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Bacterial Foraging Algorithm (BFO) is a recently proposed swarm intelligence algorithm inspired
by the foraging and chemotactic phenomenon of bacteria. However, its optimization ability is not
so good compared with other classic algorithms as it has several shortages. This paper presents
an improved BFO Algorithm. In the new algorithm, a lifecycle model of bacteria is founded. The
bacteria could split, die, or migrate dynamically in the foraging processes, and population size
varies as the algorithm runs. Social learning is also introduced so that the bacteria will tumble
towards better directions in the chemotactic steps. Besides, adaptive step lengths are employed
in chemotaxis. The new algorithm is named BFOLS and it is tested on a set of benchmark
functions with dimensions of 2 and 20. Canonical BFO, PSO, and GA algorithms are employed
for comparison. Experiment results and statistic analysis show that the BFOLS algorithm offers
significant improvements than original BFO algorithm. Particulary with dimension of 20, it has
the best performance among the four algorithms.

1. Introduction

Swarm intelligence is an innovative optimization technique inspired by the social behaviors
of animal swarms in nature. Though the individuals have only simple behaviors and
are without centralized control, complex collective intelligence could emerge on the level
of swarm by their interaction and cooperation. Recent years, several swarm intelligence
algorithms have been proposed, such as Ant Colony Optimization (ACO) [1], Particle
Swarm Optimization (PSO) [2], Artificial Bee Colony (ABC) [3], and Bacterial Foraging



2 Discrete Dynamics in Nature and Society

Optimization (BFO) BFO algorithm is first proposed by Passino [4] in 2002. It is inspired
by the foraging and chemotactic behaviors of bacteria, especially the Escherichia coli (E. coli).
By smooth running and tumbling, The E. coli can move to the nutrient area and escape from
poison area in the environment. The chemotactic is the most attractive behavior of bacteria.
It has been studied by many researchers [5, 6]. By simulating the problem as the foraging
environment, BFO algorithm and its variants are used for many numerical optimization
[7, 8] or engineering optimization problems, such as distributed optimization [9], job shop
scheduling [10], image processing [11], and stock market prediction [12].

However, the original BFO has some shortages: (1) dispersal, reproduction, and
elimination each happens; after a certain amount of chemotaxis operations. The appropriate
time andmethod for dispersal and reproduction are important. Otherwise, the stability of the
population may be destroyed. (2) The tumble angles in the chemotactic phase are generated
randomly. As a result, the algorithm is more like a random searching algorithm except it will
try further in better directions. The bacteria swarm lacks interaction between individuals.
Good information carried by those individuals in higher nutritional areas cannot be shared
with and utilized by other bacteria. (3) The swim step length in the original BFO algorithm is
a constant. In most cases, the bacteriumwill run one more step if the position is better than its
last position. If the swim step is large at the end stage (e.g., larger than the distance between
its current position and the optimal point), it will skip the optimal point repeatedly. This will
make the bacteria hard to converge to the optimal point.

In this paper, several adaptive strategies are used to improve the original BFO
algorithm. First, a lifecycle model of bacteria is proposed. Bacteria will split or die depending
on the nutrition obtained in their foraging processes. Then, social leaning is introduced to
enhance the information sharing between bacteria. The tumble angles are no longer generated
randomly but directed by the swarm’s memory. Last, adaptive search strategy is employed,
which makes the bacteria could use different search step lengths in different situations.

The rest of the paper is organized as follows. In Section 2, wewill introduce the original
BFO algorithm. Its features and pseudocode are given. In Section 3, the adaptive strategies of
BFOLS algorithm is described in detail. In Section 4, the BFOLS algorithm is tested on a set
of benchmark functions compared with several other algorithms. Results are presented and
discussed. The test of its new parameters setting and the simulation of its varying population
size are also done in this section. Finally, conclusions are drawn in Section 5.

2. Original Bacterial Foraging Optimization

The E. coli bacteria is one of the earliest bacteria which has been researched. It has a plasma
membrane, cell wall, and capsule that contains the cytoplasm and nucleoid. Besides, it has
several flagella which are randomly distributed around its cell wall. The flagella rotate in the
same direction at about 100–200 revolutions per second [13]. If the flagella rotate clockwise,
they will pull on the cell to make a “tumble.” And if they rotate counterclockwise, their effects
accumulate by forming a bundle which makes the bacterium “run” in one direction [4], as
shown in Figure 1.

The bacteria can sense the nutrient concentration in the environment. By tumbling
and running, the bacteria will search for nutrient area and keep away from the poisonous
area. Simulating the foraging process of bacteria, Passino proposed the Bacterial Foraging
Optimization (BFO) algorithm. The main mechanisms of BFO are illustrated as follows.
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Figure 1: Chemotactic behavior of E. coli: run and tumble.

