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The purpose of this paper is to propose a new kind of P systems on simplicial complexes.
We present the basic discrete Morse structure, membrane structures on complexes, and
communication rules. A new grid-based clustering technique is described based on this kind of
new P systems. Examples are given to show the effect of the algorithm. The new P systems provide
an alternative for traditional membrane computing.

1. Introduction

Membrane computing is a new branch of natural computing which is initiated by Păun et al.
at the end of 1998, as an attempt to formulate models from the functioning of living cells [1],
just like DNA computing coming from genes [2–4]. The advantage of these methods lies in its
huge inherent parallelism which has drawn great attention from the scientific community so
far. In recent years, many different models of P systems have been proposed, such as cell-like
P systems, tissue-like P systems, and spiking neural P systems [5–9]. The obtained computing
systems prove to be so powerful that they are equivalent with Turing machines [10] even
when using restricted combinations of features and also computationally efficient. Up to
now a number of applications were reported in several areas such as biology, biomedicine,
linguistics, computer graphics, economics, approximate optimization, cryptography, and so
forth.

Traditionally, Morse theory is the subject of differential topology and differential
geometry where the topological spaces in question are smooth manifolds. When we want
to study discrete problems, we will use combinatorial complexes rather than manifolds.
Along this line, discrete Morse theory has been developed [11, 12]. Recently, discrete Morse
theory has attracted many researchers because it has found applications in triangulations
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and graphics. In fact, simplicial complex, the basic data structure in discrete Morse theory,
will prove to be an important data structure besides trees and graphs.

Spatial cluster analysis is a traditional problem in knowledge discovery from
databases [13]. It has wide applications since increasingly large amounts of data obtained
from satellite images, X-ray crystallography, or other automatic equipment are stored in spa-
tial databases. The most classical spatial clustering technique is due to Han and Kamber [13]
who developed a variant PAM algorithm called CLARANS, while new techniques are
proposed continuously in the literature aiming to reduce the time complexity or to fit for
more complicated cluster shapes. Other clustering-like problems include impulsive cluster
anticonsensus of discrete multiagent linear dynamic systems [14] and driving general
complex networks into prescribed cluster synchronization patterns by using pinning control
[15]. In another research, the authors introduce a cooperative article bee colony algorithm for
solving clustering problems [16]. Also the authors propose a DNA-based clustering method
by the Adleman-Lipton model [17]. For related research, one can also refer to [18–20].

In medical analysis there often appear data clustering problems of various
type. The Wisconsin Breast Cancer Showhouse was founded in 1998 as an all-
volunteer 501(c)(3) charitable organization by Nance Kinney, a breast cancer survivor
(http://www.breastcancershowhouse.org/wbcs2012/index.html) . Its mission is to support
breast cancer and prostate cancer research at the Medical College of Wisconsin. This breast
cancer databases were obtained from the University of Wisconsin Hospitals, Madison from
Dr. William H. Wolberg. Many computing methods have been applied to study this data case
and, in fact, theWisconsin Breast Cancer data set is becoming an important testing benchmark
for soft computing.

Inspired by the above research, this paper focuses on the joint study of discrete Morse
theory with membrane computing. Our purpose is to propose a P system on simplicial
complex. Up to our knowledge, this is the first paper to extend membrane computing to
complexes. Then we use membrane computing in cluster analysis, providing a new approach
to data mining. We first propose a discrete Morse structure for a candidate of a class of new P
systems. Then we described for the first time a communication P system on simplices. Then
we propose a newmethod for cluster analysis by simplicial P systems. Finally, we present the
Wisconsin Breast Cancer analysis.

2. Discrete Morse Structure

In this section we present some general discrete models which will form the basis of
membrane structures. The main idea comes from [11, 21]. In order to do this, we need
to present some basic topological concepts. For simplicity we always assume that we are
working in an Euclidean space Rn.

