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This paper furnishes a guide for the study of 2-dimensional evolutionary games in discrete time.
Evolutionarily stable strategies are identified and nonlinear outcomes are explored. Besides the
baseline payoffs of the established strategic interaction, the following elements are also vital
to determine the dynamic outcome of a game: the initial fitness of each agent and the rule of
motion that describes how individuals switch between strategies. In addition to the dynamic rule
commonly used in evolutionary games, the replicator dynamics, we propose another rule, which
acknowledges the role of expectations and sophisticates the replicator mechanism.

1. Introduction

Evolutionary game theory addresses scenarios of strategic interaction in which players
can switch between strategies over time following some dynamic adjustment process. As
time passes by, strategies with higher associated payoffs will displace strategies with lower
payoffs, under a process that is determined by some specified dynamic rule of evolution. In
this type of setting, the most common result will be the convergence towards a dominant
long-term outcome that eventually will end up by being followed by the whole of the
universe of individuals in the considered population. Thus, we should expect to find an
evolutionarily stable strategy (ESS), that is, the strategy, from the set of available strategies,
that is robust to evolutionary pressures or the one that is uninvadable by any other strategy.
The concept of ESS was first presented by Maynard-Smith and Price [1], who have launched
the fruitful field of evolutionary game analysis. This field of knowledge may be interpreted
as the science that studies the robustness of strategic behavior.

The idea of evolution in a strategic choice setting is powerful because it automatically
questions the notion that agents act in a hyper-rational way. In evolutionary games there is
an implicit recognition that agents learn: they begin by selecting a strategy, at time t = 0,
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that they do not know if it is the one that maximizes the corresponding utility. The systematic
interaction with individuals selecting the same or other strategies will allow for an evaluation
over time of what is the best choice to make. This is clearly a Darwinian environment—only
the strongest strategies thrive and all the others will tend to disappear. The survival of the
fittest requires individual agents to switch to the best strategy or, instead, to vanish from
the game. This process occurs through interaction and experimentation. At the initial point
in time, the agent does not know how the process will evolve, and therefore individual
rationality is not vital to the final outcome. Instead, such outcome is shaped by natural
selection, with fitter groups increasing their population shares at the expenses of less fit
ones.

The initial approach to evolutionary games, due toMaynard-Smith [2], was essentially
concerned with a long-run equilibrium analysis. The stability of the steady-state of the
game was addressed, but the specific dynamic process conducting to the outcome remained
without explicit specification. Taylor and Jonker [3] proposed a dynamic rule that is
still today the most widely used to approach evolutionary games. This is the replicator
dynamics, a rule according to which the share of agents following a given strategy increases
with an above average fitness of the assumed strategy and diminishes in the opposite
circumstance.

The typical approach to evolutionary game theory takes essentially two main
components. First, a payoff matrix indicating the outcome of following a strategy, when the
other agents follow the same or any other strategy, and, second, a dynamic rule, for example,
the replicator dynamics. The initial setup was proposed for the interaction between animal
species and it functioned as a powerful instrument to explain the evolution of species. The
adaptation of the framework to other settings, particularly to social and economic contexts,
requires a careful examination of the assumptions in which the paradigm of evolutionary
interaction is founded; namely, the replicator dynamics is not a sufficiently general rule and
the stability outcomes are conditioned by its specificity.

In this paper, we undertake a detailed analysis of the dynamics underlying
evolutionary games in settings with two strategies. The study is developed in discrete
time, in opposition to what is common in the evolutionary game theory literature, which
generally takes a continuous time replicator dynamics equation. In discrete time, we will
be able to identify nonlinear endogenous long-term outcomes, even in one-dimensional
systems. Regular and irregular long-run endogenous fluctuations are meaningful because
they imply that instead of converging to an ESS, the dynamics will lead to an everlasting
movement through which part of the individuals will systematically switch between
alternative strategies. There will not be a dominant strategy in the already mentioned
uninvadable sense. Dynamics are analyzed first by considering the trivial replicator dynamic
rule and, in a second moment, by taking a rule under which there is heterogeneity
of access to relevant information by the agents in the population, which will also
have different capabilities in what concerns the ability to accurately predict future
scenarios.

The remainder of the paper is organized as follows. Section 2 makes a brief journey
through the recent literature on evolutionary games, in order to identify themain applications
(mostly in economics) that were built upon the theoretical principles of evolutionary games.
Section 3 describes the generic framework of our simple evolutionary game. In Sections 4 and
5 we address stability properties under the selected evolutionary rules. Section 6 illustrates
the dynamic outcomes with a series of examples, starting with the most common one, the
Hawk-Dove game. Section 7 concludes.
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2. Evolutionary Game Theory and Economic Thinking

The setup engineered by Maynard-Smith and Price [1] and Taylor and Jonker [3] has been
extensively used to model economic issues in the last few years. As stated in the introduction,
the original framework is not necessarily the most appropriate one to study economic
phenomena, because it was prepared to analyze conflict in a biological context, a setting
where evolutionary behavior dominates relatively to rational thinking. Evolution is a process
according to which there is a natural movement in the direction of increased payoffs, because
these are the ones allowing to obtain higher fitness. Economic processes have necessarily a
component of evolution, but certain features of rational thinking must be considered as well.
In this section, some of the adaptations of evolutionary game theory to economics are briefly
discussed. This does not intend to be a thorough survey on this issue; for detailed discussions
on evolutionary games and economic applications, see Weibull [4, 5], Vega-Redondo [6], and
Friedman [7].

On general grounds, economists have tried to establish a link between the evolu-
tionary process of strategy selection and the notion that economic equilibria is socially
determined by the type of interaction that is established between agents in a society.
According to M. G. Villena and M. J. Villena [8], in economics the evolutionary process will
correspond to repeated interaction that leads to the formation of norms or institutions. As
for the interaction within or among animal species, in society we can conceive a selection
mechanism that favors some strategies over others; the strategies that perform better than
average are the ones that become dominant in the long run. These dominant strategies will
become the social norm, that is, the set of rules that are adopted by the majority of the
population.

