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This paper is devoted to get the form of the solutions and the periodic nature of the following
systems of rational difference equations xn+1 = xn−5/(−1 + xn−5yn−2), yn+1 = yn−5/(±1 ± yn−5xn−2),
where the initial conditions are real numbers.

1. Introduction

Difference equations appear naturally as discrete analogues and as numerical solutions
of differential equations. They have many applications in biology, ecology, economy, and
physics. So, recently, there has been an increasing interest in the study of qualitative analysis
of rational difference equations and systems of difference equations. Although difference
equations are very simple in form, it is extremely difficult to understand thoroughly the
behaviors of their solutions, see [1–23] and the references cited therein.

Periodic solutions of a difference equations have been investigated by many
researchers, and various methods have been proposed for the existence and qualitative
properties of the solution.

The periodicity of the positive solutions of the system of rational difference equations

xn+1 =
1
yn

, yn+1 =
yn

xn−1yn−1
(1.1)

was studied by Çinar in [5].
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Elsayed [11] has obtained the solution of the following system of the difference
equations:

xn+1 =
1

yn−k
, yn+1 =

yn−k
xnyn

. (1.2)

The behavior of the positive solution of the following system:

xn+1 =
xn−1

1 + xn−1yn
, yn+1 =

yn−1
1 + yn−1xn

. (1.3)

has been studied by Kurbanli et al. [22].
Özban [24] has investigated the positive solution of the system of rational difference

equations as

xn+1 =
1

yn−k
, yn+1 =

yn

xn−myn−m−k
. (1.4)

Özban [25] has investigated the solution of the following system:

xn+1 =
a

yn−3
, yn+1 =

byn−3
xn−qyn−q

. (1.5)

In [26] Yalcinkaya investigated the sufficient condition for the global asymptotic
stability of the following system of difference equations:

zn+1 =
tnzn−1 + a

tn + zn−1
, tn+1 =

zntn−1 + a

zn + tn−1
. (1.6)

Also, Yalcinkaya [27] has obtained the sufficient conditions for the global asymptotic
stability of the system of two nonlinear difference equations as

xn+1 =
xn + yn−1
xnyn−1 − 1

, yn+1 =
yn + xn−1
ynxn−1 − 1

. (1.7)

Yang et al. [28] has investigated the positive solution of the system following:

xn =
a

yn−p
, yn =

byn−p
xn−qyn−q

. (1.8)

Similar nonlinear systems of rational difference equations were investigated [26–41].
In this paper, we investigate the behavior of the solutions of the difference equations

systems as

xn+1 =
xn−5

−1 + xn−5yn−2
, yn+1 =

yn−5
±1 ± yn−5xn−2

, (1.9)

where the initial conditions xi, yi for i = −5,−4,−3,−2,−1, 0 are real numbers.
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2. The First System: xn+1 = xn−5/(−1 + yn−2xn−5), yn+1 = yn−5/(1 + xn−2yn−5)

In this section, we investigate the solution of the system of two difference equations as

xn+1 =
xn−5

−1 + yn−2xn−5
, yn+1 =

yn−5
1 + xn−2yn−5

, (2.1)

where the initial conditions are arbitrary real numbers with x−5y−2, x−4y−1, x−3y0 /= 1,/= 1/2,
and x−2y−5, x−1y−4, x0y−3 /= ± 1.

The following theorem is devoted to the form of the solutions of system (2.1).

Theorem 2.1. Suppose that {xn, yn} are solutions of system (2.1). Also, assume that the initial
conditions x−5, x−4, x−3, x−2, x−1, x0, y−5, y−4, y−3, y−2, y−1 and y0 are arbitrary real numbers and let
x−5 = f , x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a, y−5 = s, y−4 = r, y−3 = q, y−2 = p, y−1 = h,
y0 = g. Then for n = 0, 1, 2, . . ., one has