2.1. Chemotaxis

Chemotaxis is the main motivation of the bacteria’s foraging process [14]. It consists of a
tumble with several runs. In BFO, the position updating which simulates the chemotaxis
procedure is used in (2.1) as follows. θt

i presents the position of the ith bacterium in the tth
chemotaxis step. C(i) is the step length during the ith chemotaxis. φ(i) is a unit vector which
stands for the swimming direction after a tumble. It can be generated by (2.2), where Δi is a
randomly produced vector with the same dimension of the problem:

θt+1
i = θt

i + C(i)φ(i), (2.1)

φ(i) =
Δi√
ΔT

i Δi

. (2.2)

In each chemotactic step, the bacterium generated a tumble direction firstly. Then the
bacteriummoves in the direction using (2.1). If the nutrient concentration in the new position
is higher than the last position, it will run one more step in the same direction. This procedure
continues until the nutrient get worse or the maximum run step is reached. The maximum
run step is controlled by a parameter called Ns.

2.2. Reproduction

For every Nc times of chemotactic steps, a reproduction step is taken in the bacteria
population. The bacteria are sorted in descending order by their nutrient obtained in the
previous chemotactic processes. Bacteria in the first half of the population are regarded
as having obtained sufficient nutrients so that they will reproduce. Each of them splits
into two (duplicate one copy in the same location). Bacteria in the residual half of the
population die and they are removed out from the population. The population size remains
the same after this procedure. Reproduction is the simulation of the natural reproduction
phenomenon. By this operator, individuals with higher nutrient are survived and duplicated,
which guarantees that the potential optimal areas are searched more carefully.
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1 Initialization
2 For i = 1:Ned
3 For j = 1: Nre
4 For k = 1: Nc

5 For n = 1: S
6 Jlast = J(n)
7 Generate a tumble angle for bacterium n;
8 Update the position of bacterium n by (2.1);
9 Recalculate the J(n)
10 m = 0
11 While (m < Ns)
12 If J(n) < Jlast
13 Jlast = J(n);
14 Run one more step using (2.1);
15 Recalculate the J(n);
16 m = m + 1;
17 Else
18 m = Ns;
19 End if
20 End while
21 End for
22 Update the best value achieved so far;
23 End for
24 Sort the population according to J ;
25 For m = 1: S/2
26 Bacterium (k + S/2) = Bacterium (k);
27 End For
28 End for
29 For l = 1: S
30 If (rand < Pe)
31 Move Bacterium l to a random position
32 End if
33 End for
34 End for

PSEUDOCODE 1: Pseudocode of original BFO algorithm.

2.3. Eliminate and Dispersal

In nature, the changes of environment where population lives may affect the behaviors of
the population. For example, the sudden change of temperature or nutrient concentration,
the flow of water, all these may cause bacteria in the population to die or move to another
place [15]. To simulate this phenomenon, eliminate-dispersal is added in the BFO algorithm.
After every Nre times of reproduction steps, an eliminate-dispersal event happens. For each
bacterium, a random number is generated between 0 and 1. If the random number is less
than a predetermined parameter, known as Pe, the bacterium will be eliminated and a new
bacterium is generated in the environment. The operator can be also regarded as moving the
bacterium to a randomly produced position. The eliminate-dispersal events may destroy the
chemotactic progress. But they may also promote the solutions since dispersal might place
the bacteria in better positions. Overall, contrary to the reproduction, this operator enhances
the diversity of the algorithm.
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1 Initialization
2 While (termination conditions are not met)
3 S = size of the last population; i = 0;
4 while i < S
5 i = i + 1;
6 Jlast = J(i)
7 Generate a tumble angle for bacterium n;
8 Update the position of bacterium n by (2.1);
9 Recalculate the J(i)
10 Update personal best and global best;
11 m = 0
12 While (m < Ns)
13 If J(i) < Jlast
14 Jlast = J(i)
15 Run one more step using (2.1);
16 Recalculate the J(i);
17 Update personal best and global best;
18 m = m + 1;
19 Else
20 m = Ns;
21 End if
22 End while
23 If (Nutrition (i) is larger than split threshold value)
24 Split bacterium i into two bacteria; Break;
25 End if
26 If (Nutrition (i) is less than dead threshold value)
27 Remove it from the population;
28 i = i − 1; S = S − 1; Break;
29 End if
30 If (Nutrition (i) is less than 0 and rand < Pe )
31 Move bacterium i to a random position;
32 End if
33 End while
34 End while

PSEUDOCODE 2: Pseudocode of BFOLS algorithm.

In BFO algorithm, the eliminate-dispersal events happen for Ned times. That is to say,
there are three loops for the bacteria population in BFO algorithm. The outer loop is eliminate-
dispersal event, the middle loop is reproduction event and the inner loop is chemotactic
event. The algorithm ends after all the three loops are finished. The pseudocode of original
BFO algorithm is given in Pseudocode 1.

3. Bacterial Foraging Optimization with Lifecycle and Social Learning

To improve the optimization ability of BFO algorithms, many variations are proposed. In the
proposed BFOLS algorithm, three strategies are used to improve the original BFO.
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Table 1: Benchmark functions used in the experiment.

