unit section in short term. This paper modifies and corrects
the inadequacies in the GM (1, 1) model, which can only reflect the state of development
of the general trend other than reflect cycle and random variation of the changes of track
level at the fixed measuring point. The accuracy of fitting and forecasting can be greatly
improved. In terms of unit section track state study, this paper uses random linear AR model
and Kalman filtering model to analyze track state over time as well as to predict its future
state. By combining the above studies, we can see the statistical laws of track state changes in
the long and short term and can forecast the future state of the track.

2. Data Analysis

2.1. Analysis of Track Irregularity Data

The idea of time series analysis has been applied in many areas of research, such as the
relationship of following speed and spacing with driving time in driver’s safety-related
approaching behavior [17, 18]. In track irregularity time series studies, the continuity of tracks
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Figure 1: Comparison of track cross level values at K550.00166 and K550.00191 mileage points.

Table 1: Seven incidence degrees between cross level time series and reference cross level time series.

DID AID IAID TID SID FODID SODIG
(1, R) 0.9753 0.9774 0.5032 0.3758 0.9347 0.5811 0.1399
(2, R) 0.9779 0.9767 0.4867 0.3704 0.8977 0.5144 0.1874
(3, R) 0.6299 0.7450 0.5058 0.3897 0.8143 −0.3925 −0.1512
(4, R) 0.9707 0.9768 0.4604 0.3988 0.8718 0.5400 0.1737
(5, R) 0.9743 0.9768 0.4702 0.3790 0.8911 0.5150 0.1496
· · · · · · · · · · · · · · · · · · · · · · · ·
The relationship of cross level data between adjacent hours is shown in Figure 2.

leads to a great similarity between two random time series data obtained at two adjacent
inspection points. The comparison of track cross level values at K550.00166 and K550.00191
mileage points is shown in Figure 1.

It can be seen through Figure 1 that data obtained between the two adjacent measuring
points shares high similarity. There is a great inconsistency during the 23th, 24th, 25th, and
26th inspection at the two adjacent measuring points. It shows great changes on track state
during this time period.

In terms of the complicity of the relationships of time series curves, it is not easy
to find a standard or a fixed formula to indicate the time series curve, but it can only
give a complex evaluation on the changes and a developing tendency of the time series
data. As a result, this paper analyzes and compares seven incidence degree algorithms.
Certain relationships exist between track irregularity time series. Seven incidence degree [19]
formulas include displacement incidence degree (DID), absolute incidence degree (AID),
improved absolute incidence degree (IAID), T incidence degree (TID), slide incidence degree
(SID), first difference incidence degree (FODID), and second difference incidence degree
(SODIG). These seven incidence degree are used to reflect the corelationship between time
series curves. Table 1 shows, respectively, seven incidence degrees between actual cross level
time series and reference cross level time series.

It can be found from Figure 2 that changes on two adjacent cross level irregularity state
data show the linear trend, with an approximated slope of 1. If there is a large deviation from
the slope, it will illustrate that the two adjacent inspection data on track cross level state have
been changed greatly and are in need of special attention.
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Figure 2: Scatter diagrams of detection data during the last ten-day period of April and the first ten-day
period of May, 2008.

2.2. Analysis of Track Irregularity Time Series

Track inspection data refers to the data obtained within a roughly fixed time interval (a half
month), which is generated from geometry state detection along the mileage range of railway
line. The time sequence of track geometry state changes with the following characteristics.

(1) Data Elements of Original Time Series Is a Data Set

In the study of variation law of detection data, each detection data on a certain unit of section
area is considered as a data unit. Data sequence consisted of data unit within a certain time
frame is the object of study, forming a time series. Original time series data is described as
follows:
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t1 , . . . , x
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(
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. (2.1)

In the formula, x(1), x(2), . . . , x(n) is the prediction data set at the unit section,
constituting a time series of data units, xti = {ti,m, gi, ldi, cli, cri, ali, ari, twi}, ti is the time
point in time series, i = 1, 2, . . . , m, m is mileage, gi is gauge, ldi is longitudinal level, cli is
cross level (L), cri is cross level (R), ali is alignment (L), ari is alignment (R), and twi is twist.

(2) Data Transformation Is Necessary

Since each data unit is not a single data, but a data set of union section, rather than, therefore,
it is necessary to transform processing in order to form data which can reflect the real
characters of this section geometry state at ti:

T = {Xt1 , Xt2 , . . . , Xti , . . . , Xtm},

Xti = f
(
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(2.2)
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Figure 3: Changes of time series data at unit section.
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Figure 4: Cyclical trend of track state condition change.