x12n−5 =
(−1)nf(−1 + 2pf

)n

(−1 + pf
)2n , x12n−4 =

(−1)ne(−1 + 2eh)n

(−1 + eh)2n
,

x12n−3 =
(−1)nd(−1 + 2dg

)n

(−1 + dg
)2n , x12n−2 = c(1 + sc)n(1 − sc)n,

x12n−1 = b(1 + br)n(1 − br)n, x12n = a
(
1 + aq

)n(1 − aq
)n
,

x12n+1 =
(−1)nf(−1 + 2pf

)n

(−1 + pf
)2n+1 , x12n+2 =

(−1)ne(−1 + 2eh)n

(−1 + eh)2n+1
,

x12n+3 =
(−1)nd(−1 + 2dg

)n

(−1 + dg
)2n+1 , x12n+4 = −c(1 + sc)n+1(1 − sc)n,

x12n+5 = −b(1 + br)n+1(1 − br)n, x12n+6 = −a(1 + aq
)n+1(1 − aq

)n
,

y12n−5 =
s

(1 + sc)n(1 − sc)n
, y12n−4 =

r

(1 + br)n(1 − br)n
,

y12n−3 =
q

(
1 + aq

)n(1 − aq
)n , y12n−2 =

(−1)np(−1 + pf
)2n

(−1 + 2pf
)n ,

y12n−1 =
(−1)nh(−1 + eh)2n

(−1 + 2eh)n
, y12n =

(−1)ng(−1 + dg
)2n

(−1 + 2dg
)n ,
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y12n+1 =
s

(1 + sc)n+1(1 − sc)n
, y12n+2 =

r

(1 + br)n+1(1 − br)n
,

y12n+3 =
q

(
1 + aq

)n+1(1 − aq
)n , y12n+4 =

(−1)np(−1 + pf
)2n+1

(−1 + 2pf
)n+1 ,

y12n+5 =
(−1)nh(−1 + eh)2n+1

(−1 + 2eh)n+1
, y12n+6 =

(−1)ng(−1 + dg
)2n+1

(−1 + 2dg
)n+1 .

(2.2)

Proof. For n = 0, the result holds. Now suppose that n > 0 and that our assumption holds for
n − 1, that is,

x12n−17 =
(−1)n−1f(−1 + 2pf

)n−1

(−1 + pf
)2n−2 , x12n−16 =

(−1)n−1e(−1 + 2eh)n−1

(−1 + eh)2n−2
,

x12n−15 =
(−1)n−1d(−1 + 2dg

)n−1

(−1 + dg
)2n−2 , x12n−14 = c(1 + sc)n−1(1 − sc)n−1,

x12n−13 = b(1 + br)n−1(1 − br)n−1, x12n−12 = a
(
1 + aq

)n−1(1 − aq
)n−1

,

x12n−11 =
(−1)n−1f(−1 + 2pf

)n−1

(−1 + pf
)2n−1 , x12n−10 =

(−1)n−1e(−1 + 2eh)n−1

(−1 + eh)2n−1
,

x12n−9 =
(−1)n−1d(−1 + 2dg

)n−1

(−1 + dg
)2n−1 , x12n−8 = −c(1 + sc)n(1 − sc)n−1,

x12n−7 = −b(1 + br)n(1 − br)n−1, x12n−6 = −a(1 + aq
)n(1 − aq

)n−1
,

y12n−17 =
s

(1 + sc)n−1(1 − sc)n−1
, y12n−16 =

r

(1 + br)n−1(1 − br)n−1
,

y12n−15 =
q

(
1 + aq

)n−1(1 − aq
)n−1 , y12n−14 =

(−1)n−1p(−1 + pf
)2n−2

(−1 + 2pf
)n−1 ,

y12n−13 =
(−1)n−1h(−1 + eh)2n−2

(−1 + 2eh)n−1
, y12n−12 =

(−1)n−1g(−1 + dg
)2n−2

(−1 + 2dg
)n−1 ,

y12n−11 =
s

(1 + sc)n(1 − sc)n−1
, y12n−10 =

r

(1 + br)n(1 − br)n−1
,

y12n−9 =
q

(
1 + aq

)n(1 − aq
)n−1 , y12n−8 =

(−1)n−1p(−1 + pf
)2n−1

(−1 + 2pf
)n ,

y12n−7 =
(−1)n−1h(−1 + eh)2n−1

(−1 + 2eh)n
, y12n−6 =

(−1)n−1g(−1 + dg
)2n−1

(−1 + 2dg
)n .