2.1. Simplex without Orientation

A k-simplex (cell) σ is the convex hull of k + 1 affinely independent points. More precisely,
suppose a0, a1, . . . , ak are affinely independent, that is, a1 − a0, . . . , ak − a0 are linearly
independent. Then σ is defined as the set of points in the form x =

∑k
i=0 λia

i, where
∑k

i=0 λi = 0
and λ0, λ1, . . . , λk ≥ 0. We will call k the dimension of a simplex and write dim(σ) = k, while
a0, a1, . . . , ak are called vertices of the simplex. A simplex is uniquely indicated by its vertices
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Figure 1: An attractor model on simplicial complex.

and hence is expressed as σ = [a0, a1, . . . , ak], or simply σ = a0a1 · · ·ak, and will be called a
cell in this paper.

A face τ of a simplex σ is defined as a simplex generated by a nonempty subset of its
vertices. We write τ < σ. A face τ is called a hyperface of σ if dim τ = dimσ − 1 and is denoted
by τ ≺ σ. In this case, σ is called the parent of τ . Two cells τ1 and τ2 are called incident if
τ1, τ2 ≺ σ, and σ is called the coface of τ1 and τ2. Two cells σ1, σ2 are called neighbors if they
share a common hyperface. The cone from a vertex x to a k-simplex σ is the convex hull of x
and σ which yields a (k+1)-simplex xσ provided x is not an affine combination of the vertices
of σ. A simplicial complex K is a finite collection of nonempty simplices for which σ ∈ K and
τ ≺ σ implies τ ∈ K and σ1, σ2 ∈ K implies that σ1 ∩ σ2 is either empty or a face of both. The
underlying space of K is the union of simplices: |K| = ⋃σ∈K σ. Kp is a subset of K containing
simplices of dimension p.

For a k-simplex σ, defineK to be the collection of σ and all its faces. Then it is clear that
K is a simplicial complex. We will call this simplicial complex a simple complex or, simply, a
complex.

Nowwe consider some properties of incident and neighborhood relations as described
above. First suppose τ1, τ2 ≺ σ are incident and dimσ ≥ 2. Then τ1, τ2, σ are faces of
a simplex. Define ψ = τ1 ∩ τ2 and we will show that ψ /= ∅. This is evident because if
σ = vi0vi1 · · ·vip , then p ≥ 2. By removing one vertex we obtain τ1 and τ2 with p vertices
remained. Since p ≥ 2 we know that there exists at least one common vertex among τ1, τ2. By
the definition of K we get ψ ∈ K and consequently τ1, τ2 are neighbors.

Conversely, if τ1, τ2 � ψ are neighbors, they need not be incident as shown in Figure 1.
In the case when they are in the same simplex, however, this is true. In fact, suppose
ψ = vi1 · · ·vip . Then all the vertices vi1 · · ·vip belong to τ1 and τ2. Then we can assume that
τ1 = vi1 · · ·vipvj1 and τ2 = vi1 · · ·vipvj2 . Since both cells are in the same simplex, define
σ = vi1 · · ·vipvj1vj2 . Then σ ∈ K. Consequently τ1, τ2 are incident. Putting everything together
we get a theorem.

Theorem 2.1. Two incident cells τ1, τ2 are neighbors if they are at least one-dimensional. Two
neighboring cells are incident provided they are located in the same simplex.

By the definition of neighborhood, if σ1, σ2 are neighbors and their common hyperface
is τ , then clearly τ = σ1 ∩ σ2 and, consequently, this common hyperface is unique. However,
there exist cells with nonempty intersection but they are not neighbors. Now we consider
incident cells τ1, τ2 ≺ σ. We will show that their coface is also unique. First if dim τ1 = dim
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Figure 2: A simplicial complex with orientation in R3.

τ2 = 0, then dimσ = 1. Therefore σ is the edge joining the two vertices τ1, τ2 and hence is
unique. Next if dim τ1 = dim τ2 ≥ 1, then as described previously we define ψ = τ1 ∩ τ2. Then
τ1 = v1ψ, τ2 = v2ψ and v1 /=v2. Therefore σ = v1v2ψ and is unique.

