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Together with the Lyapunov-Krasovskii functional approach and an improved delay-partitioning
idea, one novel sufficient condition is derived to guarantee a class of delayed neural networks to be
asymptotically stable in the mean-square sense, in which the probabilistic variable delay and both
of delay variation limits can be measured. Through combining the reciprocal convex technique
and convex technique one, the criterion is presented via LMIs and its solvability heavily depends
on the sizes of both time-delay range and its variations, which can become much less conservative
than those present ones by thinning the delay intervals. Finally, it can be demonstrated by four
numerical examples that our idea reduces the conservatism more effectively than some earlier
reported ones.

1. Introduction

In past decades, neural networks have been applied to various signal processing problems,
such as optimization, image processing, associative memory design, and other engineering
fields. In those applications, the key feature of the designed neural network is to be
globally stable. Meanwhile, since there inevitably exists communication delay which can
induce the oscillation and instability in various dynamical systems, great efforts have been
made to analyze the dynamics of delayed systems including delayed neural networks
(DNNs) and many elegant results have been reported; see [1–35]. In practical applications,
though it is difficult to describe the form of time-delay precisely, the bounds of time-
delay and its variation rates still can be measured. Since the Lyapunov functional approach
imposes no restriction on delay variation and presents some simple stability criteria, the
Lyapunov-Krasovskii functional (LKF) has been widely utilized due to that its analysis can
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fully make use of the information on time-delay of DNNs as much as possible. Thus recently,
the delay-dependent stability has become an important topic of primary significance, in
which the main purpose is to derive an allowable delay upper bound guaranteeing the global
stability for addressed DNNs in [4–9, 16, 17, 21–35]. Furthermore, in recent years, since the
delay-partitioning ideas have been proven to be more effective in reducing the conservatism
than some previously reported techniques and received much research attention in [21–
27], yet these convex ideas above still need some further improvements since they cannot
effectively tackle interval variable delay or cannot fully utilize every delay subintervals,
which have been fully addressed in [28].

Meanwhile, it can be seen from many existing references that only the deterministic
time-delay case was concerned, and the stability criteria were derived based on the
information of delay and its variation range. Actually, time-delay in some DNNs is often
existent in a stochastic fashion. In practice, to propagate and control the stochastic signals
through universal learning networks, a probabilistic universal leaning network (PULN)
was proposed. In a PULN, the output signal of the node is transferred to another node by
multibranches with arbitrary time-delays which are random and its probability often can
be measured by the statistical methods. For this case, if some values of time-delay are very
large but its probability of the delay taking such large values is very small, it may lead to
a more conservative result if only the information of delay variation range is considered.
Thus, recently, some researchers have considered the stability for various systems including
DNNs with probability-distributed delays [29–39]. In [36–39], the authors have analyzed the
stability and its applications for networked control systems, uncertain linear systems, and
T-S fuzzy systems, in which probability delay has been fully considered. As for discrete-
time DNNs with probabilistic delay, the global stability has been considered and some pretty
results have been proposed in [29–33]. Yet, it has come to our attention that, though some
works have studied the dynamics of continuous-time DNNs with probabilistic delay [34, 35],
the lower limits of delay variation have not been considered and, in fact, such available
information could play an important role in extending the results’ application area, which has
been illustrated in [40] and yet not taking delay distribution probability into consideration.
Presently, as for time-variable delay, the reciprocal convex approach in [41] has been proven
to be more effective in reducing the conservatism than some earlier convex techniques
[28, 42]. Yet to the authors’ best knowledge, few authors have used the combination of
the reciprocal convex technique and general convex ones to tackle the global stability for
DNNs with probabilistic time-varying delay, which constitutes the main focus of this present
work.

Together with taking both bounds on probabilistic time-delay and its time variations
into consideration, we make some great efforts to investigate the mean-squared stability
for DNNs, in which an improved delay-partitioning idea is utilized and a novel Lyapunov
functional is chosen. Through combining the reciprocal convex technique and the general
convex one, one less conservative condition is given in terms of LMIs, which can present
the pretty delay dependence and computational efficiency. Finally, we give four numerical
examples to illustrate that our derived results can be less conservative than some existent
ones.

The notations in the paper are really standard. For symmetric matrices X,Y,X > Y
(resp., X ≥ Y ) means that X − Y > 0 (X − Y ≥ 0) is a positive-definite (resp., positive-
semidefinite) matrix; and ∗ denotes the symmetric term in a symmetric matrix, that is,[

X Y
YT Z

]
=
[
X Y
∗ Z

]
.
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2. Problem Formulations and Preliminaries

Consider the delayed neural networks as follows:

ż(t) = −Cz(t) +Ag(z(t)) + Bg(z(t − τ(t))) + I, (2.1)

where z = [z1, . . . , zn]
T ∈ Rn is a real n-vector denoting the state variables associated

with the neurons, g(z) = [g1(z1), . . . , gn(zn)]
T represents the neuron activation function,

I = [I1, . . . , In]
T ∈ Rn is a constant input vector, C = diag{c1, . . . , cn} > 0, and A,B are the

appropriately dimensional constant matrices.
The following assumptions on the system (2.1) are made throughout this paper.