(2.3)
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Now, it follows from (2.1) that

x12n−5 =
x12n−11

−1 + y12n−8x12n−11

=
(−1)n−1f(−1 + 2pf

)n−1
/
(−1 + pf

)2n−1
(
−1 +

(
(−1)n−1p(−1 + pf

)2n−1
/
(−1+2pf)n

)(
(−1)n−1f(−1+2pf)n−1/(−1+pf)2n−1

))

=
(−1)n−1f(−1 + 2pf

)n−1

(−1 + pf
)2n−1(−1 + pf/

(−1 + 2pf
))

(−1 + 2pf
−1 + 2pf

)

=
(−1)n−1f(−1 + 2pf

)n−1(−1 + 2pf
)

(−1 + pf
)2n−1(1 − 2pf + pf

) =
(−1)nf(−1 + 2pf

)n

(−1 + pf
)2n ,

y12n−5 =
y12n−11

1 + x12n−8y12n−11

=
s/(1 + sc)n(1 − sc)n−1

(
1 − c(1 + sc)n(1 − sc)n−1

(
s/(1 + sc)n(1 − sc)n−1

))

=
s

(1 + sc)n(1 − sc)n−1(1 − sc)
=

s

(1 + sc)n(1 − sc)n
,

x12n−4 =
x12n−10

−1 + y12n−7x12n−10

=
(−1)n−1e(−1 + 2eh)n−1/(−1 + eh)2n−1

(
−1 +

(
(−1)n−1h(−1 + eh)2n−1/(−1 + 2eh)n

)(
(−1)n−1e(−1 + 2eh)n−1/(−1 + eh)2n−1

))

=
(−1)n−1e(−1 + 2eh)n−1

(−1 + eh)2n−1(−1 + he/(−1 + 2eh))

(−1 + 2eh
−1 + 2eh

)

=
(−1)n−1e(−1 + 2eh)n

(−1 + eh)2n−1(1 − 2eh + he)
=

(−1)ne(−1 + 2eh)n

(−1 + eh)2n
,

y12n−4 =
y12n−10

1 + x12n−7y12n−10
=

r/(1 + br)n(1 − br)n−1
(
1 − b(1 + br)n(1 − br)n−1

(
r/(1 + br)n(1 − br)n−1

))

=
r

(1 + br)n(1 − br)n−1(1 − br)
=

r

(1 + br)n(1 − br)n
.

(2.4)

Similarly, we can prove the other relations.

Lemma 2.2. Let {xn, yn} be a positive solution of system (2.1), then {yn} is bounded and converges
to zero.
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Proof. It follows from (2.1) that

yn+1 =
yn−5

1 + xn−2yn−5
≤ yn−5. (2.5)

Then, the subsequences {y6n−5}∞n=0, {y6n−4}∞n=0, {y6n−3}∞n=0, {y6n−2}∞n=0, {y6n−1}∞n=0, and {y6n}∞n=0
are decreasing and so are bounded from above by M = max{y−5, y−4, y−3, y−2, y−1, y0}.

Example 2.3. We consider interesting numerical example for the difference system (2.1) with
the initial conditions, where x−5 = 0.8, x−4 = 0.1, x−3 = −1.6, x−2 = 0.3, x−1 = 0.1, x0 = −0.7,
y−5 = 1.7, y−4 = 0.3, y−3 = 0.4, y−2 = −0.2, y−1 = 0.5, and y0 = 0.6 (see Figure 1).

3. The Second System: xn+1 = xn−5/(−1 + yn−2xn−5), yn+1 = yn−5/(−1 +
xn−2yn−5)

In this section, we study the solution of the following system of the difference equations:

xn+1 =
xn−5

−1 + yn−2xn−5
, yn+1 =

yn−5
−1 + xn−2yn−5

, (3.1)

where n ∈ N0 and the initial conditions are arbitrary real numbers such that x−5y−2,
x−4y−1, x−3y0, x−2y−5, x−1y−4, x0y−3 /= 1.
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Theorem 3.1. Assume that {xn, yn} are solutions of system (3.1). Then for n = 0, 1, 2, . . ., one has

x6n−5 =
f

(−1 + pf
)n , x6n−4 =

e

(−1 + eh)n
, x6n−3 =

d
(−1 + dg

)n ,

x6n−2 = c(−1 + sc)n, x6n−1 = b(−1 + br)n, x6n = a
(−1 + aq

)n
,

y6n−5 =
s

(−1 + sc)n
, y6n−4 =

r

(−1 + br)n
, y6n−3 =

q
(−1 + aq

)n ,

y6n−2 = p
(−1 + pf

)n
, y6n−1 = h(−1 + eh)n, y6n = g

(−1 + dg
)n
.