Theorem 2.2. Neighboring cells can only share a unique common hyperface. Incident cells have a
unique coface (parent).

2.2. Simplex with Orientation

Simplicial complexes with orientation are important tools in the study of topological
properties of discrete data structure. Concepts about discrete Morse functions are listed as
follows (Robin [11]). For a simplex σ = [a0, a1, . . . , ak], there are two orientations and the
opposite orientation is denoted by −σ. Figure 2 shows the orientation of a three-dimensional
complex.

In the following we will use [a0, a1, . . . , âi, . . . , ak] to denote a face of σ, where the
vertex ai is eliminated. The following chain is defined as the boundary of the complex:

∂σ =
k∑

i=0
(−1)i[a0, a1, . . . , âi, . . . , ak]. (2.1)

If gi are integers, then
∑

i giσi is called a chain, where dimσi remains the same within
a chain. Boundary operator extends to chains naturally. An important property of boundary
operator is that ∂ ◦∂ = 0. For a (k − 1)-dimensional simplex τk−1 and a k-dimensional simplex
σk, define its relationship operator as follows:

[
σk : τk−1

]
=

⎧
⎪⎪⎨

⎪⎪⎩

0, τ ⊀ σ

1, τ ≺ σ with same orientation
−1, τ ≺ σ with opposite orientation.

(2.2)
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In simplicial complex we can define Morse functions which is a tool for optimization.

Definition 2.3. Let K be a simplicial complex. A function f : K → R is a discrete Morse
function if for every σp ∈ Kp the following two statements are true:

(1) #{τp+1 > σ | f(τ) ≤ f(σ)} ≤ 1; #{vp−1 < σ | f(v) ≥ f(σ)} ≤ 1.

A simplex σp is critical with index p if

(2) #{τp+1 > σ | f(τ) ≤ f(σ)} = 0; #{vp−1 < σ | f(v) ≥ f(σ)} = 0.

Discrete gradient can also be defined on the complex K. If v is a critical point, then
define V (v) = 0. Otherwise if v ∈ K0 is not critical and the edge e satisfies e > v, f(e) ≤ f(v),
then define V (v) = ±e where the sign is determined so that 〈∂(V (v)), v〉 = −1. Here the
inner product 〈·, ·〉 is the obvious inner product on oriented chains with respect to which the
oriented simplices are orthonormal. It is easy to see that, if the edge e = vu, then V (v) = −e.
Generally speaking, discrete gradient is a mapping

V : Cp(K,Z) −→ Cp+1(K,Z) (2.3)

A natural gradient flow is Φ(σ) = σ + ∂V (σ) + V (∂σ).

3. Communication P Systems on Simplices

3.1. Traditional P Systems

Membrane is a structure serving as a protected reactor. We will identify a membrane m with
its delimited space. When we say inclusion for membranes, it is always strict inclusion. Now
we list some elementary concepts concerning the basic operations of membranes:

(i) m,m′ are vicinal, ifm′ ⊂ m and there is nom′′ such thatm′ ⊂ m′′ ⊂ m,

(ii) elementary membrane: with no lower vicinal membranes, skin membrane: with no
upper vicinal membranes, we assume there is always a unique skin,

(iii) degree: number of membranes,

(iv) sibling membranesm,m′: if there is am′′ which is upper vicinal for bothm andm′.

Parentheses expression is often used to describe membrane structures. For example,
the membrane structure as shown in Figure 3 has a parentheses expression for membranes as
follows:

[
[]2
[
[]7[]5[[]8[]9]6

]
4[]3

]
1. (3.1)

For a set U, a multiset over U is a mapping M : U → N, where N is the set of
nonnegative integers. For a ∈ U,M(a) is the multiplicity of a inM. Suppose the set of objects
is O with a subset E such that objects from E are available in the environment in arbitrary
multiplicities, that is, its multiset isM : E → {∞}. A P system with symport/antiport rules
of degreem ≥ 1 is a construct

Π =
(
O, T, E, μ,ω1, . . . , ωm, R1, . . . , Rm, i0

)
, (3.2)
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Figure 3: Traditional membrane structures.

where O is the alphabet, T ⊂ O is the alphabet of terminal objects, μ is a membrane structure
of degree m, ω1, . . . , ωm are the multisets of objects associated with the m regions of μ, and
R1, . . . , Rm are finite sets of symport and antiport rules associated with the m membranes of
μ, and i0 is the input/output region.