For Safarzyńska and van den Bergh [9], the introduction of the concept of evolution
represents a relevant shift on economic thought, since many new dimensions gain visibility.
Evolution occurs in a complex setting where the following ideas predominate: path-
dependence and lock-in (outcomes are the result of concrete interaction situations that cannot
be automatically reversed in time), bounded rationality (social norms are not chosen by
a hyperrational agent; they are the result of interaction over time), diversity, innovation,
selection, and diffusion (the choice of different strategies over time implies heterogeneity
among individuals, the capacity to discover and select new paths, and some kind of
diffusion process). The idea of looking at economic reality through the lenses of evolutionary
selection of strategies, where boundedly rational players learn and in this way lead to the
establishment of collective outcomes, has been emphasized as well by many other authors,
for instance, Matsui [10], Sumaila and Apaloo [11], Josephson [12], Noailly et al. [13], Rota
Bulò and Bomze [14], and Voelkl [15].

Most of the evolutionary interaction literature typically considers that an evolution-
arily stable strategy is sooner or later attained. This result was first proved for the replicator
dynamics, but it is extensive to other types of adjustment processes. Ponti [16] highlights that
the replicator dynamics tends to generate a stability result because success breeds success,
that is, a virtuous cycle is generated, according to which fitness results tend to increase
every time the strategies with higher payoffs are chosen. Instead of considering a purely
biological evolution mechanism, one can think of a process in which agents consider at the
same time different ideas; these compete in their minds and which of them will predominate
will depend on the experiences of the individuals. The notion that strategies compete in the
minds of people as populations of ideas has been explored by Börgers and Sarin [17] and
received the designation of reinforcement learning.
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Although it may be the expected result, evolutionary interaction does not necessarily
generate a stability outcome in which dominant strategies completely rule out dominated
strategies. Hofbauer and Sandholm [18] study the scenarios in which dominated strategies
may survive. The main argument in this reasoning relates to the idea that a disequilibrium
result may subsist in the long term. Evolutionary dynamics need not converge and nonlinear
endogenous results can eventually be obtained. Good current fitness might lead to the
adoption of strategies that are good in the assumed time period but that are not optimal
from an intertemporal point of view. This result was first noted by Skyrms [19], who pointed
out that the long-term state is contingent on the type of dynamic rule that is considered. This
author asks in which circumstances the equilibrium is not eventually reached and answers
this question by exploring dynamic settings where complex nonconvergent behavior arises.
In our paper, since we propose to address dynamics in discrete time, such type of nonlinear
outcomes emerge even in one-dimensional dynamic systems.

Applications of game theory in economics involve several lines of research. In the
remainder of the section we mention some of the most meaningful:

(1) in a series of papers, Araújo [20], Araújo and de Souza [21], and Araújo et al. [22]
study the dynamics of the labor market within an environment of evolutionary
selection. Workers and firms choose between two strategies: to engage in business
activities in the informal sector or in the formal sector of the economy. The
evolutionary process implies, in this case, that there is not a unique possible
solution; this will depend on the economy’s initial conditions and, therefore, at a
given period the relative weight of the formal and informal sectors in the economy
will be path dependent, that is, it will depend on the evolution of the interaction
process so far;

(2) Gamba and Carrera [23] also study the interaction between firms and workers but
from a different angle of analysis. In this case, firms select between the following
strategies: to innovate or not to innovate (by investing or not in R&D). Workers
choose whether to invest in human capital accumulation and, as a result, their
choice is between being skilled or unskilled workers. In this case, decision making
is determined by a replicator dynamics mechanism of evolution. The setting allows
to address the presence of strategic complementarities between R&D and human
capital;

(3) a setup where evolutionary game theory has also made a contribution is the one
concerning public goods provision. In Clemens and Riechmann [24] and Antoci et
al. [25], it is studied, under an evolutionary setting, a series of situations relating
to the behavior of agents when asked to contribute to the provision of a public
good. The available strategies involve voluntary contribution and free riding. Both
strategies might eventually dominate the behavior in the population, depending on
initial conditions, payoffs, and evolutionary rule;

(4) another type of game to which evolutionary theory may be adapted relates to
macroeconomic monetary policy in the context of the Barro-Gordon policy choices
game. In D’Artigues and Vignolo [26], two types of agents interact: the monetary
authority and the private economy. The interaction process will shape the time
trajectory of the inflation rate and the two possible long-term outcomes are states
of low and high inflation;
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(5) evolutionary games have also been applied in the field of neuroeconomics. Schipper
[27] presents logical arguments in favor of evolving brains. Through interaction
and strategy selection, the nervous system can develop in various ways, namely, it
can converge to an equilibrium where it functions well;

(6) Kuechle [28] applies evolutionary game theory to explain the degree of
entrepreneurial activity that tends to dominate in a society. Strategies involve
engaging or not in entrepreneurship. Again, the setting is adequate since, as for
other phenomena, we can interpret an equilibrium in this case as the result of
finding a strategy that once adopted by a large fraction of the population it cannot
be displaced by small groups of individuals adopting other kinds of behavior;

(7) in Hanauske et al. [29], evolutionary game theory is the tool used to address
the behavior in financial markets. We know that financial markets are populated
by heterogeneous agents, who adopt different kinds of beliefs on the functioning
of the market. In particular, we can identify the presence of aggressive and
nonaggressive agents. Aggressive behavior is characterized by investment in highly
risky financial products that increase risk for the whole of the market, which
leads to an increase in the probability of significant market crashes. Nonaggressive
investors will be the ones endowed with higher levels of information, that is, the
ones that will take a rational behavior given that they have good knowledge about
market fundamentals. In an evolutionary game environment, the two types of
agents interact and there is no reason to believe that nonaggressive behavior will
necessarily be the prevailing long-term outcome, although aggressive behaviormay
result in an equilibrium with losses for the whole of the investors. Evolutionary
game theory may provide, in this case, a result such that the ratio between
aggressive and nonaggressive agents will converge to a stable steady-state fixed
point. This fixed point will be determined by the expected losses and gains
generated by the decisions of the agents in the context of interaction.

As emphasized by Guth [30], economics has a lot to gain with attempting to merge the
traditional rational choice framework with the tradition in biology of assuming evolutionary
processes that lead to results that are necessarily path dependent. Although evolutionary
game theory has emerged essentially in the context of interaction between nonrational
players, where choices are determined by past success, this is a powerful tool that is easily
adaptable to scenarios of human interaction, where choices are made in the light of their
future consequences. Behavior may be partially path dependent, but it also has a strong
component of forward-looking deliberation. Applications to economics will require rules of
adaptation that explicitly consider expectations.