(3.2)

Proof. For n = 0, the result holds. Now suppose that n > 1 and that our assumption holds for
n − 1, that is,

x6n−11 =
f

(−1 + pf
)n−1 , x6n−10 =

e

(−1 + eh)n−1
, x6n−9 =

d
(−1 + dg

)n−1 ,

x6n−8 = c(−1 + sc)n−1, x6n−7 = b(−1 + br)n−1, x6n−6 = a
(−1 + aq

)n−1
,

y6n−11 =
s

(−1 + sc)n−1
, y6n−10 =

r

(−1 + br)n−1
, y6n−9 =

q
(−1 + aq

)n−1 ,

y6n−8 = p
(−1 + pf

)n−1
, y6n−7 = h(−1 + eh)n−1, y6n−6 = g

(−1 + dg
)n−1

.

(3.3)

Now, it follows from (3.1) that

x6n−5 =
x6n−11

−1 + y6n−8x6n−11
=

f/
(−1 + pf

)n−1
(
−1 + p

(−1 + pf
)n−1 ×

(
f/

(−1 + pf
)n−1))

=
f/

(−1 + pf
)n−1

(−1 + pf
) =

f
(−1 + pf

)n ,

y6n−5 =
y6n−11

−1 + x6n−8y6n−11
=

(
s/(−1 + sc)n−1

)

(
−1 + c(−1 + sc)n−1

(
s/(−1 + sc)n−1

))

=
s/(−1 + sc)n−1

(−1 + cs)
=

s

(−1 + sc)n
.

(3.4)
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Also, we see from (3.1) that

x6n−2 =
x6n−8

−1 + y6n−5x6n−8
=

c(−1 + sc)n−1
(
−1 + (

s/(−1 + sc)n
)
c(−1 + sc)n−1

)

=
c(−1 + sc)n−1

(−1 + sc/(−1 + sc))

(
(−1 + sc)
(−1 + sc)

)
=

c(−1 + sc)n

1 − sc + sc
= c(−1 + sc)n,

y6n−2 =
y6n−8

−1 + x6n−5y6n−8
=

p
(−1 + pf

)n−1
(
−1 + p

(−1 + pf
)n−1(

f/
(−1 + pf

)n))

=
p
(−1 + pf

)n−1
(−1 + pf/

(−1 + pf
))

(−1 + pf

−1 + pf

)
=

p
(−1 + pf

)n
(
1 − pf + pf

) = p
(−1 + pf

)n
.

(3.5)

Similarly, we can prove the other relations.

Lemma 3.2. The solutions of system (3.1) has unboundedness solutions except in the following case.

Theorem 3.3. System (3.1) has a periodic solution of period six if and only if pf = eh =
dg = br = aq = sc = 2 and it will take the form {xn} = {f, e, d, c, b, a, f, e, . . .}, {yn} =
{s, r, q, p, h, g, s, r, . . .}.

Proof. First suppose that there exists a prime period-six solution

{xn} =
{
f, e, d, c, b, a, f, e, . . .

}
,

{
yn

}
=
{
s, r, q, p, h, g, s, r, . . .

}
, (3.6)

of system (3.1). We see from the form of the solution of system (3.1) that

f =
f

(−1 + pf
)n , e =

e

(−1 + eh)n
, d =

d
(−1 + dg

)n ,

c = c(−1 + sc)n, b = b(−1 + br)n, a = a
(−1 + aq

)n
,

s =
s

(−1 + sc)n
, r =

r

(−1 + br)n
, q =

q
(−1 + aq

)n ,

p = p
(−1 + pf

)n
, h = h(−1 + eh)n, g = g

(−1 + dg
)n
.