A P system is called stable if, even if some rules are still applicable, their application
does not change the string/object content of the membrane structure, nor the membrane
structure itself. For a subalphabet W ⊂ O, we call a system stable over W if the projection
over W of the string/object remains unchanged, even if some rules are still applicable. If
W = {a}, we will say stable over a. If R = (R′

1, . . . , R
′
m ), with R′

i ⊂ Ri for 1 ≤ i ≤ m, is a subset
of rules, we call a P system stable with respect to the rules R′ if the P system with rules R′ is
stable (i.e., applications of rules in R′ do not change the string/object content of the system’s
membranes) [19].

3.2. Membrane Structures on Simplices

Now we describe membrane structures on simplicial complexes. First we assume that the
complex is a simple complex, that is, a simplex with all its faces including vertices. In Figure 4
a simple three dimensional example is presented with 15 membranes. In the general case
when there is a complex {a0, a1, . . . , an} in Rn, the number of simplices are

1 + Cn
n+1 + C

n−1
n+1 + · · · + C1

n+1 =
n+1∑

i=0

Ci
n+1 − 1 = 2n+1 − 1. (3.3)

The boundary relations of simplices are shown in Figure 5 where the arrows point to
the boundary cells.

Now we consider the general cases where K is a simplicial complex in Rn. For an
example of K in R3 as shown in Figure 6, the total number of cells is 6 + 19 + 21 + 9 = 55. For
example, the three dimensional simplices are listed as

a0a1a4a3, a3a1a4a2, a3a4a2a7, a1a5a2a4, a4a5a6a2, a4a6a7a2. (3.4)
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Figure 5: A network model for membrane structure.

Generally speaking, a simplicial complex K is denoted by a set of vertices
{a0, a1, . . . , ak} in Rn. A simplex σ ∈ K is called membrane. A membrane is called a max-
simplex if it is not a face of another simplex in K. A simplex is denoted by its vertices.
Evidently, vertices are zero-dimensional cells and hence are elementary membranes. If τ ≺ σ
is a face of σ, then we way that σ is the parent of τ . Figure 5 shows the parents and
neighborhood relations of the complex in Figure 4. For the more general simplicial complex
as in Figure 6, the network model is shown in Figure 7.

If σ1, σ2 are incident, we say there is an upper link (channel) between σ1, σ2. If σ1, σ2 are
neighbors, we say there is a lower link between them. A upper link is denoted by (σ1, σ2)

τ ,
where τ is their (common) parent, while lower link is written as (σ1, σ2)τ , where τ is their
common hyperface. Upper link is also written by (σ1, σ2)U or, simply, (σ1, σ2), while lower
link is denoted by (σ1, σ2)L. Links have no directions. Thus (σ1, σ2) and (σ2, σ1) are identical.
We will specify one from these two links, and only one is allowed.
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Figure 6: A simplicial complex model with all cells.
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Figure 7: A network model for the simplicial complex model in Figure 5.

Definition 3.1. A P system on a simplicial complex K, called a simplicial P system, with
antiport and symport rules is a construct

Π =
(
m,O,E,ω1, . . . , ωm, R1, . . . , Rm, ch, F

(
i, j
)∣
∣
(i,j)∈ch, i0

)
, (3.5)

where m is the number of cells labeled with 1, 2, . . . , m, O is the alphabet, E is the set of
objects with unlimited multiplicity in the environment, ω1, . . . , ωm are initial strings over O
of multiset, R1, . . . , Rm are symport and antiport rules associated with the m membranes,
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ch ⊆ {(i, j)R, (i, j)L : i, j ∈ {1, . . . , m}} is the set of links, and F(i, j) is a finite set of antiport
and/or symport rules associated with the link (i, j) ∈ ch.