3. Strategies, Payoffs, and Evolutionary Rules

Consider a population where each individual may choose between two strategies when
randomly matched with another individual on the population in order to play a given game.
Let those strategies be denominated byH and D. The following payoff matrix is taken:

H D

H a11 a12

D a21 a22

(3.1)
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The displayed aij values, i, j = 1, 2, correspond to the payoffs of a player resorting to
the strategy in the appropriate row, when matched with some player that adopts the strategy
in the respective column.

Let f0 be the initial fitness of each agent; we consider that this is identical for all
individuals and, thus, not dependent on the strategy initially followed. Furthermore, we will
find it useful later on to impose the constraint f0 > 0. Take, as well, fH

t and fD
t as being the

total fitness of individuals adopting strategies H and D, respectively. At each time period,
each agent decides whether he/she continues to follow the same strategy as before, or if
he/she prefers to adopt a “mutant” strategy. We define pt as the proportion of the population
who adopts strategy D; thus, the fitness functions for individuals associated to each one of
the two strategies are the following:

fH
t = f0 + a11

(
1 − pt

)
+ a12pt,

fD
t = f0 + a21

(
1 − pt

)
+ a22pt.

(3.2)

Agents will end up by adopting the strategy for which the fitness value is larger.
The evolution of share pt is determined by a rule of motion. We will consider two

alternative dynamic rules. The first one will be the well-known replicator dynamics equation
that in discrete time takes the form

pt+1 = pt
fD
t

ft
, with ft =

(
1 − pt

)
fH
t + ptf

D
t , p0 given. (3.3)

The above equation indicates how the share of individuals on a population following
strategyD evolves over time. Obviously, since only two strategies are considered, if we get to
know the evolution of one of the shares, then we will also know how the other one behaves.

We are interested in studying the existence of equilibria and the stability properties of
the established law of motion. Start by observing that

ft = f0 + a11
(
1 − pt

)2 + (a12 + a21)
(
1 − pt

)
pt + a22p

2
t . (3.4)

This allows to explicitly present a dynamic equation for share pt:

pt+1 =
f0pt + a21

(
1 − pt

)
pt + a22p

2
t

f0 + a11
(
1 − pt

)2 + (a12 + a21)
(
1 − pt

)
pt + a22p

2
t

. (3.5)

Because p ∈ [0, 1], the following boundaries must apply to (3.5): if pt(fD
t /ft) < 0, then pt+1 =

0; if pt(fD
t /ft) > 0, then pt+1 = 1.

In Section 4, the dynamics underlying (3.5) will be thoroughly discussed. This allows
to present results on long-run outcomes of the evolutionary process. The results will be
contingent on the specific dynamic rule that was considered, namely, the replicator dynamics.
In what follows, we propose an alternative rule.

Consider that individuals involved in a given strategic interaction situation at date t
want to forecast the value of p at t + 1. (Note that given the law of large numbers, p can
be simultaneously interpreted as the probability with which an individual agent selects some
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strategy and as the share of individuals selecting the same strategy.)We assume that there are
multiple degrees of attentiveness across the population and that the percentage of individuals
sharing a given level of attentiveness decays with the rise in the degree of inattentiveness; to
translate this idea, we define a parameter λ ∈ (0, 1), such that the most attentive individuals
will exist in a percentage λ, the second most attentive agents will correspond to a fraction
λ(1 − λ), the third group in this order is an even smaller share λ(1 − λ)2, and so forth. The
value of the proportion of the population that adopts strategy D will be, in this scenario,
involving attentiveness heterogeneity

pt+1 = λ
∞∑

j=0
(1 − λ)jEj

t

(
pt+1

)
. (3.6)

The operator Ej
t indicates an expectation formed at time t by an individual with a degree of

inattentiveness j = 0, 1, 2, . . . . The lower the value of j, the higher the level of attentiveness.
Within each attentiveness level, we consider the existence of three types of agents. First are the
ones with an accurate forecasting capability; these will be able to formulate perfect foresight
expectations (they will make accurate predictions about the value of pt+1). A second group
of individuals is not so successful; these will be able to access information that allows to
accurately predict the state of the world at t but not at t+1; these will use a replicator dynamic
rule to guess the value of p in the following period. Yet another group of individuals, the ones
less endowed with skills to predict future values, will just be able to use past data, from t − 1,
and they will resort to a lagged replicator rule.

The relation of the degree of attentiveness (we consider an undefined number of
them) with the forecasting ability (for which we consider three classes) is assumed to be
the following: as j becomes larger, that is, as the degree of inattentiveness rises, the first type
of agents (the ones endowed with the capacity to formulate perfect forecasts) will become a
smaller share of the whole population, while the elements in the third assumed group will
progressively grow. The second group increases in a first phase, with a higher j, and, then, it
eventually decreases as the third group begins to be widespread in the part of the population
that is significantly inattentive. Defining parameters α, θ ∈ (0, 1), we can systematize the
above ideas in an expression for the expectation on pt+1:

E
j
t

(
pt+1

)
= αjpt+1 + θj

(
1 − αj

)
pt
fD
t

ft
+
(
1 − θj

)(
1 − αj

)
pt−1

fD
t−1

ft−1
. (3.7)

The three classes of more or less skillful agents coexist, in an environment with
decreasing degrees of attentiveness. The first group dominates for expectations formed under
a high degree of attentiveness; the last class, the less prepared to generate expectations and
therefore the one resorting to information from t − 1, will predominate as we go further
back in terms of individual attentiveness. Figure 1 presents the relative weight of each of
the three groups for expectations formed at different consecutive degrees of attentiveness.
The horizontal axis corresponds to degrees of attentiveness (attentiveness diminishes from
the left to the right) and the vertical axis indicates the share of individuals at each of the
three groups. The bottom area in each column of the graphic translates the share of the best
forecasters (αj), the intermediate area indicates the relative number of individuals forming
a rule with information of date t (θj(1 − αj)) and the upper area contains the proportion of
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Figure 1: Percentage of individuals at each expectation’s group, for different attentiveness levels.

individuals that are less able to use information to make forecasts and as a result use data
from the previous period, t − 1 ((1 − θj)(1 − αj)). As we wanted to point out, high degrees
of attentiveness are associated with a large share of the first type of individuals, while the
third group dominates when inattentiveness levels are significant. The figure is drawn for
the following parameter values: α = 0.8 and θ = 0.9.

Now, we replace expectations as presented in (3.7) into the equation for p. The result
is

pt+1 = λpt+1
∞∑

j=0
(1 − λ)jαj + λpt

fD
t

ft

∞∑

j=0
(1 − λ)jθj

(
1 − αj

)

+λpt−1
fD
t−1

ft−1

∞∑

j=0
(1 − λ)j

(
1 − θj

)(
1 − αj

)
.