(3.7)

Then, we get

−1 + pf = −1 + eh = −1 + dg = −1 + sc = −1 + br = −1 + aq = 1. (3.8)

Thus,

pf = eh = dg = br = aq = sc = 2. (3.9)
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Second, assume that pf = eh = dg = br = aq = sc = 2. Then, we see from the form of the
solution of system (3.1) that

x6n−5 = f, x6n−4 = e, x6n−3 = d,

x6n−2 = c, x6n−1 = b, x6n = a,

y6n−5 = s, y6n−4 = r, y6n−3 = q,

y6n−2 = p, y6n−1 = h, y6n = g.

(3.10)

Thus, we have a periodic solution of period six and the proof is complete.

Example 3.4. Figure 2 shows the behavior of the solution of the difference system (3.1) with
the initial conditions, where x−5 = 0.18, x−4 = −0.41, x−3 = .6, x−2 = .3, x−1 = −0.21, x0 = .7,
y−5 = −0.17, y−4 = 1.3, y−3 = .14, y−2 = 0.2, y−1 = −.15, and y0 = 0.16.

Example 3.5. If we consider the difference equation system (3.1) with the initial conditions,
where x−5 = 5, x−4 = −2, x−3 = .1, x−2 = −7, x−1 = 4, x0 = −3, y−5 = −2/7, y−4 = 0.5, y−3 =
−2/3, y−2 = 0.4, y−1 = −1, and y0 = 20, then we get the shape of Figure 3.
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4. The Third System: xn+1 = xn−5/(−1 + yn−2xn−5), yn+1 = yn−5/(1 − xn−2yn−5)

In this section, we obtain the form of the solution of the system of two difference equations
as

xn+1 =
xn−5

−1 + yn−2xn−5
, yn+1 =

yn−5
1 − xn−2yn−5

, (4.1)

where the initial conditions are arbitrary real numbers such that x−5y−2, x−4y−1, x−3y0 /= ± 1,
and x−2y−5, x−1y−4, x0y−3 /= 1/2, 1.

Theorem 4.1. Suppose that {xn, yn} are solutions of system (4.1). Then

x12n−5 =
(−1)nf

(−1 + pf
)n(1 + pf

)n , x12n−4 =
(−1)ne

(−1 + eh)n(1 + eh)n
,

x12n−3 =
(−1)nd

(−1 + dg
)n(1 + dg

)n , x12n−2 =
(−1)nc(1 − sc)2n

(−1 + 2sc)n
,
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x12n−1 =
(−1)nb(1 − br)2n

(−1 + 2br)n
, x12n =

(−1)na(1 − aq
)2n

(−1 + 2aq
)n ,

x12n+1 =
(−1)nf

(−1 + pf
)n+1(1 + pf

)n , x12n+2 =
(−1)ne

(−1 + eh)n+1(1 + eh)n
,

x12n+3 =
(−1)nd

(−1 + dg
)n+1(1 + dg

)n , x12n+4 =
(−1)nc(1 − sc)2n+1

(−1 + 2sc)n+1
,

x12n+5 =
(−1)nb(1 − br)2n+1

(−1 + 2br)n+1
, x12n+6 =

(−1)na(1 − aq
)2n+1

(−1 + 2aq
)n+1 ,

y12n−5 =
(−1)ns(−1 + 2sc)n

(1 − sc)2n
, y12n−4 =

(−1)nr(−1 + 2br)n

(1 − br)2n
,

y12n−3 =
(−1)nq(−1 + 2aq

)n

(
1 − aq

)2n , y12n−2 = (−1)np(−1 + pf
)n(1 + pf

)n
,

y12n−1 = (−1)nh(−1 + eh)n(1 + eh)n, y12n = (−1)ng(−1 + dg
)n(1 + dg

)n
,

y12n+1 =
(−1)ns(−1 + 2sc)n

(1 − sc)2n+1
, y12n+2 =

(−1)nr(−1 + 2br)n

(1 − br)2n+1
,

y12n+3 =
(−1)nq(−1 + 2aq

)n

(
1 − aq

)2n+1 , y12n+4 = (−1)n+1p(−1 + pf
)n+1(1 + pf

)n
,

y12n+5 = (−1)n+1h(−1 + eh)n+1(1 + eh)n, y12n+6 = (−1)n+1g(−1 + dg
)n+1(1 + dg

)n
,

(4.2)

where x−5 = f , x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a, y−5 = s, y−4 = r, y−3 = q, y−2 = p,
y−1 = h, y0 = g.

Proof. As the proof of Theorem 2.1, and so it will be omitted.