Ceterchi andMartin-Vide [19] proposed a new type of communication P systems with
priority relations. They introduced a promoter for a rule to be active and a inhibitor for it to
be inactive. Induced by their idea, we will present an ordered system in this section.

An antiport rule (u, out;v, in)i in Ri exchanges the multiset u inside Ri with v outside
it. A symport rule (x, out)i (or (x, in)i) sends out (takes in) the multiset x with respect to
membrane Ri. For a specific membrane Ri, rules are totally ordered as r1 > r2 > · · · >
rn > rn+1 > · · · . The rule rn+1 is applicable if and only if the system has reached a stable
configuration with respect to rules r1 > · · · > rn. We can use a queue structure to represent
this process.

3.3. Rules in Simplicial P Systems

Now we describe the communication rules in simplicial P systems. For our purpose in this
paper, there are mainly four types of communication rules in a simplicial P system. Each type
of rule may have operators such as out, in,up,down.

First suppose (τ1, τ2)σ is an upper link. A rule like [(x, y),up]U means that the multiset
x and y from τ1 and τ2 transform into z and go up to their parent σ. For two cells τ ≺ σ, the
antiport rule [u, out;v, in | τ ≺ σ] in τ means exchanging multiset u inside membrane τ with
the multiset v outside it (in σ). The symport rule [u, out | τ ≺ σ] sends the multiset u outside
τ . Another symport rule [u, in | τ ≺ σ] works similarly.

An upper link rule in Rσ(τ1, τ2)may have the following forms:

[(
x, y

)
,up;

(
α, β

)
, in
]U −→ [

z, in; γ,down
]
, (3.6)

[u, out;v, inτ1 ≺ σ], [u, out;v, inτ2 ≺ σ]. (3.7)

An lower link rule in Rσ(τ1, τ2) may have the following forms:

[(
x, y

)
,down;

(
α, β

)
, in
]
L −→ [

z, in; γ,up
]
, (3.8)

[u, out;v, in | σ ≺ τ1], [u, out;v, in | σ ≺ τ2]. (3.9)

Equation (3.6) means moving x from cell τ1 and y from τ2 to z to parent σ and
simultaneously moving γ from σ to α into τ1 and β into τ2. Equation (3.8) means moving
x from cell τ1 and y from τ2 to z to hyperface σ and simultaneously moving γ from σ to α up
to τ1 and β up to τ2.

3.4. Configuration and Computation

Now we describe the configuration and computation of simplicial P systems. For our
purpose, change of membrane structure is not involved. A configuration of a simplicial P
system is the state of the system described by specifying the objects and rules associated
to each membrane. The initial state is called initial configuration. Therefore, the multisets
represented by ωi, 1 ≤ i ≤ d in Π, constitute the initial configuration of the system.
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The system evolves by applying rules in membranes and this evolution is called
computation. The computation starts with the multisets specified by ω1, . . . , ωm in them cells.
In each time unit, rules are used in a cell. If no rule is applicable for a cell, then no object
changes in it. The system is synchronously evolving for all cells.

When the system has reached a configuration inwhich no rule is any longer applicable,
we say that the computation halts. A configuration is stable if, even if some rules are still
applicable, their application does not change the object content of the membranes. The
computation is successful if and only if it halts, or it is stable. The result of a halting/stable
computation is the number described by the multiplicity of objects present in the cell i0 in the
halting/stable configuration.