(3.8)

Simplifying the series in the expression and solving in order to pt+1, we obtain

pt+1 = xpt
fD
t

ft
+ (1 − x)pt−1

fD
t−1

ft−1
(3.9)

with x := λθ[1 − (1 − λ)α]/[1 − (1 − λ)θ][1 − (1 − λ)αθ] ∈ [0, 1]. (Observe that the value of x
cannot be larger than 1 because when solving the inequality x ≤ 1, we obtain the condition
(1 − λ)2αθ ≤ 1, which is true for any admissible value of the defined parameters. It is also
obvious from the inspection of the combination of parameters that x must be nonnegative.)

The generic two-dimensional evolutionary game under the dynamic rule specified
above is analyzed, in terms of its stability properties, in Section 5. The inclusion of a time
lag will introduce changes on the dynamic properties of the model and will turn the dynamic
relation under analysis into a two equations system.

4. Discrete Dynamics under the Replicator Rule

Let p∗ := pt+1 = pt define the steady-state share respecting the choice of strategy D, in
alternative to strategy H. The analysis of (3.5) allows to compute three steady-state points:
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p∗(1) = 0, p∗(2) = 1, and p∗(3) = (a11 − a21)/(a11 + a22 − (a12 + a21)). This last steady-state value
is meaningful only if it is a value between 0 and 1. We impose constraint a11 + a22 /=a12 + a21

and distinguish between two cases.

Case 1 ((a11 < a21∧a22 < a12)∨ (a11 > a21∧a22 > a12)). In this case, there are three equilibrium
points.

Case 2 ((a11 < a21∧a22 > a12)∨(a11 > a21∧a22 < a12)). In this case, only two equilibrium points
are relevant. Steady-state value p∗(3) falls outside the boundaries defined for the possible
values of pt.

The above consideration is relevant because it indicates whether is it possible or not
to achieve a long-run result in which a part of the population selects one strategy and the
other one selects the alternative. This is possible only under Case 1 and only if the third,
intermediate, steady-state point is stable. We will address stability below, before that, note as
well that two border cases are also relevant.

If a11 = a21 (and a22 /=a12), then p∗(3) = 0.

If a22 = a12 (and a11 /=a21), then p∗(3) = 1. In these cases, we have, as well, just one
pair of steady-state values.

Now that we know how many steady-states exist for different payoffs of the game, we can
study the corresponding stability properties. To proceed, it is necessary to compute the first
derivative of the right-hand side of (3.5):

dpt+1
dpt

=
{[

f0 + a21
(
1 − 2pt

)
+ 2a22pt

][
f0 + a11

(
1 − pt

)2 + (a12 + a21)
(
1 − pt

)
pt + a22p

2
t

]

−
[
f0pt + a21

(
1 − pt

)
pt + a22p

2
t

][
2(a22 − a11)pt + (a12 + a21)

(
1 − 2pt

)]}

/
[
f0 + a11

(
1 − pt

)2 + (a12 + a21)
(
1 − pt

)
pt + a22p

2
t

]2
.

(4.1)

The above expression simplifies significantly when evaluated in the vicinity of the
steady state. Namely, for p∗(1) and p∗(2), we obtain the following expressions:

dpt+1
dpt

∣∣∣∣
p∗(1)

=
f0 + a21

f0 + a11
; 3

dpt+1
dpt

∣∣∣∣
p∗(2)

=
f0 + a12

f0 + a22
. (4.2)

For p∗(3), there is no simple generic expression coming from replacing the corresponding
value into (4.1).

Each steady-state point is locally stable if the computed derivative, evaluated in the
neighborhood of the corresponding steady-state value, falls inside the unit circle. Relatively
to p∗(1) and p∗(2) it is straightforward to present simple stability conditions; at this level, we
distinguish four cases. These are, for p∗(1),

(1) if f0 + a11 > 0, f0 + a21 > 0, then stability holds for a11 > a21;

(2) if f0 + a11 > 0, f0 + a21 < 0, then stability holds for a11 > −(2f0 + a21);
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Figure 2: Phase diagram. Replicator dynamics—Example 4.1.

(3) if f0 + a11 < 0, f0 + a21 > 0, then stability holds for a11 < −(2f0 + a21);

(4) if f0 + a11 < 0, f0 + a21 < 0, then stability holds for a11 < a21.

Equivalent conditions may be presented for p∗(2), in such setting involving payoffs a22

and a12, alternatively to a11 and a21, respectively. Note that stability is determined not only
by the payoffs, but it can also be influenced by the value of the initial fitness.

As we shall see through various examples, stability may be simply local or it can be of
a global nature. Local stability prevails when the stability result is dependent on considering
an initial p0 in the vicinity of p∗; the global stability result implies that independently of the
initial value of share p, there is a convergence towards one of the equilibrium points, and a
divergence relatively to the other (or others). If only two steady-state points exist, p∗(1) = 0
and p∗(2) = 1, and, for example, the first is stable while the second is unstable, we may assert
that strategyD is evolutionarily stable while the other strategy,H, is evolutionarily unstable.
Regardless from the initial allocation of individuals between the two strategies, they will
progressively abandon strategy H and devote their effort to relocating towards strategy
D. This dynamic behavior is a direct consequence of the underlying assumption of the
replicator dynamics that implies that over time higher payoff strategies tend to displace lower
payoff strategies. A strategy D is evolutionarily stable when someone adopting strategy H
(a mutant) will not be able to invade, that is, to change the dynamic process as it exists.

Below, we present a series of examples. We cover four situations, where p∗(1) and p∗(2)

may be stable or unstable points. For now, we consider only situations where the payoffs are
positive; other scenarios are addressed in Section 6. In all these examples we take f0 = 2.

Example 4.1 ((a11 = 10; a12 = 10; a21 = 20; a22 = 20)). The presented classification indicates
that, in this case, point p∗(1) is unstable and point p∗(2) is stable. This is also a case where these
are the only two steady-state points. Thus, point p∗(2) is globally stable, which means that p
converges to 1 and thus strategyD is evolutionarily stable: independently of the initial value
of the share p, individuals will tend to adopt this strategy, which becomes the only one that
is chosen in the long run. Figure 2 presents the corresponding phase diagram.
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Figure 3: Phase diagram. Replicator dynamics—Example 4.2.