Example 4.2. Figure 4 shows the behavior of the solutions of the system (4.1) with the initial
conditions x−5 = 0.05, x−4 = −.42, x−3 = .11, x−2 = 0.07, x−1 = −0.4, x0 = −3, y−5 = −1.7,
y−4 = 0.12, y−3 = −1.2, y−2 = 0.2, y−1 = −1, and y0 = 0.13.

5. The Fourth System: xn+1 = xn−5/(−1+yn−2xn−5), yn+1 = yn−5/(−1−xn−2yn−5)

We get, in this section, the solution of the following system of the difference equations:

xn+1 =
xn−5

−1 + yn−2xn−5
, yn+1 =

yn−5
−1 − xn−2yn−5

, (5.1)

where n ∈ N0 and the initial conditions are arbitrary real numbers.
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Theorem 5.1. Let {xn, yn}+∞n=−5 be solutions of system (5.1). Then for n = 0, 1, 2, . . .one has

x6n−5 = f
n−1∏

i=0

(
1 − (2i)pf

)

(−1 + (2i + 1)pf
) , x6n−4 = e

n−1∏

i=0

(1 − (2i)eh)
(−1 + (2i + 1)eh)

,

x6n−3 = d
n−1∏

i=0

(
1 − (2i)dg

)

(−1 + (2i + 1)dg
) , x6n−2 = c

n−1∏

i=0

(−1 − (2i + 1)sc)
(1 + (2i + 2)sc)

,

x6n−1 = b
n−1∏

i=0

(−1 − (2i + 1)br)
(1 + (2i + 2)br)

, x6n = a
n−1∏

i=0

(−1 − (2i + 1)aq
)

(
1 + (2i + 2)aq

) ,

y6n−5 = s
n−1∏

i=0

(1 + (2i)sc)
(−1 − (2i + 1)sc)

, y6n−4 = r
n−1∏

i=0

(1 + (2i)br)
(−1 − (2i + 1)br)

,

y6n−3 = q
n−1∏

i=0

(
1 + (2i)aq

)

(−1 − (2i + 1)aq
) , y6n−2 = p

n−1∏

i=0

(−1 + (2i + 1)pf
)

(
1 − (2i + 2)pf

) ,

y6n−1 = h
n−1∏

i=0

(−1 + (2i + 1)eh)
(1 − (2i + 2)eh)

, y6n = g
n−1∏

i=0

(−1 + (2i + 1)dg
)

(
1 − (2i + 2)dg

) ,

(5.2)

where x−5 = f , x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a, y−5 = s, y−4 = r, y−3 = q, y−2 = p,
y−1 = h, y0 = g.
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Proof. For n = 0, the result holds. Now suppose that n > 1 and that our assumption holds for
n − 1, that is,

x6n−11 = f
n−2∏

i=0

(
1 − (2i)pf

)

(−1 + (2i + 1)pf
) , x6n−10 = e

n−2∏

i=0

(1 − (2i)eh)
(−1 + (2i + 1)eh)

,

x6n−9 = d
n−2∏

i=0

(
1 − (2i)dg

)

(−1 + (2i + 1)dg
) , x6n−8 = c

n−2∏

i=0

(−1 − (2i + 1)sc)
(1 + (2i + 2)sc)

,

x6n−7 = b
n−2∏

i=0

(−1 − (2i + 1)br)
(1 + (2i + 2)br)

, x6n−6 = a
n−2∏

i=0

(−1 − (2i + 1)aq
)

(
1 + (2i + 2)aq

) ,

y6n−11 = s
n−2∏

i=0

(1 + (2i)sc)
(−1 − (2i + 1)sc)

, y6n−10 = r
n−2∏

i=0

(1 + (2i)br)
(−1 − (2i + 1)br)

,

y6n−9 = q
n−2∏

i=0

(
1 + (2i)aq

)

(−1 − (2i + 1)aq
) , y6n−8 = p

n−2∏

i=0

(−1 + (2i + 1)pf
)

(
1 − (2i + 2)pf

) ,

y6n−7 = h
n−2∏

i=0

(−1 + (2i + 1)eh)
(1 − (2i + 2)eh)

, y6n−6 = g
n−2∏

i=0

(−1 + (2i + 1)dg
)

(
1 − (2i + 2)dg

) .