4. Cluster Analysis by Simplicial P Systems

4.1. Problem Setting and Algorithm

Now suppose the data set to be clustered is X = {z1, z2, . . . , zN} ⊂ Πn
i=1[Pi,Qi) ⊂ Rn. We now

construct a uniform grid in Rn as follows. Choose integers ni > 0 and let δi = (Qi − Pi)/ni,
and divide the interval [Pi,Qi] into ni subintervals [Pi, Pi + δi), . . . , [Qi − δi,Qi). Therefore X
is contained in the following grid GwithN = n1 ·n2 · · ·nn −N0 cells, whereN0 is the number
of cells that do not contain data:

n1⋃

t1=1

· · ·
nn⋃

tn=1

n∏

i=1

[Pi + (ti − 1)δi, Pi + tiδi). (4.1)

Then we can define a new data set Ω = {x1, . . . , xN}, where xi is each grid point xi =
[x1

i , . . . , x
n
i ]:

x
j

i = Pj +
(
tj − 1

)
δj , 1 ≤ j ≤ n, 1 ≤ tj ≤ nj. (4.2)

Define a weight function on Ω bym(x) = #{zi ∈ the cell corresponding to the data x}.
In this way, the original data set is transformed into a new data set Ω with weights equal to
the original number of points. Next we will always work on the data setΩ. For simplicity, we
will consider a density-based clustering technique. For two points x, y ∈ Ω, the similarity is
defined by

f
(
x, y

)
=

min
{
m(x), m

(
y
)}

d
(
x, y

) , (4.3)

where d(x, y) is the topological distance of the two points. That is, if x, y are incident, then
d(x, y) = 1. Else d(x, y) is the minimal number of edges which form a path connecting x and
y. For two subsets C1, C2 ⊂ X, the similarity is defined by

f(C1, C2) = max
x∈C1,y∈C2

{
f
(
x, y

) | x, y are incident
}
. (4.4)
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Figure 8: Simplices constructed for three dimensional grids.

The clustering is implemented by a hierarchical method as follows. At first, each point
of the data set X forms a cluster which contains a singleton. Then each data point tries to
connect another data point in its neighborhood. After this step, a cluster can be found as
connected points. Now we construct a simplicial complexK corresponding to the data setΩ.
On the basis of the rectangles as in (4.1), we add some hyperplanes to form a triangulation.
Then each rectangle is decomposed as several simplices. Hyperplanes can be chosen such
that the set of simplices satisfy the definition of simplicial complex. And thenK is defined as
the union of such simplices. In the three dimensional case, this is shown as in Figure 8.

Now we will show that the triangulation as above exists. In fact, we need only to
consider an inner cell C = Πn

i=1[pi, qi), where ri < pi < qi < si. There are 2n vertices for this cell

{[
x1, . . . , xn

]
| xi = pi, qi

}
. (4.5)

There are totally 3n − 1 surrounding cells

{
n∏

i=1

[
xi, yi

) | [xi, yi
)
=
[
ri, pi

)
,
[
pi, qi

)
,
[
qi, si

)
}

\ {C}. (4.6)

First we consider the triangulation of the cell C. Now we choose one vertex v0 =
[z1, . . . , zn] from the cell C where zi can be pi or qi. Now we denote

yi =

{
pi, if yi = qi
qi, if yi = pi.

(4.7)

Consider the vertex set

Sj =
{[
x1, . . . , xj−1, yj , xj+1, . . . , xn

]
| xi = pi, qi

}
. (4.8)

Then #(Sj) = 2n−1. Clearly C can be decomposed as disjoint cones C = ∪nj=1v0Sj . Notice
that Sj is an (n − 1)-dimensional rectangle and this means that, for any triangulation of Sj ,
we can join them with v0 to form a triangulation of v0C. Therefore by induction we get the
construction of triangulation.

Lemma 4.1. The decomposition C =
⋃n
j=1 v0Sj is valid with the property that each pair of Int(v0Sj)

is disjoint, where Int(C) is the set of interior points in Rn.
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Inputs: Ω = {x1, x2, . . . , xN}, δ0: similarity threshold value, Ni = {y | y, xi are incident}
Outputs: C = {C1, C2, . . . , Ct}: set of clusters, t: number of clusters, Ω0: outliers
Begin
Set Ω1 = Ω0 = ∅, C1 = ∅, t = 1.
for i = 1 toN

If Ni = ∅, then add xi into set Ω0. Otherwise add xi into set Ω1. For each xj ∈ Ni, j > i, calculate
the similarity measure f(xi,y). If f(xi,y) > δ0, then set the edge σ(xiy) as active. In this case, set
C1 = {xi} if C1 is still an empty set.

end
while Ω1 /= ∅ do

(1) For each x ∈ Ω1 if there exists an active edge σ(xy)with x/=y, y ∈ Ct, then add x into Ct and
remove x from Ω1.
(2) t = t + 1.

end
End

Algorithm 1: A self-joining clustering algorithm.