Example 4.2 ((a11 = 20; a12 = 20; a21 = 10; a22 = 10)). Now, we have the opposite situation.
Point p∗(1) is stable and point p∗(2) is unstable. Strategy D is not evolutionarily stable, that is,
all the individuals in the population will avoid following this strategy in the long run. Again,
these are the only two steady-state values and, accordingly, H must be an ESS. In Figure 3,
the phase diagram is displayed.

Example 4.3 ((a11 = 10; a12 = 20; a21 = 20; a22 = 10)). In this setting, both mentioned steady-
state points are unstable; thus, there is divergence relatively to a scenario of pure choice of one
of the two strategies. However, in this case there is a third steady-state p∗(3) = 1/2. Replacing
this steady-state value into the derivative expression alongside with the payoff values and
the initial fitness, we arrive to dpt+1/dpt|p∗(3) = 0.706; since this value is inside the unit circle,
we confirm the stability of this point. In this type of setting, for any initial p0 value in the
interval (0, 1), there is a convergence to an outcome according to which in the long-run half
of the population will choose one strategy while the other will adopt the alternative strategy.
Figure 4 illustrates this case.

Example 4.4 ((a11 = 20; a12 = 10; a21 = 10; a22 = 20)). The current case is such that both steady-
state values p∗(1) and p∗(2) correspond to points of local stability. Again, an intermediate
steady-state value exists, p∗(3) = 1/2, but now this is unstable, because dpt+1/dpt|p∗(3) = 1.294
is outside the unit circle. The point p∗ = 1/2 constitutes a borderline for convergence;
for an initial value above this point, there is evolutionary stability of strategy D (there is
convergence towards full adoption of this strategy); for an initial value below the referred
point, strategy D will be evolutionarily unstable (i.e., point p∗(1) = 0 is stable and, therefore,
no individual will select this strategy in the long term, meaning that H is the ESS). Figure 5
presents the phase diagram in this last example.

In the above examples, stability holds for one or more than one of the two or three
steady-state points that eventually exist. These examples do not involve any specific real life
interaction process. In Section 6, we attribute possible meanings to the payoffs and explore
cases where none of the steady-state points is stable.
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Figure 4: Phase diagram. Replicator dynamics—Example 4.3.
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5. Discrete Dynamics and Heterogeneity of Expectations

We now approach the dynamics of (3.9). Three steady-state points will eventually exist, and
these are the same as in the simple replicator dynamics setting. Also the conditions for the
existence of two or three steady-state values are the same. To address the dynamics associated
to each equilibrium point, one needs to rewrite (3.9) as a two equations system; for such, we
define variable zt := pt−1. The system under scrutiny is

pt+1 = x
f0pt + a21

(
1 − pt

)
pt + a22p

2
t

f0 + a11
(
1 − pt

)2 + (a12 + a21)
(
1 − pt

)
pt + a22p

2
t

+ (1 − x)
f0zt + a21(1 − zt)zt + a22z

2
t

f0 + a11(1 − zt)2 + (a12 + a21)(1 − zt)zt + a22z
2
t

,

zt+1 = pt.

(5.1)
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1

1

Det

Tr

Figure 6: Trace-determinant diagram under the dynamic rule involving expectations—characterization of
the stability of p∗(1).

This system can be locally evaluated in the neighborhood of each steady-state point.
The generic solution is the following matricial linearized system:

[
pt+1 − p∗

zt+1 − p∗

]

=

⎡

⎢
⎣

dpt+1
dpt

∣∣∣∣
p∗
x

dpt+1
dpt

∣∣∣∣
p∗
(1 − x)

1 0

⎤

⎥
⎦

[
pt − p∗

zt − p∗

]

, (5.2)

where dpt+1/dpt|p∗ is the derivative computed in the previous section for the equation
referring to the replicator dynamics.

To address the stability of the steady-state points, wemust evaluate stability conditions
of the two-dimensional system. This requires computing trace and determinant of the
Jacobianmatrix in the above expression, for each of the steady-state points. Let us concentrate
attention in point p∗(1). The trace of the corresponding matrix is Tr = ((f0 + a21)/(f0 + a11))x,
while the determinant is Det = −((f0 + a21)/(f0 + a11))(1 − x). Figure 6 allows to characterize
the stability properties associated to the considered equilibrium point. This figure relates
the trace and the determinant expressions. The lines that form the inverted triangle are
bifurcation lines; the stability region is precisely the one inside such triangle. For every
possible value of x, we can establish the relation Det = Tr−(f0 + a21)/(f0 + a11) and represent
it graphically. Note that the constraint x ∈ [0, 1] will imply that Tr ∈ [0, (f0 + a21)/(f0 + a11 )]
and Det ∈ [−(f0 + a21)/(f0 + a11), 0]. The figure displays straight lines, one for each one
of a series of selected values of (f0 + a21)/(f0 + a11). The dynamic results will have some
similarities with the results in the one-dimensional replicator dynamics case (which can be
understood in this graphic by following the horizontal axis, i.e., by taking the limit case
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x = 1). For positive and larger than 1 values of (f0 + a21)/(f0 + a11), the dynamics fall outside
the stability triangle and for values of (f0+a21)/(f0+a11) between −1 and 1, stability will hold
(independently of the value of x). The difference between the two cases will occur for values
of (f0 + a21)/(f0 + a11) lower than −1; under plain replicator dynamics, the corresponding
equilibrium value is locally unstable, while in this second more general setting, stability
becomes possible, as long as the specified ratio is not larger than −3. For instance, when
(f0 + a21)/(f0 + a11) = −2, stability will hold for values of x between 1/2 and 3/4.

We can repeat this exercise for steady-state p∗(2); the results are similar, in the sense
that a same type of graphical representation would emerge. Again, relatively to steady-state
p∗(3) it is impossible to present general simple stability conditions. We could explore the same
examples as in the previous section, in order to illustrate the variety of dynamic results that an
evolutionary game may contemplate. The outcomes would be identical to the ones in those
examples, in terms of stability properties, because they have assumed exclusively positive
payoffs. We recover just the last example, in order to confirm the obtained results. Reconsider
f0 = 2, a11 = 20, a12 = 10, a21 = 10 and a22 = 20. As mentioned in the previous section, this
payoff structure will imply the existence of three equilibrium points: p∗(1) = 0, p∗(2) = 1, and
p∗(3) = 1/2. The corresponding linearized systems are

[
pt+1

zt+1

]

=

[
0.545x 0.545(1 − x)

1 0

][
pt

zt

]

,

[
pt+1 − 1

zt+1 − 1

]

=

[
0.545x 0.545(1 − x)

1 0

][
pt − 1

zt − 1

]

,

⎡

⎢⎢
⎣

pt+1 − 1
2

zt+1 − 1
2

⎤

⎥⎥
⎦ =

[
1.294x 1.294(1 − x)

1 0

]
⎡

⎢⎢
⎣

pt − 1
2

zt − 1
2

⎤

⎥⎥
⎦.