(5.3)

It follows from (3.1) that

x6n−5

=
x6n−11

−1 + y6n−8x6n−11

=
f
∏n−2

i=0
((
1 − (2i)pf

)
/
(−1 + (2i + 1)pf

))

(
−1+p∏n−2

i=0
((−1+(2i+1)pf)/(1−(2i+2)pf))f∏n−2

i=0
((
1−(2i)pf)/(−1+(2i+1)pf))

)

=
f
∏n−2

i=0
((
1 − (2i)pf

)
/
(−1 + (2i + 1)pf

))

(
−1+pf∏n−2

i=0
((
1−(2i)pf)/(1 − (2i+2)pf

))) =
f
∏n−2

i=0
((
1 − (2i)pf

)
/
(−1 + (2i + 1)pf

))

(−1+pf/(1−(2n−2)pf))

= f
n−2∏

i=0

(
1 − (2i)pf

)

(−1 + (2i + 1)pf
)

(
1 − (2n − 2)pf

)

(−1 + (2n − 2)pf + pf
) = f

n−1∏

i=0

(
1 − (2i)pf

)

(−1 + (2i + 1)pf
) ,
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y6n−5

=
y6n−11

−1 − x6n−8y6n−11

=
∏n−2

i=0 ((1 + (2i)sc)/(−1 − (2i + 1)sc))
(
−1 − c

∏n−2
i=0 ((−1 − (2i+1)sc)/(1 + (2i+2)sc))s

∏n−2
i=0 ((1+(2i)sc)/(−1−(2i + 1)sc))

)

=
∏n−2

i=0 ((1 + (2i)sc)/(−1 − (2i + 1)sc))
(
−1 − sc

∏n−2
i=0 ((1 + (2i)sc)/(1 + (2i + 2)sc))

) =
∏n−2

i=0 ((1 + (2i)sc)/(−1 − (2i + 1)sc))
(−1 − sc/(1 + (2n − 2)sc))

=
n−2∏

i=0

(1 + (2i)sc)
(−1 − (2i + 1)sc)

(1 + (2n − 2)sc)
(−1 − (2n − 2)sc − sc)

.

(5.4)

Then, we see that

y6n−5 = s
n−1∏

i=0

(1 + (2i)sc)
(−1 − (2i + 1)sc)

. (5.5)

Similarly, we can prove the other relations. This completes the proof.

Lemma 5.2. If x−5, x−4, x−3, x−2, x−1, x0, y−5, y−4, y−3, y−2, y−1, and y0 are arbitrary real numbers
and {xn, yn} are solutions of system (5.1), then the following statements are true.

(i) If x−5 = 0, y−2 /= 0, then we have x6n−5 = 0 and y6n−2 = (−1)ny−2.

(ii) If x−4 = 0, y−1 /= 0, then we have x6n−4 = 0 and y6n−1 = (−1)ny−1.

(iii) If x−3 = 0, y0 /= 0, then we have x6n−3 = 0 and y6n = (−1)ny0.

(iv) If x−2 = 0, y−5 /= 0, then we have x6n−2 = 0 and y6n−5 = (−1)ny−5.

(v) If x−1 = 0, y−4 /= 0, then we have x6n−1 = 0 and y6n−4 = (−1)ny−4.

(vi) If x0 = 0, y−3 /= 0, then we have x6n = 0 and y6n−3 = (−1)ny−3.

(vii) If y−5 = 0, x−2 /= 0, then we have y6n−5 = 0 and x6n−2 = (−1)nx−2.

(viii) If y−4 = 0, x−1 /= 0, then we have y6n−4 = 0 and x6n−1 = (−1)nx−1.

(ix) If y−3 = 0, x0 /= 0, then we have y6n−3 = 0 and x6n = (−1)nx0.

(x) If y−2 = 0, x−5 /= 0, then we have y6n−2 = 0 and x6n−5 = (−1)nx−5.

(xi) If y−1 = 0, x−4 /= 0, then we have y6n−1 = 0 and x6n−4 = (−1)nx−4.

(xii) If y0 = 0, x−3 /= 0, then we have y6n = 0 and x6n−3 = (−1)nx−3.

Proof. The proof follows from the form of the solution of system (5.1).