In the formula, f(x(1)
ti , x

(2)
ti , . . . , x

(n)
ti) reflects the characteristics of the entire section

of the track geometry at ti. After transformation, changes of time series data at unit section
are shown in Figure 3.

(3) Time Series Data Are Small Data Sets

In order to keep track status in good condition and to ensure operation safety, maintenance
at regular intervals is needed as the track state changes. Only data from two maintenance
operations can be seen as the objects of the study as well as time series data. It also means
that this is a small data set within a short timespan. We need to find an effective forecasting
method to realize our research goal even though historical data is limited.

As shown in Figure 4, G refers to track geometry state changes (deterioration) limits
and T1 and T2 refer to the exact time that maintenance and repair operations occurred within.
It shows a cyclical changing trend of track state conditions.

(4) Data Selecting

In this paper, track irregularity data by track inspection car in the experimentation is provided
by State key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. The
cross level irregularity data is selected as the object of this research. The research selects the
Beijing-Kowloon upline, the K550 + 000 to K550 + 075 mileage ranging from the second track
inspection in late February 2008 to the second track inspection in late May 2009, a total of
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31 inspection data as data object, each of which contains 300 cross level values and each data
array contains 300 elements.

3. Medium and Long-Term Track State Change Models

3.1. Improvement of GM (1, 1) Model and Prediction

GM (n, h) stands for a grey model of “h” variable expressed by n order differential equations.
Generally speaking, when we make benefit analysis and production forecast in the field of
economy and agroecology, we only work on a variable—a result, by then h = 1. But when n
is too large, it will be too difficult to calculate; thus model GM (1, 1) will be commonly used.
G represents gray, M represents model, and GM (1, 1) stands for first-order, single variable
grey model [1], which can be represented by the linear differential equation (3.1). GM (1, 1)
model is usually used to predict growth trend sequences with power exponent and usually
has better accuracy in prediction. However, in reality, in most cases, the series data does not
show the exponentially growth trend, and generally they are outliers, which limit the range
of applications and fields of GM (1, 1). Thus, the model needs to be improved on the pretreat-
ment of the raw sequence, so that it can expand the extent to which the model can be applied.

Track cross level irregularity data x(0) is a data set at a fixed measuring point, which
fluctuates along mileage with zero values, and the data itself is not monotonic. The methods
of the improved model are as follows: first, the fluctuating value of data is changed to zero
by translating, and then a fixed positive constant is added to each data, so that the new time
series data are positive. Next, smooth the new time series data using a power function [x(0) +
I]α. The result of new time series data weakens the impact of outliers on the fitted data. In
this paper, the positive regular value I is selected as the integer value of two times of the max-
imum absolute value among all original series of data elements, that is, I = int(2 ·max |x(0)|).

According to the analysis of the track cross level sequence of raw data, we find that
int(2·max |x(0)|) = 15. Sowe select 15 as the positive constant value. According to the degree of
the dispersion of the newly constructed data, α, which ranges from 0 to 1, can be determined.
Combined with data characteristics of cross level irregularity, we set α = 0.2. Reconstruct
the original series x(0) by applying new methods of constructing series and then get the new
series x̂(0), adding up, AGO sequence x(1) is constructed:

dx(1)

dt
+ αx(1) = u. (3.1)

When dx(1)/dt is on a point value [k, k+1], dx(1)/dt approximation taken in the point
k + 1, that is,

dx(1)

dt

∣∣∣∣∣
t=k+1

≈ x(1)(k + 1) − x(1)(k) = x̂(0)(k + 1). (3.2)

After transformation, let us solve differential equations

x̂(0)(k + 1) = a

[
−1
2

(
x(1)(k + 1) + x(1)(k)

)]
+ u, k = 1, 2, . . . , n. (3.3)
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Figure 5: Comparison of actual value and prediction value at a fixed measuring point.
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Figure 6: Comparison of actual state and predictive state at unit section.

Then we can obtain the coefficients a and u of the regression curve according to the
least squares method. The expression resulted from the solutions of

x(1)(k + 1) =
[
x̂(0)(1) − u

a

]
e−ak +

u

a
. (3.4)

Next, take the values of a and u into (3.4), we can obtain GM (1, 1) prediction model of
the track cross level state changes. Because the calculation data is a data array which is added
up based on a fixed value; the final predictive value of the expression is as follows:

x(0)(k) =
(
x(1)(k) − x(1)(k − 1)

)1/α − 15. (3.5)

With the application of the formula (3.5), we can predict the law of trend on historic
track cross level data. The trend curve and actual curve fitting is shown in Figure 5.