(5.3)

Evaluating stability for each one of these three steady-state values, we verify, as in
the initial circumstance, that p∗(1) and p∗(2) are stable, while p∗(3) is locally unstable. The
dominant strategy in the long run may either beD orH, depending on the initial distribution
of individuals between selected strategies.

Our conclusion is that as long as dpt+1/dpt|p∗ ≥ −1, the stability results in this second
environment are identical to the ones in the simple replicator rule case, and this occurs
independently of the value of x. Differences between the two cases will become relevant
for dpt+1/dpt|p∗ < −1. In the next section, some illustrations will clarify this point. Note that
in such case x turns out to be of central importance, that is, the values of α, θ, and λ become
determinant for the observed dynamic outcome.

6. Illustrations

6.1. Illustration 1: The Hawk-Dove Game

The most popular game in evolutionary game theory is the one proposed by Maynard-Smith
and Price [1], concerning the conflict between animal species. Consider a population of a
given species, where individuals may adopt one of two strategies: the strategy Hawk relates
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to an aggressive behavior, while the strategy Dove is the one corresponding to a peaceful
action. The interaction between hawks and doves is synthesized in the following matrix
(the letters we have used to define strategies in general terms are now of straightforward
application to this example):

H D

H
1
2
(b − c) b

D 0
b

2

(6.1)

The strategy Hawk (H) generates a benefit b > 0 that is integrally captured when
the other agents follow strategy D. However, a confrontation with another hawk implies not
only a need to share the referred benefit but there is also a cost c (0 < c < b) of conflict that
reduces the original payoff. If an agent chooses to behave as a dove, he/she loses everything
when confronted with a hawk and splits benefits without any conflict if he/she interacts with
another dove.

The fitness function of hawks is fH
t = f0 + (1/2)(b − c)(1 − pt) + bpt and the fitness

function for doves is fD
t = f0 + (b/2)pt.

Assuming the replicator dynamics, the law of motion ruling the evolution of the share
of agents attached to strategy D is

pt+1 =
f0pt + (b/2)p2t

f0 + b/2 − (c/2)
(
1 − pt

)2 . (6.2)

Two-steady state points exist, p∗(1) = 0, p∗(2) = 1, and the following derivatives
evaluated in the vicinity of the equilibrium points are found:

dpt+1
dpt

∣∣∣∣
p∗(1)

=
f0

f0 + (1/2)(b − c)
,

dpt+1
dpt

∣∣∣∣
p∗(2)

=
f0 + b

f0 + b/2
.

(6.3)

The first derivative is a positive and lower than 1 value, while the second corresponds
to an amount that is larger than 1. Thus, point p∗(1) is stable and p∗(2) is unstable. This
allows us to identify an evolutionarily stable strategy, that is the one for which the share
of agents selecting to act as doves is zero, or, putting it differently, it is the strategy hawk. In
an uncoordinated environment, everyone in the population finds an advantage in ending up
by behaving as hawks; there is an evolutionary process that concentrates behavior in strategy
hawk.

Now assume the more sophisticated rule. As referred in the previous section, as long
as dpt+1/dpt |p∗(1) and dpt+1/dpt |p∗(1) are both positive values, the stability properties are the
same, regardless of the value assumed by the combination of parameters x. Strategy D is
evolutionarily unstable and strategy H is evolutionarily stable also in the more general case
where expectations are taken into consideration.
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6.2. Illustration 2: Some Popular Games

In this subsection, we explore some well known-interaction situations in game theory.
Specifically, three models are addressed, namely, the prisoner’s dilemma, matching pennies,
and the grab the dollar game. We briefly refer to the structure of the game and to the dynamic
outcome both under the replicator dynamics and under the rule involving expectations.

In the prisoner’s dilemma, we need to consider a population of criminals that have
committed a joint crime and that are randomly matched in order to produce a testimony
that allows the police to convict each pair of individuals. For each relation or game, the
suspects will not be able to communicate with each other and they will have two alternatives:
to confess (C) or not to confess (NC) that they both have committed the crime. Payoffs
will depend on the action of each agent: the best outcome for a player arises when he/she
confesses and the other one does not confess; in this case, we consider that the first player is
not punished (his/her payoff will be zero). The worse payoff will occur when the criminal
chooses not to confess and the other one confesses; now, there is a negative payoff, for
example, −B. When they both confess, the sentence is attenuated, and the payoff will be −b,
such that |B| > |b|. If no one confesses, there is no proof about the crime in question, but
they are both punished for a smaller crime, corresponding to a payoff −bm, with |bm| < |b|.
Note that B, b and bm are all positive values. The payoffmatrix is, in this scenario, for a given
individual,

C NC

C −b 0

NC −B −bm
(6.4)

Let us evaluate this game at the light of evolutionary game theory with dynamics
given by the plain replicator rule. The first thing to do is to check whether there is 2 or 3
steady-states. Noticing that, in this setting, p∗(3) = (B−b)/(B−b−bm), and that this value can
never fall in the interval (0, 1) for the constraints imposed to the payoff values, we are reduced
to the analysis of just two equilibrium points: p∗(1) = 0 and p∗(2) = 1. Stability conditions are

dpt+1
dpt

∣∣∣∣
p∗(1)

=
f0 − B

f0 − b
,

dpt+1
dpt

∣∣∣∣
p∗(2)

=
f0

f0 − bm
. (6.5)

For an initial positive fitness value, f0, there are various long-run possibilities. We
can start by distinguishing cases f0 < bm and f0 > bm. For f0 > bm, the fixed-point p∗(2)

falls outside the unit circle; for f0 < bm, we realize that p∗(2) is outside the unit circle for
bm ∈ (f0, 2f0) and inside it under condition bm > 2f0. In case f0 < bm, we also observe that
f0 < b < B, and thus p∗(1) is an unstable point. Under f0 > bm, f0 can be lower than B
and larger than b, larger than both or smaller than both. If f0 > B > b, then the expression
(f0−B)/(f0−b) is positive and larger than 1; if B > b > f0, then (f0−B)/(f0−b) is negative but
below −1. If B > f0 > b, than we find a value inside the unit circle under condition b < 2f0−B.
We conclude that any of the strategies can be evolutionarily stable, depending on the values
of the payoffs; note, as well, that they cannot be simultaneously stable.

