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This paper applies method of continuous-time random walks for pedestrian flow simulation. In
the model, pedestrians can walk forward or backward and turn left or right if there is no block.
Velocities of pedestrian flow moving forward or diffusing are dominated by coefficients. The
waiting time preceding each jump is assumed to follow an exponential distribution. To solve the
model, a second-order two-dimensional partial differential equation, a high-order compact scheme
with the alternating direction implicit method, is employed. In the numerical experiments, the
walking domain of the first one is two-dimensional with two entrances and one exit, and that of
the second one is two-dimensional with one entrance and one exit. The flows in both scenarios are
one way. Numerical results show that the model can be used for pedestrian flow simulation.

1. Introduction

In recent years, modeling pedestrian flow has attracted considerable attention, partly because
the model serves as basis for efficient crowd evacuation management and pedestrian facility
operations. However, the research is still in its infancy owing to the complexity of human
being’s behaviors.

Most of the existing models for pedestrian flow are of microscopic nature, describing
in detail the interactions among pedestrians, and between pedestrians and obstacles. Those
models include, among others, cellular automata models [1–7], lattice gas models [8–12], the
social force models [13], the centrifugal force models [14], and the floor field models [15, 16].
In cellular automata models, the walking space is two-dimensional and divided into cells.
Each cell can either be empty, be occupied by exactly one pedestrian, or contain an obstacle.
Cellular automata models are widely used for capturing pedestrian walking behaviors, such
as bi-direction movement [1, 3, 4], pedestrian counter flow with different walk velocities
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[2] or with right-moving preference [5], freezing transition phenomenon [6], and moving
pedestrians’ reaction to an obstacle [7]. Like cellular automata models, the lattice gas model
consists of a set of stochastic rules on the square lattice. Applying the lattice gas model,
previous studies have systematically investigated the phenomenon of jamming transition
from the moving state at a low density to the stopping state at a higher density [8–11]. Jiang
andWu employed the lattice gas model to examine the interaction between a large object and
pedestrians in the narrow channel [12]. The social force model, proposed by Helbing and
Molnár [13], consists of three force terms that are measures for the moving motivations of a
pedestrian. The model is able to reproduce the self-organization of collective phenomena of
walking behaviors. By considering the headway and relative velocity among pedestrians, the
centrifugal force model is capable of describing the behavior of lane formation [14]. The floor
field model is yet another type of cellular automata models extended by realistically taking
into account pedestrians’ behaviors around the exit [15, 16].

Macroscopic models are often in the form of partial differential equations. Instead
of describing individual pedestrian’s behavior, this type of models treats the crowd as a
whole and applies the conservation laws to capture the relationship among speed, flow, and
density of pedestrian flow [17–21]. Directly starting from the flow conservation, Hughes
[17] derived partial differential equations for flows with single or multiple pedestrian
types. Likewise, Colombo and Rosini [18] introduced another partial differential equation
model for pedestrian flows with a new parameter called characteristic density, which is
used to reveal the maximal density in panic. Henderson [19] considered the movement
of a crowd as an analogous system of gas molecules and applied the Maxwell-Boltzmann
theory to describe the velocity distribution of people movements. Without making use
of the conservation assumptions in Henderson’s study, Helbing [20] developed a fluid
dynamic model for the collective movement of pedestrians based on the Boltzmann-like
approach.

Motivated by the work by Barkai et al. [22], this paper attempts to apply the
approach of continuous-time random walks (CTRW) to derive a partial differential equation
model to describe the motion of pedestrians. The CTRW is a useful model from statistical
physics, in which each random particle jump is preceded by a random waiting time.
Mathematically, the CTRW is a random walk subordinated to a renewal process. Different
from the traditional macroscopic models, the proposedmodel is capable of not only capturing
the macroscopic characteristics of pedestrian flows, but also describing the interactions
among pedestrians, and between pedestrians and obstacles in terms of parameters in the
model.

This paper is organized as follows. Section 2 introduces the continuous-time random
walks model, formulated as a partial differential equation. Section 3 presents a high-order
compact (HOC) solution scheme with the alternating direction implicit (ADI) method,
followed by a numerical example in Section 4. Finally, Section 5 concludes the paper.