Example 5.3. If we take the system of difference equations (5.1) with the initial
conditions x−5 = 0.05, x−4 = −0.42, x−3 = .101, x−2 = 0.07, x−1 = −0.4, x0 = −3, y−5 =
−0.7, y−4 = .12, y−3 = −1.2, y−2 = 0.2, y−1 = −0.11, and y0 = 0.13, we get the following
shape of the solution, see Figure 5.
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[7] D. Clark and M. R. S. Kulenović, “A coupled system of rational difference equations,” Computers &
Mathematics with Applications, vol. 43, no. 6-7, pp. 849–867, 2002.

[8] E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “Global behavior of the solutions of difference
equation,” Advances in Difference Equations, vol. 2011, 28 pages, 2011.



16 Discrete Dynamics in Nature and Society

[9] E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “Some properties and expressions of solutions for
a class of nonlinear difference equation,” Utilitas Mathematica, vol. 87, pp. 93–110, 2012.

[10] E. M. Elabbasy and E. M. Elsayed, “Global attractivity and periodic nature of a difference equation,”
World Applied Sciences Journal, vol. 12, no. 1, pp. 39–47, 2011.

[11] E. M. Elsayed, “On the solutions of a rational system of difference equations,” Polytechnica
Posnaniensis, no. 45, pp. 25–36, 2010.

[12] E. M. Elsayed, “Dynamics of recursive sequence of order two,” Kyungpook Mathematical Journal, vol.
50, no. 4, pp. 483–497, 2010.

[13] E. M. M. Elsayed, “Behavior of a rational recursive sequences,” Studia Universitatis Babeş-Bolyai
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[22] A. S. Kurbanlı, C. Çinar, and I. Yalçinkaya, “On the behavior of positive solutions of the system of

rational difference equations xn+1 = xn−1/(ynxn−1 − 1), yn+1 = yn−1/(xnyn−1 − 1),” Mathematical and
Computer Modelling, vol. 53, no. 5-6, pp. 1261–1267, 2011.

[23] A. S. Kurbanli, “On the behavior of solutions of the system of rational difference equations: xn+1 =
xn−1/(ynxn−1 − 1), yn+1 = yn−1/(xnyn−1 − 1), and zn+1 = zn−1/(ynzn−1 − 1),” Discrete Dynamics in Nature
and Society, vol. 2011, Article ID 932362, 12 pages, 2011.
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[25] A. Y. Özban, “On the system of rational difference equations xn+1 = a/yn−3, yn+1 = byn−3/xn−qyn−q,”
Applied Mathematics and Computation, vol. 188, no. 1, pp. 833–837, 2007.

[26] I. Yalcinkaya, “On the global asymptotic stability of a second-order system of difference equations,”
Discrete Dynamics in Nature and Society, vol. 2008, Article ID 860152, 12 pages, 2008.

[27] I. Yalcinkaya, “On the global asymptotic behavior of a system of two nonlinear difference equations,”
Ars Combinatoria, vol. 95, pp. 151–159, 2010.

[28] X. Yang, Y. Liu, and S. Bai, “On the system of high order rational difference equations xn =
a/yn−p, yn = byn−p/xn−qyn−q,” Applied Mathematics and Computation, vol. 171, no. 2, pp. 853–856, 2005.

[29] C. J. Schinas, “Invariants for difference equations and systems of difference equations of rational
form,” Journal of Mathematical Analysis and Applications, vol. 216, no. 1, pp. 164–179, 1997.

[30] Y. Zhang, X. Yang, D. J. Evans, and C. Zhu, “On the nonlinear difference equation system xn+1 =
A + yn−m/xn, yn+1 = A + xn−m/yn,” Computers & Mathematics with Applications, vol. 53, no. 10, pp.
1561–1566, 2007.

[31] D. Simsek, B. Demir, and C. Cinar, “On the solutions of the system of difference equations xn+1 =
max{A/xn, yn/xn}, yn+1 = max{A/yn, xn/yn},” Discrete Dynamics in Nature and Society, vol. 2009,
Article ID 325296, 11 pages, 2009.

[32] S. Stević, “On a system of difference equations with period two coefficients,” Applied Mathematics and
Computation, vol. 218, no. 8, pp. 4317–4324, 2011.
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