When point p∗(1) is stable, not to confess is not an evolutionarily stable strategy; it is
evolutionarily stable for a stable p∗(2). Let us illustrate the game for two different stability
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outcomes. Begin by taking the following values: f0 = 2, bm = 6, b = 8, B = 10. This is the
case for which inequality bm > 2f0 holds and, therefore, point p∗(2) is stable, meaning that not
confessing is an evolutionarily stable strategy. In this case, (dp(t+1)/dpt)|p∗(1) = (f0 − B)/(f0 −
b) = 1.333, that is, the steady-state for which no individual selects the not confessing strategy
is unstable.

The second example will allow for stability of p∗(1), that is, not to confess is an
evolutionarily unstable strategy, which implies that confessing is certainly evolutionarily
stable. Let f0 = 2, bm = 0.5, b = 0.75, B = 3. The evaluation made above indicates that in this
case we have stability of p∗(1). To confirm this, observe that dpt+1/dpt|p∗(1) = (f0 −B)/(f0 −b) =
−0.8.

In the evolutionary prisoner’s dilemma in discrete time, under the replicator rule, to
confess and not to confess are both possible evolutionarily stable outcomes. This result does
not depend solely on the payoffs but also on the initial fitness value.

To see what modifications the second assumed dynamic evolutionary rule implies, one
needs to recover Figure 6 and locate the dynamics in the corresponding trace-determinant
relation. We focus on the two displayed examples. In the first example, dpt+1/dpt|p∗(1) = 1.333
and dpt+1/dpt|p∗(2) = −0.5. The first of these points falls outside the triangle representing
stability and the second point locates inside such triangle, for every possible value of x.
Thus, results are qualitatively the same as for the simple replicator dynamics. For the second
example, it is true that dpt+1/dpt|p∗(1) = −0.8 and dpt+1/dpt|p∗(2) = 1.333. Again, the more
sophisticated dynamic rule produces exactly the same stability result as the first one.

The matching pennies game involves players who use a coin in order to choose one of
two strategies: heads (H) or tails (T). For a given pair of players, if their choices match, then
they receive a payoff of 1; a nonmatching result implies a payoff of −1. The payoff matrix is

H T

H 1 −1
T −1 1

(6.6)

This game is straightforward to analyze. Replacing the payoffs in (3.5) yields

pt+1 =

(
f0 − 1

)
pt + 2p2t

f0 + 1 − 4
(
1 − pt

)
pt
, p0 given. (6.7)

Now, three steady states exist: p∗(1) = 0, p∗(2) = 1 and p∗(3) = 1/2. Next, we observe
that dpt+1/dpt|p∗(1) = dpt+1/dpt|p∗(2) = (f0 − 1)/(f0 + 1). For a positive initial fitness, stability
holds for both points. Relatively to p∗(3), we compute the derivative dpt+1/dpt|p∗(3) = (f0 +
1)/f0 . Under f0 > 0, this point is unstable. The evolutionary outcome is, then, the following:
for any p0 < 1/2, the long-run result implies the stability of p∗(1) = 0, that is, strategy T is
evolutionarily unstable (and, thus, strategy H is evolutionarily stable); if p0 > 1/2, then the
system converges towards p∗(2) = 1, which means that strategy T is evolutionarily stable. The
evaluation of the computed derivative values in the more sophisticated dynamic scenario
will generate precisely the same qualitative dynamic results; to confirm this, we just need to
locate the straight lines corresponding to (f0 − 1)/(f0 + 1) ∈ (−1, 1) and (f0 + 1)/f0 > 1 in the
diagram of Figure 6.
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Figure 7: Grab the dollar game—phase diagram.

Finally, the grab-the-dollar setup considers an environment where each player, for
example, a firm, decides to invest or not to invest in some business opportunity. The firm
will obtain a benefit of 1 if it is the only one to make the investment, loses 1 if both firms
invest, and has no positive or negative payoff when it decides not to invest. Accordingly, the
payoff matrix is

I N

I −1 1

N 0 0

(6.8)

The fitness functions are, in this case, fI
t = f0−1+2pt and fN

t = f0. Since the strategy not
to invest does not have any associated payoff, the fitness value remains constant in time. The
dynamic equation for the share of individuals selecting strategy “not to invest” will come,
under the replicator dynamics

pt+1 =
f0pt

f0 −
(
1 − pt

)(
1 − 2pt

) , p0 given. (6.9)

Repeating the same procedure as in the previous cases, we notice that p∗(3) = 1/2
is a viable steady state. The evaluation of local stability yields the following outcomes:
dpt+1/dpt|p∗(1) = f0/(f0 − 1), dpt+1/dpt|p∗(2) = (f0 + 1)/f0 and dpt+1/dpt|p∗(3) = 1 − (1/2f0).
Taking f0 > 0, as before, we realize that p∗(1) and p∗(2) are unstable points, while p∗(3) is stable
for f0 > 0.25. Under inequality f0 ≤ 0.25, there is no stable steady state. In this case, we
will find a bounded instability outcome, with persistent fluctuations in time. Figures 7 and
8 illustrate the case for f0 = 0.18. It is presented a phase diagram and the trajectory of p in
time. The phase diagram allows to realize that the chaotic dynamic result is obtained under
a given basin of attraction; namely, we must consider p > 0.3595.
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We can characterize the results of this game in the following manner. For a not too low
initial fitness (f0 > 0.25), the game generates a result where half of the firms choose to invest
and the other half does not invest. For low values of f0, we may have perpetual motion in
turn of such equilibrium.

In this simple example, built upon a perfectly logical strategic environment, we find
a result where permanent mobility from one strategy to the other exists. Is this result
maintained for the second dynamic rule we have considered? For the dynamic rule involving
expectations, the two extreme steady states continue to fall in the instability region. The
steady-state p∗(3) will also continue to represent a stable outcome as long as f0 > 0.25,
independently of the value of the combination of parameters x; however, when f0 ≤ 0.25,
we fall in the region of Figure 6 where, for intermediate values of x, stability might prevail,
although this is not true for levels of x near 0 or 1. Consider again f0 = 0.18; Figure 9
presents a bifurcation diagram where x is the bifurcation parameter. The scenario just
described is illustrated; nonlinear dynamics are present for most values of x, excluding a
small intermediate region of stability (recall that the replicator dynamics correspond to the
setting for which x = 1). In Figure 10, a strange attractor reflecting the presence of chaotic
motion is drawn for x = 0.2.