2. Model

Consider a random walker on a bounded two-dimensional lattice with a domain Ω ∈ R2.
It is assumed that there is no correlation between steps. Let τ represent the time that the
walker stays at a particular point before making a “jump.” Hereinafter we simply call τ as
waiting time at a point and assume the waiting time at all points are independent random
variables with an identical probability density function ψ(τ). We further define Ψ(N, t)
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as the probability of N jumps occurring during the time interval (0, t). Consequently, the
probability that there is no jump occurring during the time interval (0, t) is

Ψ(0, t) = P(τ > t) = 1 − P(τ ≤ t) = 1 −
∫ t

0
ψ(τ)dτ. (2.1)

Applying the Laplace transform to both sides of (2.1) leads to

Ψ̃(0, s) =
1 − ψ̃(s)

s
. (2.2)

Note that Ψ(1, t) represents the probability that the first jump occurs at time t′ and
there are no further jumps after it until t. We thus have

Ψ(1, t) =
∫ t

0
ψ
(
t′
)
Ψ
(
0, t − t′)dt′ def= ψ ∗Ψ, (2.3)

where Ψ(0, t) and ψ(t) are simplified as Ψ and ψ. Similarly, we obtain

Ψ(N, t) = ψ ∗ ψ ∗ ψ ∗ · · · ∗Ψ = ψ∗N ∗Ψ. (2.4)

The Laplace form of (2.4) is given by

Ψ̃(N, s) = ψ̃N(s)
1 − ψ̃(s)

s
. (2.5)

Let P(x, y, t) be the probability of observing the walker at site (x, y) at time t, and let
pN(x, y) denote the probability that the walker is at the position (x, y) after N jumps. We
then have

P
(
x, y, t

)
=

∞∑
N=0

pN
(
x, y

)
Ψ(N, t). (2.6)

The Laplace transformation of (2.6) yields

P̃
(
x, y, s

)
=

1 − ψ̃(s)
s

∞∑
N=0

pN
(
x, y

)
ψ̃N(s) =

1 − ψ̃(s)
s

p0
(
x, y

)
+
1 − ψ̃(s)

s

∞∑
N=1

pN
(
x, y

)
ψ̃N(s).

(2.7)

In the domain of Ω with the length of the lattice edge being h (as shown in Figure 1),
the law of total probability implies that

pN
(
x, y

)
= r1pN−1

(
x − h, y) + r2pN−1

(
x, y − h) + r3pN−1

(
x + h, y

)
+ r4pN−1

(
x, y + h

)
,
(2.8)
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Figure 1: Probabilities of walking directions.

where r1 to r4 represents the probability for the walker to proceed forward, turn left, walk
back, and turn right, respectively. The probabilities are assumed to be known and

∑4
i=1 ri = 1.

Applying Taylor’s expansion to RHS of (2.8) at the point (x, y) leads to

pN
(
x, y

)
= r1

[
pN−1

(
x, y

) − h ∂

∂x1
pN−1

(
x, y

)
+
1
2
h2

∂2

∂x2
1

pN−1
(
x, y

)]

+ r2

[
pN−1

(
x, y

) − h ∂

∂x2
pN−1

(
x, y

)
+
1
2
h2

∂2

∂x2
2

pN−1
(
x, y

)]

+ r3

[
pN−1

(
x, y

)
+ h

∂

∂x1
pN−1

(
x, y

)
+
1
2
h2

∂2

∂x2
1

pN−1
(
x, y

)]

+ r4

[
pN−1

(
x, y

)
+ h

∂

∂x2
pN−1

(
x, y

)
+
1
2
h2

∂2

∂x2
2

pN−1
(
x, y

)]
+O

(
h2
)
,

(2.9)

where O(h2) denotes higher-order terms that are omitted hereinafter. We thus obtain the
following:

pN
(
x, y

)
= pN−1

(
x, y

) − (r1 − r3)h ∂

∂x
pN−1

(
x, y

) − (r2 − r4)h ∂

∂y
pN−1

(
x, y

)

+ (r1 + r3)
h2

2
∂2

∂x2
pN−1

(
x, y

)
+ (r2 + r4)

h2

2
∂2

∂y2
pN−1

(
x, y

)
.