Proof. Suppose x = [a1, . . . , an] ∈ C and x /=v0. Consider the point xt = (1 − t)v0 + tx = [(1 −
t)z1+ ta1, . . . , (1− t)zn+ tan]where t ≥ 1. Let t0 be the first zero point of the following function:

ψ(t) = min
1≤j≤n

[
yj − (1 − t)zj − taj

]
. (4.9)

Clearly φ(1) ≥ 0. Let [yJ − (1 − t0)zJ − t0aJ] = 0. Then x ∈ v0SJ .

By the above discussion, we also have another lemma.

Lemma 4.2. Suppose the triangulation of Sj in Rn−1 is {Tsj }. Then the set ∪nj=1∪s{v0Tsj } forms a
triangulation of C.

Finally we obtain a theorem.

Theorem 4.3. A simplicial complex K exists corresponding to the grids G.

For each node x ∈ Ω, define its neighborhood as N(x) = {y ∈ Ω | y is incident with x
in K}. For a subset C ⊂ Ω, define its neighborhood N(C) as N(C) =

⋃
x∈CN(x).

Now we propose an algorithm for our clustering problem. This is a self-joining cluster
technique. Initially, one data point inΩ forms a cluster of singleton. Then each node searches
for its neighborhood. If there exists a neighboring node which is similar enough, then activate
a link between the two nodes. The final cluster is linked nodes. To define the meaning of
similar enough, we need a parameter δ0 such that f(x, y) > δ0. Putting everything together,
we get the algorithm as shown in Algorithm 1.

4.2. Design of a P System

Now we have already defined the simplicial complex K as the membrane structure with M
total membranes. Next we need to specify the alphabet and rules to be used. First we design a
binary coding scheme for the weight functionm(·)and the distance function d(x, y). Suppose
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the length of the coding is L. In this way, the weight function and the distance function take
binary strings as values. Now we supposem(xi) = mi1 · · ·miL, wheremij = 0, 1. We also need
an integerH such that if the coding of δ0 is d1d2 · · ·dL, then

L∑

i=1

di2L−i = H. (4.10)

Suppose μ ⊂ ch is a subset of links. Then we can define a P system as follows:

Π =
(
O,μ,ω1, . . . , ωM,R

(
i, j
))
. (4.11)

The working alphabet is

O = {ais, bis : 1 ≤ i ≤N, 1 ≤ s ≤ L}
∪ {gis, his : 1 ≤ i ≤N, 1 ≤ s ≤ L}

∪ {α, β, β+, β−
} ∪ {sij : 1 ≤ i, j ≤N}.

(4.12)

Let vi = xi, i = 1, . . . ,N be the vertices. We will use σ(vi0 · · ·vik) to denote a k-
dimensional simplex. Therefore σ(vi) is a vertex or vi for short. Define Ni = #(Ni). ch is
the set of edges in K.

The initial multiset ωi stands for the multiset in the membrane σ(vi):

ωi =
{
a2

L−sNi

is , b2
L−sNi

is : 1 ≤ s ≤ L
}

∪
{
gmis

is , h1−mis

is : 1 ≤ s ≤ L
}
∪ {β, β+

}
.