When gray model GM (1, 1) is used to forecast time series data that after
transformation (see Section 2.2) at the unit section, the predictive result is shown in Figure 6.

It can be found from Figures 5 and 6 that the GM (1, 1) predictive value curve is smooth
and there is a larger deviation between the predicted values and actual values; so it can only
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reflect the overall trend, but cannot reflect the characteristics of the cyclical changes and
random fluctuations and cannot be applied to forecast track state. Therefore, the GM (1, 1)
model needs amended residuals to meet the forecasting requirements.

3.2. Gray Model GM (1, 1) with Residual Modification

Since the residuals are large, there will be a great inaccuracy in GM (1, 1) when predicting
the actual track state change trends. So we cannot predict the medium and long-term track
state changes. In this paper, a method based on the trigonometric residual modification was
presented to improve the predictive accuracy.

Time series of the track geometry state changes has cyclical characteristics according to
the analysis of the historical changing trend of cross level. We find that trigonometric function
has obvious cyclical features. In this paper, trigonometric function is used to correct residuals
of the prediction model. Here, the residual refers to the actual value minus the predicted
value, that is, (x̂(0)(k))1/α − (x̃(0)(k))1/α. Set

f =
(
x̂(0)(k)

)1/α −
(
x̃(0)(k)

)1/α
= a0 +A sin(ω(t − 1)). (3.6)

In the formula, A is the amplitude of wave mode, ω = 2π/T , T is the cycle, t is the
inspection time interval sequence. Because of x(0) = x(1), so a0 = 0. One has

A =
2
n

n∑
k=1

Ai =
2
n

n∑
k=1

∣∣∣∣
(
x̂(0)(k)

)1/α
−
(
x̃(0)(k)

)1/α
∣∣∣∣. (3.7)

With the principle of the minimum cumulative error of the fitted values and actual
values, combined with the application of trigonometric wave mode matching method, we
try to make sure that the posteriori error C is the smallest and the small probability P is
the largest, and then we obtain ω = 1.06. At the same time, the amplitude of wave mode
calculated by the formula (3.7) is A = 3.14.

Take A and ω into (3.6); then we obtain the revised residuals’ formula:

f = 3.14 · sin(1.06 · (t − 1)). (3.8)

Combined with residual formula and the formula (3.5), the final forecast expression
after residuals adjustment is

x(0)(k) =
(
x(1)(k) − x(1)(k − 1)

)1/0.2 − 15 + 3.14 · sin(1.06 · (t − 1)). (3.9)

Let us predict track cross level state with the formula (3.9). The predicted values and
actual values are shown in Figure 7.
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Figure 7: Comparison of actual value and revised predictive value at fixed measuring point.
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Figure 8: Comparison of actual state and prediction state at unit section after residual modification.

When gray model GM (1, 1) after residual modification is used to forecast time series
data (see Section 2.2) at the unit section, the prediction formula is (3.10), and the prediction
result is shown in Figure 8:

x(0)(k) =
(
x(1)(k) − x(1)(k − 1)

)1/0.2
+ 1.6 · sin(1.26 · (t − 1)). (3.10)

As can be seen from Figures 7 and 8, compared to the original forecasting trend
curve, the modified forecasting trend curve is much closer to the actual value. It has a better
degree of fitting and can reflect the cyclical changes of the track cross level state. Therefore,
the revised model can be applied to forecast the future track cross level state trends in the
medium and in the long term.

In gray forecasting, the prediction with good fitting and extrapolation leads to a
smaller value C and a larger value P . It shows a large probability of small error and high
accuracy in prediction [20]. According to the statistical theory, we examine the accuracy of
prediction on track state by using posteriori error C and the small probability P and then
make a comparison between it and the predictive accuracy of original GM (1, 1) model. See
Table 2.
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Table 2: Comparison of model’s accuracy.