(2.10)



Discrete Dynamics in Nature and Society 5

Define f(x) = (r1 − r3)/h, f(y) = (r2 − r4)/h, where f(x) is the direction force along
the x-axis and f(y) is the force along the y-axis. Consequently, (2.10) can be recast as

pN
(
x, y

)
= pN−1

(
x, y

) − V1
∂

∂x
pN−1

(
x, y

) − V2
∂

∂y
pN−1

(
x, y

)

+W1
∂2

∂x2
pN−1

(
x, y

)
+W2

∂2

∂y2
pN−1

(
x, y

)
,

(2.11)

where V1 = h2f(x), V2 = h2f(y), W1 = (r1 + r3)h2/2, and W2 = (r2 + r4)h2/2. Applying the
Laplace transformation to (2.11), we have

p̃N
(
x, y

)
= p̃N−1

(
x, y

)
+ h2LFP p̃N−1

(
x, y

)
, (2.12)

where LFP = −f(x)∂/∂x − f(y)∂/∂y + (W1/h
2)∂2/∂x2 + (W2/h

2)∂2/∂y2.
Substituting (2.12) into (2.7) yields

P̃
(
x, y, s

)
=

1 − ψ̃(s)
s

p0
(
x, y

)
+
1 − ψ̃(s)

s
ψ̃(s)

∞∑
N=0

[
p̃N

(
x, y

)
+ h2LFP p̃N

(
x, y

)]
ψ̃N(s)

=
1 − ψ̃(s)

s
p0
(
x, y

)
+ ψ̃(s)P̃

(
x, y, s

)
+ ψ̃(s)h2LFP P̃

(
x, y, s

)
.

(2.13)

The specific form of (2.13) depends on the choice of the waiting time distribution ψ(τ).
Several distributions are plausible based on the nature of pedestrian walking behaviors. Here
we assume that ψ(τ) follows the exponential distribution, that is,

ψ(τ) ∼ 1
λ
e−τ/λ, (2.14)

where λ is the mean of waiting time. The probability density function of waiting time in the
Laplace space can be written as

ψ̃(s) =
1

1 + λs
= 1 − λs + · · · . (2.15)

Substituting (2.15) into (2.13) yields

P̃
(
x, y, s

)
= λp0

(
x, y

)
+ (1 − λs)P̃(x, y, s) + (1 − λs)h2LFP P̃

(
x, y, s

)
. (2.16)

Rearranging the above and dividing both sides by λs leads to

P̃
(
x, y, s

) − 1
s
p0
(
x, y

)
=
k

s
LFP P̃

(
x, y, s

)
, (2.17)
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where k = limh2/λ as h2 → 0, λ → 0. Then the inverse Laplace transform of (2.17) becomes
the following:

P
(
x, y, t

)
= kLFP

∫ t

0
P
(
x, y, t

)
dt. (2.18)

We thus obtain the continuous-time random walks model for pedestrian traffic as

∂P
(
x, y, t

)
∂t

= kLFPP
(
x, y, t

)
. (2.19)

3. Numerical Algorithm

Equation (2.19) is recognized as the Fokker-Planck equation. If none of the coefficients is
function of x or y, then it is a linear second-order partial differential equation. Here we
employ a high-order compact scheme with the alternating direction implicit method to
numerically solve this equation [23, 24]. Further denoting (r1 − r3)k/h as βx, (r2 − r4)k/h
as βy, (r1 + r3)k/2 as αx, and (r2 + r4)k/2 as αy, we rewrite the model as follows:

βx
∂P

∂x
+ βy

∂P

∂y
− αx ∂

2P

∂x2
− αy ∂

2P

∂y2
= −∂P

∂t
. (3.1)

Assume the domain Ω is divided evenly into spaced cells of length Δx along x-axis
and length Δy along y-axis, and δxPij , δyPij , δ2xPij , and δ2yPij represent the approximations
to the first and second derivatives of P with respect to x or y at node (xi, yj). Based on the
standard central finite difference method, (3.1) can be discretized as follows:

βxδxPij + βyδyPij − αxδ2xPij − αyδ2yPij − τij = −∂P
∂t

∣∣∣∣
ij

. (3.2)

In the above, the truncation error, that is, τij , is

τij =

[
βx

Δx2

6
δ3x + βy

Δy2

6
δ3y − αx

Δx2

12
δ4x − αy

Δy2

12
δ4y

]
Pij +O

(
Δx4 + Δy4

)
, (3.3)

where δx, δy, δ2x, and δ
2
y are the first- and second-order central difference operators.
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Differentiating (3.1) with respect to x or y once and twice, respectively yields,
approximations of higher-order derivatives as follows:

δ3xPij =

[(
βy

αx
δy −

αy

αx
δ2y

)
δx +

βx
αx
δ2x +

1
αx
δxδt

]
Pij +O

(
Δx4 + Δy4

)
,

δ3yPij =

[(
βx
αy
δx − αx

αy
δ2x

)
δy +

βy

αy
δ2y +

1
αy
δyδt

]
Pij +O

(
Δx4 + Δy4

)
,

δ4xPij =

[(
βxβy

α2x
δy −

αyβx

α2x
δ2y

)
δx +

(
β2x

α2x
+
βy

αx
δy −

αy

αx
δ2y

)
δ2x +

(
βx

α2x
δx +

1
αx
δ2x

)
δt

]
Pij

+O
(
Δx4 + Δy4

)
,

δ4yPij =

[(
βxβy

α2y
δx −

αxβy

α2y
δ2x

)
δy +

(
β2y

α2y
+
βx
αy
δx − αx

αy
δ2x

)
δ2y +

(
βy

α2y
δy +

1
αy
δ2y

)
δt

]
Pij

+O
(
Δx4 + Δy4

)
.

(3.4)

Substituting (3.4) and (3.3) into (3.2) leads to

[
βxδx + βyδy −Aδ2x − Bδ2y − Cδxδy +Dδxδ2y + Eδ2xδy + Fδ2xδ2y

]
Pij = GδtPij +O

(
Δx4 + Δy4

)
,

(3.5)

where A = αx − β2xΔx2/12αx, B = αy − β2yΔy2/12αy, C = βxβyΔx2/12αx + βxβyΔy2/12αy,
D = αyβxΔx2/12αx + βxΔy2/12, E = αxβyΔy2/12αy + Δx2βy/12, F = αxΔy2/12 − αyΔx2/12,
and G = −1 + (βxΔx2/12αx)δx + (βyΔy2/12αy)δy − (Δx2/12)δ2x − (Δy2/12)δ2y.

Following Karaa and Zhang [24], we define four finite difference operators,

Lx = 1 +
Δx2

12

(
δ2x −

βx
αx
δx

)
, Ly = 1 +

Δy2

12

(
δ2y −

βy

αy
δy

)
,

Ax = −
(
αx +

β2xΔx
2

12αx

)
δ2x + βxδx, Ay = −

(
αy +

β2yΔy
2

12αy

)
δ2y + βyδy.

(3.6)

The difference between LHS of (3.5) and (LxAy + LyAx)Pij is expressed as

[
β2xβyΔx

2Δy2

144αxαy
δ2xδy +

βxβ
2
yΔx

2Δy2

144αxαy
δxδ

2
y −

(
β2xΔx

2Δy2

144αx
+
β2yΔx

2Δy2

144αy

)
δ2xδ

2
y

]
Pij , (3.7)

while the difference between RHS of (3.5) and LxLyδtPij is

[
βxβyΔx2Δy2

144αxαy
δxδy −

βxΔx2Δy2

144αx
δxδ

2
y −

βyΔx2Δy2

144αy
δ2xδy +

Δx2Δy2

144
δ2xδ

2
y

]
δtPij . (3.8)
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Thus (3.5) can be rewritten as

[
LxAy + LyAx

]
Pij = LxLyδtPij +O

(
Δx4 + Δy4

)
, (3.9)

since adding the above two expressions to (3.5)will not influence the accuracy. Applying the
Crank-Nicolson discretization, we have

(
LxAy + LyAx

)Pn+1ij + Pnij
2

= −LxLy
Pn+1ij − Pnij

Δt
+O

(
Δx4 + Δy4

)
+O

(
Δt2

)
. (3.10)

This discretization is apparently second order in time and fourth order in space.
Wemove the termswith Pn+1ij in the above equation to its LHS and addΔt2AxAyP

n+1
ij /4

to it. Similarly, we move the terms with Pnij to the RHS and addΔt2AxAyP
n
ij/4. Consequently,

(3.10) becomes the following equation after dropping the error terms [24]:

(
Lx +

Δt
2
Ax

)(
Ly +

Δt
2
Ay

)
un+1ij =

(
Lx − Δt

2
Ax

)(
Ly − Δt

2
Ay

)
Pnij . (3.11)

Employing the alternating direction implicit method, we have

(
Lx +

Δt
2
Ax

)
Pn+1/2ij =

(
Lx − Δt

2
Ax

)(
Ly − Δt

2
Ay

)
Pnij ,

(
Ly +

Δt
2
Ay

)
Pn+1ij = Pn+1/2ij ,

(3.12)

where Pn+1/2ij is an intermediate variable.