Function Formulation Variable ranges f(x∗)

f1 Sphere f(x) =
D∑
i=1
x2
i [−5.12, 5.12] 0

f2 Rosenbrock f(x) =
D−1∑
i=1

(
100
(
x2
i − xi+1

)2 + (1 − xi)2
)

[−15, 15] 0

f3 Rastrigin f(x) =
D∑
i=1

(
x2
i − 10 cos(2πxi) + 10

)
[−10, 10] 0

f4 Ackley
f(x) =

20 + e − 20e(−0.2
√
(1/D)

∑D
i=1 x

2
i ) − e((1/D)

∑D
i=1 cos(2πxi))

[−32.768, 32.768] 0

f5 Griewank f(x) =
1

4000

(
D∑
i=1
x2
i

)
−
(

D∏
i=1

cos
(

xi√
i

))
+ 1 [−600, 600] 0

f6 Schwefel2.22 f(x) =
D∑
i=1
|xi| +

D∏
i=1

|xi| [−10, 10] 0

f7 Shifted sphere f(x) =
D∑
i=1
z2i + fbias1 , z = x − o [−100, 100] −450

f8
Shifted

Schwefel1.2
f(x) =

D∑
i=1

(
i∑

j=1
zj

)2

+ fbias2 , z = x − o [−100, 100] −450

f9
Shifted

Rosenbrock
f(x) =

D−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2) + f bias6, [−100, 100] 390

z = x − o

f10
Shifted rotated

Griewank
f(x) =

D∑
i=1

z2i
4000

−
D∏
i=1

cos
(

zi√
i

)
+ 1 + f bias7, No bounds −180

z = (x − o) ∗M

f(x) = −20 exp
(
−0.2

√
1
D

D∑
i=1
z2i

)

f11
Shifted rotated

Ackley
− exp

(
1
D

D∑
i=1

cos(2πzi)
)
+ 20 + e + f bias8, [−32, 32] −140

z = (x − o) ∗M

f12 Shifted
Rastrigin

f(x) =
D∑
i=1

(
z2i − 10 cos(2πzi) + 10

)
+ f bias9, [−5, 5] −330

z = (x − o)

f13
Shifted rotated

Rastrigin
f(x) =

D∑
i=1

(
z2i − 10 cos(2πzi) + 10

)
+ f bias10, [−5, 5] −330

z = (x − o) ∗M

f(x) =
D∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk(zi + 0.5)

)])

f14
Shifted rotated
Weierstrass

−D
kmax∑
k=0

[
ak cos

(
2πbk · 0.5)] + f bias11, [−0.5, 0.5] 90

z = (x − o) ∗M
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Table 2: Error values obtained by BFOLS, BFO, PSO, and GA algorithms with dimension of 2.

Function BFOLS BFO PSO GA

f1
Mean 1.66266e − 010 1.14309e − 005 1.48427e − 018 2.46555e − 003
Std 2.35439e − 010 1.44400e − 005 3.38437e − 018 4.05650e − 003

f2
Mean 4.7678e − 008 4.94397e − 003 4.26062e − 015 1.76305e + 000
Std 5.69309e − 008 5.08761e − 003 9.56508e − 015 2.11319e + 000

f3
Mean 1.40217e − 007 6.55588e − 001 3.07902e − 015 1.59279e − 001
Std 1.46112e − 007 3.62200e − 001 8.83798e − 015 1.88468e − 001

f4
Mean 1.90708e − 004 1.18787e − 001 1.06646e − 008 3.62955e − 001
Std 1.11928e − 004 6.54950e − 002 1.36111e − 008 2.58463e − 001

f5
Mean 1.17638e − 006 2.67927e − 002 2.92970e − 004 9.38310e − 002
Std 2.53546e − 006 1.28042e − 002 1.36535e − 003 6.92769e − 002

f6
Mean 1.60310e − 005 8.0626e − 003 2.47171e − 009 3.37681e − 002
Std 1.36623e − 005 4.42736e − 003 4.17088e − 009 2.83197e − 002

f7
Mean 4.52226e − 008 3.81605e − 003 0 1.06661e + 001
Std 3.93677e − 008 3.62032e − 003 0 1.02199e + 001

f8
Mean 5.57271e − 008 4.75829e − 003 5.68434e − 015 1.91645e + 000
Std 8.51665e − 008 4.00577e − 003 1.73446e − 014 4.00548e + 000

f9
Mean 2.15994e − 006 2.00971e − 001 6.66463e − 006 4.24819e + 001
Std 2.21157e − 006 1.58643e − 001 2.94369e − 005 4.77406e + 001

f10
Mean 1.64445e − 004 4.59019e − 002 1.66967e − 003 2.87956e − 001
Std 8.78281e − 004 2.35742e − 002 3.37535e − 003 1.40164e − 001

f11
Mean 1.19137e + 001 9.69262e + 000 1.66669e + 001 1.21447e + 001
Std 9.89835e + 000 5.40612e + 000 7.5811e + 000 4.10647e + 000

f12
Mean 4.63100e − 008 2.50975e − 001 1.98992e − 001 7.41804e − 001
Std 5.64908e − 008 3.35611e − 001 4.04787e − 001 6.75828e − 001

f13
Mean 3.49518e − 008 1.85255e − 001 3.31653e − 002 9.61984e − 001
Std 2.31262e − 008 1.65632e − 001 1.81654e − 001 6.48141e − 001

f14
Mean 1.81406e − 003 1.01915e − 001 9.25237e − 006 3.39486e − 001
Std 6.56816e − 004 3.84900e − 002 6.56108e − 006 1.11498e − 001

3.1. Lifecycle Model of Bacterium

As mentioned above, in original BFO algorithm, there are three loops for the population.
Bacteria will reproduce after Nc times of chemotactic steps and dispersal after Nre times
of reproduction. As a result, the parameter settings of Nc and Nre are important to the
performance of the algorithm. Unsuitable parameter values may destroy the chemotactic
searching progress [16]. To avoid this, we remove the three loops In BFOLS algorithm.
Instead, for each bacterium, we will decide it to reproduce, die, or migrate by certain
conditions in the bacteria’s cycle.
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Table 3: Error values obtained by the BFOLS, BFO, PSO, and GA algorithms with dimension of 20.