(4.13)

For (i, j) ∈ μ, rules are R(i, j) = {As
ij , Bij : s = 1, . . . , L}with the order as follows:

A1
ij < A

2
ij < · · · < AL

ij , i · j = 1, . . . ,N

As
ij =

{
β2gishjs −→

(
σ
(
vivj

)
, β+
)}

∪
{
β2hisgjs −→

(
σ
(
vivj

)
, β−
)}

∪
{(
σ
(
vivj

)
, β+
) −→

(
σ(vi), β2

L

+

)}

∪
{(
σ
(
vivj

)
, β−
) −→

(
σ
(
vj
)
, β2

L

−
)}

Bij =
{
β+ais −→

(
σ
(
vivj

)
, sij
)
, in : 1 ≤ s ≤ L}

∪ {β−ajs −→
(
σ
(
vivj

)
, sij
)
, in : 1 ≤ s ≤ L}.

(4.14)

Rules on edges are

Rij =
{
sHij → α : 1 ≤ s ≤ L

}
. (4.15)
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Figure 9: Wisconsin breast cancer data with perturbation. Attributes 2 and 6.

5. Example and Discussion

The Wisconsin breast cancer data set consists of 699 samples with 9 attributes. The samples
are classified as two categories, the malignant and the benign. The nine attributes are
Clump-Thickness, Cell-Size-Uniformity, Cell-Shape-Uniformity, Marginal-Adhesion, Single-
Epi-Cell-Size, Bare-Nuclei, Bland-Chromatin, Normal-Nucleoli, and Mitoses. The data is
shown in Figure 9 with an added noise of [0, 0.5].

Now we choose attributes 2 and 6 and accumulate the data samples and use the grid
technique proposed in this paper. Then the data set is shown in the following matrix:

Mdata =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

336 13 8 4 9 0 0 0 0 3
31 4 3 2 0 1 1 1 0 2
19 5 6 2 4 0 1 1 1 13
5 1 3 1 3 0 3 2 1 19
0 1 1 0 1 0 3 5 2 17
2 0 1 1 1 2 0 0 1 17
1 1 1 0 2 0 0 1 2 11
1 1 3 3 2 0 0 4 0 14
0 1 1 1 1 0 0 1 0 1
7 3 1 5 7 1 0 6 2 35

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.1)

Next we construct a simplicial complex K as shown in Figure 10 in R2 where each
vertex corresponds to the data points as in (5.1).

We now define L = 9. Then 2L = 512 and N = 100 − 25 = 75. Now we choose δ0 = 1.
Then the final cluster is shown in Figure 11. We find five clusters and 31 outliers.
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Figure 10: Simplices of the Wisconsin breast cancer data.
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Figure 11: Cluster result of the Wisconsin breast cancer data.

Next we choose attributes 1 and 2 and then the data matrix is

Mdata =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

131 8 3 1 1 1 0 0 0 0
41 1 5 0 2 0 1 0 0 0
80 10 8 3 1 2 1 0 0 3
56 7 3 3 2 2 1 4 0 2
63 11 17 8 4 4 5 5 0 13
10 2 4 0 2 3 0 3 1 9
1 2 2 4 5 4 0 4 1 0
0 3 4 7 2 4 7 4 1 14
1 0 0 1 3 1 1 2 1 4
1 1 6 13 8 6 3 7 2 22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.2)

Now we analyze the effect of the parameter δ0. First we choose δ0 = 0. Then the
clustering result is one cluster with all data. Then the ill clustered points is 699. Next let
δ0 = 1. Then we get two clusters and some outliers. However, in this case the red data are
all ill-clustered and hence the error rate is 241. Now choose δ0 = 2. In this case we find four
clusters. The number of outliers are 46 while the ill-clustered points are 65 + 74 = 139. Then
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Figure 12: Error number with respect to the parameter δ0.

the total number is 185. Next choose δ0 = 3. This time we find 6 clusters. Number of outliers
is 87. Number of ill-clustered points is 91. Number of other error points is 40 hence the total
number is 218. Again we choose δ0 = 4. In this time we obtain 4 clusters with a large outlier
(outlier number: 157, error clusters: 65, other errors: 13, total number: 235). The error line is
shown in Figure 12.

As a result we see that the best parameter is δ0 = 2.
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