4. Numerical Example

We applied the proposed model and solution algorithm to a rectangular walking platform
with x = 30, y = 20. Pedestrians are only allowed to walk from the left boundary to the
right one. There are two doors of the same width as w = 4 where pedestrians can enter
the platform, as shown in Figure 2. Initially, there are no pedestrians in the platform. The
boundary conditions are

P(x, 0, t) = 0, P(x, 20, t) = 0, P(0, [8, 12], t) = 0, (4.1)
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8

4

8

x = 30

y = 20

Figure 2: Schematic illustration of the one-way pedestrian flow in a platform. The length of the platform
is 30 and the width is 20. The left dashed lines represent two entrances and the right one is exit. Solid lines
are walls.

and the inputs are

P(0, d, t) =
t

1.5
, t ∈ [0, 1.5],

P(0, d, t) = 1.0, t ∈ (1.5, 3.5),

P(0, d, t) =
(5 − t)
1.5

, t ∈ [3.5, 5],

P(0, d, t) = 0, t > 5,

(4.2)

where d = (0, 8) ∪ (12, 20).
We further assume r1 to r4 to be 0.70, 0.15, 0.0, and 0.15, respectively, and λ = 0.045 and

h = 0.05.
Figure 3 is snapshots of numerical solutions of the pedestrian flow at times t =

1, 2, . . . , 9, respectively, to show the movement pattern of the pedestrians. The density
increases steadily with the increase of entering flow and reaches its maximum at time t = 5.
The density centered at either group is becoming less while the density between these
two groups is becoming larger as the pedestrians are walking forward. For each group of
pedestrians, density at the center is always larger than those in the surroundings. The reason
is that the people around the block are much easier to disperse than those in the middle. As
the time is close to t = 9, the density is approaching zero and only some late-entering or slow-
walking people remain in the platform. From the snapshots, we can observe the phenomena
of dispersion and advection of the pedestrian flow.

To further illustrate the model, additional experiments were conducted with the whole
left boundary, that is, x = 0, as the entrance. In addition, the inflow is supposed to be steady
with P(0, y, t) = 1.0, where y ∈ (0, 20) and t ∈ (0, 30]. Figure 4 plots the density along x at
t = 1, 2, . . . , 8, respectively. It can be observed that there is a sharp decrease in each curve,
indicating that only a few pedestrians are fast walkers. The results are consistent with the
phenomenonwemay observe in reality that nomatter how crowded a platform is, the density
close to the exit is always less than the jam density.
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Figure 3: Density of pedestrian flow at different times.

To reveal the impact of direction choice behavior on the flow patterns, Figure 5
plots the average density of the platform along time under various scenarios where r1 =
0.80, 0.60, 0.40, 0.33, respectively, and probabilities of left and right turns are r2 = r4 =
(1 − r1)/2 and walking backward is not allowed. It is shown that the time the flow becomes
steady is significantly dependent on r1. The larger r1 is, the faster the flow reaches to a steady
state. The numerical results coincide with actual pedestrian moving behavior. Moreover, a
smaller value of r1 leads to a lower density in the steady state.

Figure 6 illustrates the average density across the time under different entering flow
intensity at PE = 1.0, 0.8, 0.6, 0.4, 0.2, respectively. It shows the steady density is only slightly
lower than the input flow intensity. In addition, it is observed that no matter what intensity
the inflow is, the time the flow reaches to its steady state remains almost the same.
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Figure 4: Density along x-axis at different times with r1 = 0.6, r2 = 0.2, r3 = 0.0, and r4 = 0.2.
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Figure 5: Average density of the platform along time with different r1’s.

5. Conclusion

This paper is an application of continuous-time random walks approach to pedestrian flow
simulation. The model is capable of describing macroscopic phenomena such as forward
moving and dispersion of pedestrian flow. In addition, by varying coefficients of the model,
some microscopic phenomena such as route/direction choice behaviors can be replicated. To
solve the model, a high-order compact scheme with the alternating direction implicit method
is applied. Numerical results validated both the model and the numerical method.
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Figure 6: Average density with different entering flow intensity, where r1 = 0.6, r2 = 0.2, r3 = 0.0, and
r4 = 0.2.

The model formulation in the paper only accounts for the distribution of the waiting
time. In our future study, the probability distribution of jump length will be considered to
further enhance the validity of the model. To make the model more practically applicable,
we also plan to incorporate bi-direction flow and more realistic boundary conditions, such as
input and output between platform and trains in platform.
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