Function BFOLS BFO PSO GA

f1
Mean 6.89944e − 008 6.17635e − 001 3.76236e − 006 6.61625e − 001
Std 4.37473e − 008 1.94300e − 001 4.85485e − 006 2.34433e − 001

f2
Mean 2.36439e + 001 2.02447e + 003 2.49117e + 001 6.56345e + 002
Std 2.39321e + 001 8.62087e + 002 2.12081e + 001 4.55687e + 002

f3
Mean 1.09317e + 001 4.94922e + 002 3.35838e + 001 6.80152e + 001
Std 5.90291e + 000 6.74151e + 001 1.07949e + 001 1.77908e + 001

f4
Mean 1.29613e − 003 1.95483e + 001 1.10071e + 000 1.86919e + 001
Std 2.60321e − 003 3.71818e − 001 9.14650e − 001 1.30767e − 000

f5
Mean 2.92754e − 002 3.00705e + 000 3.89587e − 002 3.11937e + 000
Std 2.12876e − 002 4.5062e − 001 3.13277e − 002 8.55760e − 001

f6
Mean 8.20052e − 004 5.43634e + 001 1.39941e − 001 4.92696e + 000
Std 2.08416e − 004 1.20626e + 001 1.87068e − 001 1.09457e + 000

f7
Mean 2.00442e − 005 7.63447e + 002 6.53663e + 001 9.33638e + 001
Std 1.01518e − 005 2.85716e + 002 1.47148e + 002 2.21348e + 001

f8
Mean 1.96773e + 001 1.00992e + 004 2.58670e + 002 1.61144e + 004
Std 3.32945e + 001 2.54700e + 003 5.37769e + 002 6.68451e + 003

f9
Mean 3.20719e + 001 1.80082e + 007 2.23033e + 005 1.41913e + 005
Std 2.84519e + 001 2.24514e + 007 7.69626e + 005 1.29572e + 005

f10
Mean 1.74564e − 001 6.12735e + 001 8.44887e + 000 1.94291e + 001
Std 2.39218e − 001 3.07002e + 001 6.86895e + 000 6.31473e + 000

f11
Mean 2.07203e + 001 2.08745e + 001 2.07481e + 001 2.08665e + 001
Std 8.27531e − 002 5.76786e − 002 6.78494e − 002 5.81818e − 002

f12
Mean 7.99944e + 001 1.86911e + 004 9.86338e + 001 5.00084e + 001
Std 2.08287e + 001 2.49192e + 001 1.75115e + 001 1.01565e + 001

f13
Mean 1.45491e + 002 3.06702e + 002 1.74580e + 002 1.77517e + 002
Std 2.95067e + 001 3.87859e + 001 3.93332e + 001 2.79148e + 001

f14
Mean 1.90236e + 001 2.04888e + 001 1.44403e + 001 2.51640e + 001
Std 2.13827e + 000 1.14255e + 000 2.83690e + 000 7.57584e − 001

Table 4: Average rankings of the four algorithms on dimensions of 2 and 20.

Dimension BFOLS BFO PSO GA
2 1.6429 2.9286 1.5714 3.8571
20 1.1429 3.7143 2.0714 3.0714

Table 5: Results of the Iman-Davenport test.

Dimension Iman-Davenport value Critical value
α = 0.05

Significant differences?

2 34.1852 2.85 Yes
20 42.3913 2.85 Yes
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Born Split

Forage

Migrate Die

Figure 2: State transition in lifecycle model of bacteria in BFOLS.

The idea of lifecycle has been used in some swarm intelligence algorithms [17, 18].
Based on Niu’s model in [18], a new lifecycle model of bacteria is founded in this paper. In
the model, a bacterium could be represented by a six-tuple as follows:

B = {P, F,N, T,D,C}, (3.1)

where P, F,N, T,D,C represent the position, fitness, nutrient, state, tumble direction, and step
length, respectively. It should be noted that fitness is the evaluation to the current position of
a bacterium, and nutrient is total nutrient gained by the bacterium in its whole searching
process.

We define the nutrient updating formula as (3.2). Flast represents the fitness of
the bacterium’s last position (for a minimum problem, fitness is larger when the function
value is smaller). In initialization stage, nutrients of all bacteria are zero. In the bacterium’s
chemotactic processes, if the new position is better than the last one, it is regarded that
the bacterium will gain nutrient from the environment and the nutrient is added by one.
Otherwise, it loses nutrient in the searching process and its nutrient is reduced by one.

N(i) =
{

N(i) + 1 if (F(i) > Flast)
N(i) − 1 if (F(i) < Flast).