Test items GM (1, 1) GM (1, 1) after residual modification
C 65% 43%
P 86% 86%

Table 3:Values of autocorrelation function, autocovariance function, and partial incidence degree function.

k 0 1 2 3 4 5 6 7
ρ̃k 1 −0.5910 0.0835 0.0075 0.0040 −0.1106 0.3729 −0.4402
r̃k 20.7675 −12.2731 1.7341 0.1567 0.0821 −2.2967 7.7441 −9.1408
ϕ̃kk 1 −1.0356 −0.9201 −0.7259 −0.5022 −0.2565 0.1265 −0.0529

Through comparative analysis, the variance ratio of posteriori error of GM (1, 1)model
after the residual modification is significantly smaller than the original residual model; thus
the fitting and extrapolation of the modified model have changed for the better, and the
predictive accuracy is improved.

4. Short-Term Prediction Models of Cross Level State Change

4.1. Prediction Based on AR Model

Track cross level irregularity time series data is smooth and consistent with the characteristics
of the stationary random sequence; so there is no need to eliminate the trend of the differential
operator. Although there is no definite model in track state changes in the long run, the state
change in a short period can still be considered as close to the linear model. In order to study
the unit section of the overall level of state which changes over time, it is considered as one-
dimensional array data which contains 300 data at a select unit section. The track cross level
irregularity time series data is

Zt =
[
zt

0, zt
1, . . . , zt

m
]
, t = 1, 2, . . . , 31, m = 1, 2, . . . , 300. (4.1)

Then, ωt = Zt − Z, time series {ωt} is generated with mean value zero, t = 1, 2, . . . , 31,
and Z is the sample mean value of Zt.

Autocovariance function refers to the random signal between the values of two
different moments of the second-order mixed central moments. Autocorrelation function
depicts the incidence degree between adjacent variables of time sequence. The partial
autocorrelation function was excluded from the impact of other intermediate variables; the
two functions are closely related and can reflect the true incidence degree between two
variables [21]. The value of sample’s autocovariance function r̃k, incidence degree function
ρ̃k, and partial autocorrelation function ϕ̃kk are shown in Table 3.

It can be seen fromTable 3 that when k becomes greater, the previous four |ρ̃k|, absolute
value of ρ̃k, are getting smaller and smaller. Therefore, we can see that the autocorrelation
function ρ̃k is tailed. When k > 4, there is at most one ϕ̃kk that can make |ϕ̃kk| ≥ 0.3591. There-
fore, the sample partial incidence degree function ϕ̃kk is truncated; partial autocorrelation
function ϕ̃kk is truncated at the point at which k = p = 4.
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Figure 9: Comparison of predicted value and actual inspection data in late June 2009.

Through comprehensive analysis, the prediction model is defined as AR (4). We can
calculate the parameter’s estimates ϕ̃ using Yule-Walker equations.

We get ϕ̃1 = −1.0257, ϕ̃2 = −0.8123, ϕ̃3 = −0.5224, and ϕ̃4 = −0.2292.
Thus, the AR (4) model is

Zt − Z = ϕ̃1

(
Zt−1 − Z

)
+ ϕ̃2

(
Zt−2 − Z

)
+ ϕ̃3

(
Zt−3 − Z

)
+ ϕ̃4

(
Zt−4 − Z

)
+ at. (4.2)

In the formula, t = k + l, at is the random disturbance error, which is white noise
sequences with zero mean value, normally variance, nonzero, unrelated, and independent.

Taking estimated value on both sides of formula (3.8) and then take the estimated
parameter into the formula, we can get the AR (4) prediction formula:

Z̃k+l = −1.0257Z̃k+l−1 − 0.8123Z̃k+l−2 − 0.5224Z̃k+l−3 − 0.2292Z̃k+l−4 − 1.5896Z. (4.3)

In formula, when k + l − i < n, Z̃k+l−i = Zk+l−i.
The predictive results of cross level irregularity data at late June 2009 and actual test

data are shown in Figure 9.
By contrasting the forecasted data with the actual inspection data, it can be found that

the distribution characteristics of actual value and the predictive value can agree with each
other well, and the data curves roughly coincide with each other.

4.2. Prediction Model Based on Kalman Filtering

Kalman filtering can be used to estimate the current state when the estimated state from
the last time and the current state are known, needless to know historical information
observations or estimates. In the absence of maintenance, changes of track geometry are
closely related to the passing gross weight change; deviation of track geometry will be further
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Figure 10: Comparison of detection value and the prediction value (ANN).

from the standard value with the increase in gross weight; track geometry status is also
affected by the impact of train speed. The higher the speed is, the greater force is exerted
on the track and the greater influences on the track geometry status are. The track geometry
(detection data), passing gross weight change, and train speed are used as the technical
indicators for track state prediction, and the accumulation and analysis of historical data can
be used for building track state prediction models.