The difference in outcomes between the two alternative dynamic rules is well reflected
in this example. As referred when presented the general case, such difference is visible
only when the derivative dpt+1/dpt, evaluated in the vicinity of the steady-state point, falls
between −3 and −1. This is the single case where it is relevant, in terms of stability results, the
value assumed by the combination of parameters x.

6.3. Illustration 3: A Class of Nonlinear Outcomes

The last example of the previous subsection allowed to clarify in which circumstances
nonlinear dynamic behavior may emerge. Essentially it will be present whenever dpt+1/dpt|p∗
is lower than −1, for some steady state p∗(3) ∈ (0, 1). Now, we generalize the result. The class
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of nonlinear outcomes we want to address will involve the following payoffs (nowwe return
to the generic strategies H and D):

H D

H −a1 a2

D 0 0

(6.10)

with a1 and a2 as positive values. In this case, selecting strategy H may induce a negative
or a positive payoff, depending on the choice formulated by the other player. Strategy D is
neutral in the sense that it produces a zero payoff independently of the strategy chosen by
the opponent. Obviously, we could present the matrix with inverted strategies, that is, with
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H and not D as the neutral strategy, without changing the qualitative nature of the stability
results.

The evolution of share p will be given, for the replicator dynamics, by

pt+1 =
f0pt

f0 −
(
1 − pt

)[
a1
(
1 − pt

) − a2pt
] , p0 given. (6.11)

Computation of derivatives of the above expression leads to dpt+1/dpt|p∗(1) = f0/(f0 −
a1 ) > 0 and dpt+1/dpt|p∗(2) = (f0 + a2)/f0 > 0. Stability will eventually hold solely for p∗(3) =

a1/(a1+a2). For this steady-state value, dpt+1/dpt|p∗(3) = 1−a1[2a2
1+a2 (a2−1)]/(a1 + a2 )2f0.

Stability of p∗(3) is guaranteed for 0 < (a1[2a2
1 + a2 (a2 − 1)]/(a1 + a2 )2 f0) < 2. The first

inequality is satisfied for 2a2
1 + a2(a2 − 1) > 0 and the second requires f0 > a1[2a2

1 + a2 (a2 −
1)]/(a1 + a2)

2. It is the violation of this second condition that leads to the occurrence of
nonlinear outcomes that exist both for the replicator dynamics and for the lagged dynamic
rule.

As an example, consider the second dynamic rule and the following parameter values:
f0 = 2, a1 = 12, a2 = 10. In this case, a1[2a2

1 + a2 (a2 − 1)]/(a1 + a2 )2 = 4.686 and therefore it
is feasible the existence of endogenous fluctuations. Figure 11 displays the strange attractor
formed, in this case, for x = 0.21.

7. Conclusion

The paper has addressed stability properties of dynamic systems in the context of
evolutionary games. In a discrete time context, with only two available strategies for each one
of the members of a given population, we have identified multiple possibilities in terms of
long-term outcomes, which are dependent on payoffs, initial fitness, and assumed dynamic
rule. The richness of the analysis is evidenced by the variety of results that such a simple
setting allows to obtain. A given strategymay be evolutionarily stable, in the sense that all the
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players will end up by following it in the long term, or evolutionarily unstable, case in which
the agents prefer to migrate to the alternative strategy. However, there is a third possibility
that was also discussed. If none of the strategies qualify as evolutionarily stable, the outcome
of the game may be a long-run locus where a share of the individuals in a population sticks
with one of the strategies, while the remaining share prefers to follow the alternative strategy.
Moreover, it is also conceivable a scenario where this is a floating share that does not converge
to a resting point and with a trajectory characterized by regular or irregular cycles.

The dynamic result of a strategic interaction relation is contingent on the type of
intertemporal rule that is considered for the evolution of the probability of selecting one
or the other strategy. In economics, it makes sense to go beyond a purely evolutionary
rule, where the only criterion for changing or maintaining some strategy relies on its past
performance. A forward looking behavior must be introduced in the considered dynamic
rule. Combining the notions of replication of past results and decision-making based on past
expectations, we have suggested a more complete adjustment mechanism. Under this, long-
term behavior may deviate from the benchmark case, namely, in scenarios where bifurcations
trigger the transition between regions of stability and regions where endogenous fluctuations
are observable.
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[22] R. A. Araújo, P. R. Loureiro, and N. A. Souza, “an empirical evaluation of an evolutionary game
theory model of the labor market,” Munich Personal RePEc Archive Working Paper no. 30408, 2011.

[23] E. A. Gamba and E. J. S. Carrera, “The evolutionary processes for the populations of firms and
workers,” Ensayos, vol. 29, pp. 39–68, 2010.

[24] C. Clemens and T. Riechmann, “Evolutionary dynamics in public good games,” Computational
Economics, vol. 28, no. 4, pp. 399–420, 2006.

[25] A. Antoci, P. Russo, and L. Zarri, “Free riders and cooperators in public goods experiments: can
evolutionary dynamics explain their coexistence?” Working Paper no. 54, University of Verona, 2009.

[26] A. D’Artigues and T. Vignolo, “An evolutionary theory of the convergence towards low inflation
rates,” Journal of Evolutionary Economics, vol. 15, no. 1, pp. 51–64, 2005.

[27] B. C. Schipper, “On an evolutionary foundation of neuroeconomics,” Economics and Philosophy, vol.
24, no. 3, pp. 495–513, 2008.

[28] G. Kuechle, “Persistence and heterogeneity in entrepreneurship: an evolutionary game theoretic
analysis,” Journal of Business Venturing, vol. 26, pp. 458–471, 2010.

[29] M. Hanauske, J. Kunz, S. Bernius, and W. König, “Doves and hawks in economics revisited: an
evolutionary quantum game theory based analysis of financial crises,” Physica A, vol. 389, no. 21,
pp. 5084–5102, 2010.

[30] W. Guth, “(Non) behavioral economics– a programmatic assessment,” Jena Economic Research
Papers Jena Economic Research Papers, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