(3.2)

There are five states defined in the lifecycle model: born, forage, split, die, andmigrate.
That is, T = {Born | Forage | Split | Die | Migrate}. The bacteria are born when they are
initialized. Then they will forage for nutrient. In the foraging process, if a bacterium obtains
sufficient nutrient, it will split into two in the same position; if the bacterium enters bad area
and loses nutrient to a certain threshold, it will die and be eliminated from the population; if
the bacterium is with a bad nutrient value but has not died yet, it may migrate to a random
position according to certain probability. After split or migrate, the bacterium is regarded as
new born and its nutrient will be reset to 0. The state transition diagram is shown in Figure 2.
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Table 6: Results of Holm’s test with dimension of 2.

Algorithm z P value α/i Significant differences?
GA 4.6843 2.8089E − 6 0.0167 Yes
BFO 2.7813 0.0054 0.025 Yes
BFOLS 0.1464 0.8836 0.05 No

The split criterion and dead criterion are listed in Formula (3.3) and (3.4). Nsplit

and Nadapt are two new parameters used to control and adjust the split criterion and dead
criterion. S is the initial population size and Si is the current population size. It should be
noticed that the population size will increase by one if a bacterium splits and reduce by one
if a bacterium dies. As a result, the population size may vary in the searching process. At
the beginning of the algorithm, as S equals to Si, the bacterium will split when its nutrient is
larger thanNsplit and die when its nutrient is smaller than 0. We do not need to worry that the
population will decrease suddenly at the first beginning because when it is first time for the
bacteria to decide whether to die or not, they have passed through the chemotactic process
so most of the bacteria’s nutrient values are larger than zero. With the algorithm runs, the
population size may change and differ from the initial population size. On certain conditions,
the population size will reduce to zero, which makes the algorithm unable to continue.
Oppositely, if the population size becomes too large, it will cost too much computation and
be hard to evolve. To avoid the population size becoming too large or too small, a self-
adaptive strategy is introduced: if Si is larger than S, for each Nadapt of their differences,
the split threshold value will increase by one. And if S is larger than Si, for each Nadapt

of their differences, the death threshold value will decrease by one. The strategy is also in
accord with nature. Behaviors of organisms will be affected by the environment their lived.
If the population is too crowded, the competition between the individuals will increase and
death becomes common. If the population is small, the individuals are easier to survive and
reproduce. By this strategy, the split threshold is enhanced when population size is large and
the dead condition is stricter when population is small, which controls the population size in
a relatively stable range:

Nutrient (i) > max

(
Nsplit,Nsplit +

(
Si − S

)

Nadapt

)
, (3.3)

Nutrient (i) < min

(
0, 0 +

(
Si − S

)

Nadapt

)
. (3.4)

When the nutrient of a bacterium is less than zero, but it has not died yet, it could
migrate with a probability. A random number is generated and if the number is less than
migration probability Pe, it will migrate andmove to a randomly produced position. Nutrient
of the bacterium will be reset to zero.

It should be mentioned that the splitting, death, and migration operators are judged in
sequence, if one of them is done, the algorithm will breakout from the current cycle and will
not execute the rest of judgments.
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Table 7: Results of Holm’s test with dimension of 20.

Algorithm z P value α/i Significant differences?
BFO 5.2699 1.3653E − 7 0.0167 Yes
GA 3.9524 7.7373E − 5 0.025 Yes
PSO 1.9030 0.0570 0.05 No

Table 8: Results of BFOLS with differentNsplit values underNadapt = 5.

Function Nsplit

10 20 30 50 100

Rosenbrock
2D

Mean 5.03273e − 007 9.32218e − 008 4.76780e − 008 1.7662e − 008 1.48532e − 008
Rank 4 5 3 2 1

Rosenbrock
20D

Mean 1.49457e + 001 1.80154e + 001 2.53310e + 001 2.68780e + 001 3.68623e + 001
Rank 1 2 3 4 5

Griewank
2D

Mean 3.17617e − 006 1.20719e − 005 1.17638e − 006 1.53849e − 006 7.28572e − 006
Rank 3 5 1 2 4

Griewank
20D

Mean 2.39571e − 002 3.56497e − 002 2.92754e − 002 2.77610e − 002 3.13200e − 002
Rank 1 5 3 2 4

Ackley
2D

Mean 2.25585e − 004 1.58819e − 004 1.90708e − 004 1.61910e − 004 1.24685e − 004
Rank 5 2 4 3 1

Ackley
20D

Mean 1.78481e − 003 1.13355e − 003 1.29613e − 003 1.64810e + 000 1.52429e + 000
Rank 3 1 2 5 4

Schwefel2.22
2D

Mean 2.41253e − 005 2.28243e − 005 1.60310e − 005 1.84355e − 005 1.49146e − 005
Rank 5 4 2 3 1

Schwefel2.22
20D

Mean 1.61622e − 003 9.90601e − 004 8.20052e − 004 5.89764e − 004 4.38522e − 004
Rank 5 4 3 2 1

Average rank 3.375 3.5 2.625 2.875 2.625

3.2. Social Learning

Social learning is the core motivation in the formation of the collective knowledge of swarm
intelligence [19]. For example, in PSO algorithm, particles learn from the best particles and
themselves [20]. In ABC algorithm, bees learn from their neighbors [21]. However, the social
learning is seldom used in original BFO algorithm. In chemotactic steps of original BFO, the
tumble directions are generated randomly. Information carried by the bacteria in nutrient
rich positions is not utilized. In our BFOLS, we assume that all bacteria can memory the best
position they have reached and share the information to other bacteria. And in chemotactic
steps, a bacterium will decide which direction to tumble using the information of its personal
best position and the population’s global best position. Based on the assumption, the tumble
directions in our BFOLS are generated using (3.5). Where θgbest is the global best of the
population found so far and θi,pbest is the ith bacterium’s personal historical best. The tumble
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Table 9: Results of BFOLS with differentNadapt values underNsplit = 30.