With the application of Kalman filtering algorithm, in the track inspection data
analysis and forecasting models, xk is actual value of track inspect items; A is the transfer
matrix of the actual value; zk is track inspection car’s detecting value; H is the observation
matrix; wk is process noise p(w) ∼ N(0, Q), which is the deviation of the track state changes;
vk is measuring noise p(v) ∼ N(0, R), which is white Gaussian noise; ŝ(k) is the predictive
value of the state of the track geometry. The prediction formula of Kalman filtering is as
follows:

ŝ(k) = Aŝ(k − 1) +H(k)[X(k) − C(k)A(k)ŝ(k − 1)]. (4.4)

In the formula, ŝ(k) is prediction value, H(k) is the minimum mean-square deviation
under the revised matrix, A(k) is transfer matrix, X(k) is an observed value and ŝ(k) is an
estimated value, and C(k) is the measured matrix.

Kalman filter model is applied to forecast the cross level status the next time when
testing. The comparison of detection cross level value and the prediction value is shown in
Figure 10.

4.3. Prediction Model Based on Artificial Neural Network

Artificial neural network (ANN) is widely used in function approximation, pattern
recognition, and data compression [22–24]. It is the best method compared with other
traditional models, because it has better durability, timely forecasts, highly nonlinear, and
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Figure 11: Comparison of the detection value and the prediction value (Kalman filter model).

strong self-adaptive learning ability. Usually, the network has an input layer, an output layer,
and a hidden layer. ANN has advantages such as the following. Network’s input and output
can be achieved in any nonlinear mapping as long as there are enough hidden layers and
hidden nodes. The relationship between input nodes and output nodes of ANN is as follows
[10]:

yt = w0 +
Q∑
j=1

wj · g
[

p∑
i=1

wij · yt−i +w0j

]
+ et. (4.5)

In the formula, wij (i = 1, 2, . . . , p, j = 1, 2, . . . , Q), sig(x) = (1/(1 + e−x)) is a hidden
layer transfer function, yt is actual output,wij is connection weights, p is the number of input
nodes, andQ is the number of hidden nodes. The neural networkmodel performs a nonlinear
functional mapping from the past observations to the future value yt, that is,

yt = f
(
yt−1, yt−2, . . . , yt−p,W

)
+ et. (4.6)

W is a vector of all parameters and f(·) is a function determined by the network
structure and connection weights. Because track state changes are nonlinear and ANN has
a flexible capability in nonlinear modeling, ANN is applied to forecast the track data change.
The forecasting result is shown in Figure 11.

4.4. Comparison of Three Prediction Models

The specific error distribution of ARmodel, Kalman filteringmodel, is ANNmodel are shown
in Table 4.

It can be seen from Table 4 that the predictive accuracy of AR and Kalman filtering
models is similar, and the predictive accuracy of ANN model is slightly higher than the
previous two.
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Table 4: Error distribution of forecasted data.

Models Error range |r| > 1 0.5 < |r| ≤ 1 0.2 < |r| ≤ 0.5 0 ≤ |r| ≤ 0.2

AR Amount 44 104 82 70
Percentage 15% 35% 27% 23%

Kalman filtering Amount 37 99 87 77
Percentage 12% 33% 29% 26%

ANN Amount 36 65 99 100
Percentage 12% 22% 33% 33%

5. Conclusions

After the comprehensive assessment of the incidence degrees of track irregularity between
various indicators of factors, we find that when the associated values are higher, these
correlated time sequences will normally have a higher degree of factors correlation or
processes correlation. Meanwhile, the calculated results of incidence degree will be in a good
agreement with the actual situation, whichwill provide a reliable basis for choosingmodeling
variables and analyzing factors. Improved GM (1, 1) model based on features of track cross
level data can predict track state development and changes at fixed measuring point in the
medium and long term. Fitting curve can reflect the cyclical changes of cross level state over
time by residual modification. Statistical validation shows that the posteriori error values in
improved model which was corrected with residuals will be reduced down from 65% to 43%,
compared to the original model. It reflects the changes of cross level state more accurately.
Random linear ARmodel, Kalman filtering, and ANN are used to predict the state changes of
union section in short term. The results show that the accuracy of ANN is slightly higher than
AR model and Kalman filtering, and the combination of the four models together constitutes
the research of long-term and short-term track state changes at fixed measuring point and
union section.
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