Function Nadapt

1 2 5 20 60

Rosenbrock
2D

Mean 2.03042e − 008 3.25644e − 008 4.76780e − 008 3.83752e − 008 6.27226e − 008
Rank 1 2 4 3 5

Rosenbrock
20D

Mean 2.07862e + 001 1.85445e + 001 2.53310e + 001 1.21741e + 001 2.00873e + 001
Rank 4 2 5 1 3

Griewank
2D

Mean 1.21182e − 006 7.3607e − 006 1.17638e − 006 8.76095e − 006 4.21623e − 006
Rank 2 4 1 5 3

Griewank
20D

Mean 4.68112e − 002 4.45132e − 002 2.92754e − 002 3.10057e − 002 4.52086e − 002
Rank 5 3 1 2 4

Ackley
2D

Mean 1.49850e − 004 1.34254e − 004 1.90708e − 004 1.63858e − 004 1.56880e − 004
Rank 2 1 5 4 3

Ackley
20D

Mean 7.99836e − 001 6.77576e − 001 1.29613e − 003 2.79342e − 003 1.55109e − 001
Rank 5 4 1 2 3

Schwefel2.22
2D

Mean 2.61265e − 005 2.08609e − 005 1.60310e − 005 1.20443e − 005 1.82075e − 005
Rank 5 4 2 1 3

Schwefel2.22
20D

Mean 6.70517e − 004 8.60185e − 004 8.20052e − 004 9.97355e − 004 8.10414e − 004
Rank 1 4 3 5 2

Average rank 3.125 3 2.75 2.875 3.25

direction is then normalized as unit vector by (2.2) and the position updating is still using the
(2.1):

Δi =
(
θgbest − θi

)
+
(
θi,pbest − θi

)
. (3.5)

The direction generating equation is similar to the velocity updating equation of PSO
algorithm [22]. They all used the global best and personal best. However, they are not the
same. First, there is no inertia term in (3.5). Usually, the bacteria will run more than one time
in chemotactic steps. An inertia term will enlarge the difference of between θgbest, θi,pbest and
the current position tremendously. Second, there are no learning factors in (3.5). Because the
direction that will be normalized to unit vector and the learning factors is meaningless.

By social learning, the bacteria will move to better areas with higher probability as
good information is fully utilized.

3.3. Adaptive Search Strategy

As mentioned above, the constant step length will make the population hard to converge
to the optimal point. In an intelligence optimization algorithm, it is important to balance its
exploration ability and exploitation ability. The exploration ability ensures that the algorithm
can search the whole space and escape from local optima. The exploitation ability guarantees
that the algorithm can search local areas carefully and converge to the optimal point.
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Generally, in the early stage of an algorithm, we should enhance the exploration ability to
search all the areas. In the later stage of the algorithm, we should enhance the exploitation
ability to search the good areas intensively.

There are various step length varying strategies [23, 24]. In BFOLS, we use the
decreasing step length. The step length will decrease with the fitness evaluations, as shown
in (3.6). Cs is the step length at the beginning. Ce is the step length at the end. nowEva is the
current fitness evaluations count. TotEva is the total fitness evaluations. In the early stage of
BFOLS algorithm, larger step length provides the exploration ability. And at the later stage,
small step length is used to make the algorithm turn to exploitation:

C = Cs − (Cs − Ce) × nowEva

TotEva
. (3.6)

To strengthen the idea further, an elaborate adaptive search strategy is introduced
based on the decreasing step length mentioned above. In the new strategy, the bacteria’s step
lengths may vary from each other. And their values are related with their nutrient, which are
calculated using (3.7):

C(i) =

⎧
⎨
⎩

C

Nutrient(i)
if (Nurtrient (i) > 0)

C if (Nurtrient (i) ≤ 0).
(3.7)

With a higher nutrient value, the bacterium’s step length is shortened further. This is
also in accordance with the food searching behaviors in natural. The higher nutrient value
indicates that the bacterium is located in potential nutrient rich area with a larger probability.
As a result, it is necessary to exploit the area carefully with smaller step length.

The pseudocode of BFOLS algorithm is listed in Pseudocode 2.

4. Experiments

In this section, first we will test the optimization ability of BFOLS algorithm on a set of
benchmark functions. Several other intelligent algorithms will be employed for comparison,
including original BFO, PSO, and Genetic Algorithm (GA) [25]. Statistical techniques are
also used [26, 27]. Iman-Davenport test and Holm method are employed to analyze the
differences among these algorithms. As two extra control parameters Nsplit and Nadapt are
introduced, the settings of the two parameters are then tested to determine their best values.
At last, the varying tendency of population size in BFOLS is tested and analyzed.

4.1. Performance Test of BFOLS

4.1.1. Benchmark Functions

The BFOLS algorithm was tested on a set of benchmark functions with dimensions of
2 and 20, respectively. The functions are listed in Table 1. Among them, f1 – f6 are basic
functions widely adopted by other researchers [28, 29], their global minima are all zero. f7 –
f14 are shifted and rotated functions selected from CEC2005 test-bed, global minima of these
functions are different from each other. For each function, its standard variable range is used.
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Function f10 is a special case. It has no bounds. The initialization range of this function is
[0, 600], and the global optima is outside of its initialization range.

It should be mentioned that the bacteria may run different times in a chemotactic step.
As a result, different computational complexity may be taken in each iteration for different
algorithms and iterations count is no longer a reasonable measure. In order to compare the
different algorithms, a fair measure method must be selected. In this paper, we use number
of function evaluations (FEs) as a measure criterion, which is also used in many other works
[30–32]. All algorithms were terminated after 20,000 function evaluations on dimension of 2
and 60,000 function evaluations on dimension of 20.

4.1.2. Parameter Settings for the Involved Algorithms

The population sizes S of all algorithms were 50. In original BFO algorithm, the parameters
are set as follows: Nc = 50, Ns = 4, Nre = 4, Ned = 10, Pe = 0.25, C = 0.1, and Sr =
S/2 = 25. The parameter settings are similar to that in Passino’s work except Nc is
smaller and Ned is larger [4]. This is because the termination criterion has changed to be
the function evaluations. Smaller Nc is selected to guarantee that the algorithm can run
through the chemotactic, reproduction, eliminate, and dispersal processes. Larger Ned is
selected to guarantee that the BFO algorithmwill not terminate before the maximum function
evaluations. In our BFOLS algorithm, as it has mentioned previously, Nc, Nre, Ned, and Sr

are no longer needed. Ns = 4, Pe = 0.25, which are the same with those are in BFO. The
started stepCs = 0.1(Ub−Lb); ended stepCe = 0.00001(Ub−Lb), where Lb and Ub refer to the
lower bound and upper bound of the variables of the problems. This will make the algorithm
suitable for problems of different scales. The step of the whole population decreases from Cs

to Ce linearly, and step of each bacterium is calculated by (3.7) mentioned above. The values
of the two control parameters Nsplit and Nadapt are set to be 30 and 5. Standard PSO and
GA algorithm was used in this experiment. In PSO algorithm, inertia weight ω decreased
from 0.9 to 0.7. The learning factors C1 = C2 = 2.0 [33]. Vmin = 0.1 × Lb, Vmax = 0.1 × Ub.
In GA algorithm, single-point crossover is used; crossover probability is 0.95 and mutation
probability is 0.1 [25].

4.1.3. Experiment Results and Statistical Analysis

The error values (f(x) − f(x∗)) of BFOLS, BFO, PSO, and GA algorithms on the benchmark
functions with dimension of 2 and 20 are listed in Tables 2 and 3, respectively. Mean and
standard deviation values obtained by these algorithms for 30 times of independent runs are
given. Best values of them on each function are marked as bold. As there are 14 functions
on each dimension, it will take too much space to give all the convergence plots. Here, only
f1 − f6’s convergence plots are given, as seen in Figure 3.

With dimension of 2, PSO obtained best mean error values on 8 functions. BFOLS
performed best on 5 and BFO performed best on the rest ones. With dimension of 20, BFOLS
algorithm obtained best results on 12 functions of all 14. PSO and GA performed best on the
rest two, respectively. The average rankings of the four algorithms are listed in Table 4. The
smaller the value is, the better the algorithm performs. On dimension of 2, the performance
order is PSO > BFOLS > BFO > GA. And on dimension of 20, the performance order is
BFOLS > PSO > GA > BFO.
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Table 5 shows the results of Iman-Davenport statistical test. The critical values are at
the level of 0.05, which can be looked up in the F-distribution table with 3 and 39 degrees
of freedom. On dimensions of 2 and 20, the Iman-Davenport values are all larger than
their critical values, which mean that significant differences exist among the rankings of the
algorithms under the two conditions.

Holm tests were done as a post hoc procedure. With dimension of 2, PSO performed
best. It is chosen as the control algorithm and the other algorithms will be compared with
it. With dimension of 20, BFOLS algorithm is the control algorithm. The results of Holm test
with dimensions of 2 and 20 are given in Tables 6 and 7, respectively. The α/i values are with
α = 0.05. If α = 0.10, the values are twice of the values listed.

As shown in Table 6, the P values of GA and BFO are smaller than their α/i values,
which means that equality hypotheses are rejected and significant differences exist between
these two algorithms and the control algorithm-PSO. The P value of BFOLS is larger than
its α/i values, so the equality hypothesis cannot be rejected. It denotes that no significant
differences exist and it can be regarded as equivalent to PSO. The situation is the same when
α = 0.10.

With dimension of 20, BFOLS algorithm is the control algorithm. The P values of
BFO and GA are smaller than their α/i values, So BFOLS is significant better than the two
algorithms. The equality hypothesis between BFOLS and PSO cannot be rejected when
α = 0.05. However, when α = 0.10, α/i value is 0.1 and the P value is smaller than it. So
BFOLS is also significantly better than PSO under the level of 0.1.

Overall, BFOLS shows significant improvement over the original BFO algorithm.
And its optimization ability is better than the classic PSO and GA algorithms on higher
dimensional problems, too.

4.2. Parameters Setting Test of BFOLS

In BFOLS, two extra parameters Nsplit and Nadapt are introduced. Nsplit is the initial split
threshold. Nadapt makes the split threshold and the death threshold adjusted with the
environment adaptively. To determine the best settings of these two parameters, we tested
the algorithm on four benchmarks with different Nsplit and Nadapt values.

The four benchmark functions are Rosenbrock, Griewank, Ackley, and Schwefel2.22.
Each function was tested with dimensions of 2 and 20. Nsplit should be a little larger so the
bacteria will not reproduce sharply at first. Nadapt should be larger than zero to let the split
and death threshold vary adaptively. Tests have been done that population size will reduce to
zero and error occurs on some functions whenNadapt is zero. In the first group of tests,Nadapt

were fixed to 5 andNsplit were set to be 10, 20, 30, 50, and 100 separately. In the second group
of tests, Nsplit were fixed to 30 and Nadapt were set to be 1, 2, 5, 20, and 60 separately. Results
of BFOLS obtained with different parameter values are listed in Tables 8 and 9.

It is clear from the table, on most benchmark functions, results obtained with different
parameter values are almost at the same order of magnitude. That is to say, the performance
of BFOLS is not that sensitive to the parameter values onmost functions. However, on Ackley
function with dimension of 20, the situations seem changed. While Nadapt was fixed, results
of BFOLS with Nsplit values of 10, 20, and 30 are much better than of 50 and 100. While Nsplit

was fixed, results of BFO withNadapt values of 5 and 20 are better than 1, 2, and 60 clearly. At
the meanwhile, the average ranks show that it got the best rank while Nsplit were 30 or 100
in the first test and while Nadapt was 5 in the second test.
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4.3. Population Size-Varying Simulation in BFOLS

As it has mentioned above, the population size of BFOLS may vary because the bacteria will
split and die. As a result, the dynamic varying on function f1 – f6 is tracked and recorded
while the algorithm runs. The mean population size varying plots on the six functions with
dimension of 2 and 20 are listed in Figure 4. The left subplot is with dimension of 2 and
the right one is with dimension of 20. It can be seen that obvious regularities exist among
both the two plots. With dimension of 2, the population size of BFOLS decreased firstly
and increased at the end in all functions. With dimension of 20, population size increased
fast at the beginning and then reached the peaks. After that, population size began to
decrease. The varying plots probably correspond with two adaptive behaviors in the nature
environment. As mentioned in (3.2), the nutrient updating is related with the improvement
or deterioration of the position of the bacterium. In functions with dimension of two, the
room for improvement is limited, which is similar to a saturated environment. The nutrient
is limited and competitions between bacteria are fierce. As a result, bacteria die more than
split and the population size decreases. At the end of the algorithm, the competition reduced
as the number of bacteria decreased, so the bacteria reproduced more often adaptively. On
functionswith dimension of 20, there ismuch room for improvement and it could be regarded
as an eutrophic environment. Bacteria split easily and the population size increased sharply
at first; then it reached saturation. Competition increased and the population size began to
decrease.

5. Conclusions

This paper analyzes the shortness of original Bacterial Foraging Optimization algorithm.
To overcome its shortness, an adaptive BFO algorithm with lifecycle and social learning
is proposed, which is named BFOLS. In the new algorithm, a lifecycle model of bacteria
is founded. The bacteria will split, die, or migrate dynamically in the foraging processes
according to their nutrient. Social learning is also introduced in the chemotactic steps to
guide the tumble direction. In BFOLS algorithm, the tumble angles are no longer generated
randomly. Instead, they are produced using the information of the bacteria’s global best, the
bacterium’ personal best, and its current position. At last, an adaptive search step length
strategy is employed. The step length of the bacteria population decreases linearly with
iterations and the individuals adjust their step lengths further according to their nutrient
value.

To verify the optimization ability of BFOLS algorithm, it is tested on a set of benchmark
functions with dimensions of 2 and 20. Original BFO, PSO, and GA algorithms are used for
comparison. With dimension of 2, it outperforms BFO and GA but is little worse than PSO.
With dimension of 20, it shows significant better performance than GA and BFO. At the level
of α = 0.10, it is significant better than PSO, too. The settings of the new parameters are
tested and discussed. Nsplit and Nadapt are recommend to be 30 and 5 or in the nearby range.
The varying situations of population size are also tracked. With dimensions of 2 and 20,
their varying plots show obvious regularities and correspond with the population survival
phenomenon in natural. Overall, the proposed BFOLS algorithm is a powerful algorithm for
optimization. It offers significant improvements over original BFO and shows competitive
performances compared with other algorithms on higher-dimensional problems.

Further research efforts could focus on the following aspects. First, other step length
strategies can be used. Second, more benchmark functions with different dimensions could
be tested.
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