Assumption 2.1. The time-varying delay τ(t) satisfies 0 ≤ τ1 ≤ τ(t) ≤ τ3. Moreover, consider
the information of probability distribution of τ(t), two sets and functions are defined asΩ1 =
{t, τ(t) ∈ [τ1, τ2)}, Ω2 = {t, τ(t) ∈ [τ2, τ3]}, and

τ1(t) =

{
τ(t), for t ∈ Ω1,

τ1, for t ∈ Ω2,

τ2(t) =

{
τ(t), for t ∈ Ω2,

τ2, for t ∈ Ω1,

(2.2)

μ1 ≤ τ̇1(t) ≤ μ2, μ3 ≤ τ̇2(t) ≤ μ4, (2.3)

where τ2 ∈ [τ1, τ3], τ1 ∈ [τ1, τ2), and τ2 ∈ [τ2, τ3]. It is easy to check that t ∈ Ω1 means that the
event τ(t) ∈ [τ1, τ2) occurs and t ∈ Ω2 means that the event τ(t) ∈ [τ2, τ3] occurs. Therefore, a
stochastic variable δ(t) can be defined as

δ(t) =

{
1, for t ∈ Ω1,

0, for t ∈ Ω2.
(2.4)

Assumption 2.2. δ(t) is a Bernoulli distributed sequence with

Prob{δ(t) = 1} = E{δ(t)} = δ0,

Prob{δ(t) = 0} = 1 − E{δ(t)} = 1 − δ0,
(2.5)

where 0 ≤ δ0 ≤ 1 is a constant and E{δ(t)} is the mathematical expectation of δ(t). It is easy
to check that E{δ(t) − δ0} = 0.

Assumption 2.3. For the constants ρ+j , ρ
−
j , the nonlinear function gj(·) in (2.1) satisfies the

following condition:

ρ−j ≤ gj(α) − gj
(
β
)

α − β
≤ ρ+j , ∀α, β ∈ R, α /= β, j = 1, 2, . . . , n. (2.6)
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Here, we denote Σ = diag{ρ+1 , . . . , ρ+n}, Σ = diag{ρ−1 , . . . , ρ−n}, and

Σ1 = diag
{
ρ+1ρ

−
1 , . . . , ρ

+
nρ

−
n

}
, Σ2 = diag

{
ρ+1 + ρ−1

2
, . . . ,

ρ+n + ρ−n
2

}

. (2.7)

It is clear that under Assumptions 2.1–2.3, system (2.1) has one equilibrium point z∗ =
[z∗1, . . . , z

∗
n]

T . For convenience, we shift the equilibrium point z∗ to the origin by letting
x = z − z∗, f(x) = g(x + z∗) − g(z∗), and the system (2.1) can be converted to

ẋ(t) = −Cx(t) +Af(x(t)) + Bf(x(t − τ(t))), (2.8)

where f(x) = [f1(x1), . . . , fn(xn)]
T . Based on the methods in [37–39], the system above can

be equivalently converted to

ẋ(t) = −Cx(t) +Af(x(t)) + δ(t)Bf(x(t − τ1(t))) + (1 − δ(t))Bf(x(t − τ2(t))). (2.9)

It is easy to check that the function fj(·) satisfies fj(0) = 0, and

ρ−j ≤ fj(α)
α

≤ ρ+j , ∀α ∈ R, α /= 0, j = 1, 2, . . . , n. (2.10)

Then, the problem to be addressed in the paper can be formulated as developing a condition
ensuring that the system (2.9) is asymptotically stable.

In order to obtain the stability criterion for system (2.9), the following lemmas are
introduced.

Lemma 2.4 (see [27]). For any constant matrix X ∈ Rn×n, X = XT ≥ 0, a scalar functional
h := h(t) ≥ 0, and a vector function ẋ : [−h, 0] → Rn such that the following integration is
well defined, then −h ∫ht−h ẋT (s)Xẋ(s)ds ≤ [x(t) − x(t − h)]TX[x(t) − x(t − h)].

Lemma 2.5 (see [41]). Let the functions f1(t), f2(t), . . . , fN(t) : Rm → R have the positive values
in an open subset D of Rm and satisfy (1/α1)f1(t) + (1/α2)f2(t) + · · · + (1/αN)fN(t) : D → R
with αi > 0 and

∑N
i=1 αi = 1, then the reciprocal convex technique of fi(t) over the setD satisfies

∑

i

1
αi
fi(t) ≥

∑

i

fi(t) +
∑

i /= j

gi,j(t), ∀gi,j(t) : Rm −→ R,

[
fi(t) gi,j(t)
gT
i,j(t) fj(t)

]

≥ 0. (2.11)

3. Delay-Distribution-Dependent Stability

Firstly, we can rewrite the system (2.9) as

ẋ(t) = −Cx(t) +Af(x(t)) + δ0Bf(x(t − τ1(t))) + (1 − δ0)Bf(x(t − τ2(t))) + (δ(t) − δ0)

× B
[
f(x(t − τ1(t))) − f(x(t − τ2(t)))

]
.

(3.1)
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Now letting l,m be positive integers, we, respectively, divide the delay intervals [τ1, τ2] and
[τ2, τ3] into l,m segments averagely. Moreover, we introduce the following denotations:

δ1 =
τ2 − τ1

l
, δ2 =

τ3 − τ2
m

, ρ1(t) =
τ1(t) − τ1

l
, ρ2(t) =

τ2(t) − τ2
m

. (3.2)

Then, based on (2.10) and (3.2), we can construct the following Lyapunov-Krasovskii
functional candidate:

V (xt) = V1(xt) + V2(xt) + V3(xt), (3.3)

where

V1(xt) = xT (t)Px(t) +
∫0

−τ1

∫ t

t+θ
τ1ẋ

T (s)Qẋ(s)dsdθ

+ 2
n∑

i=1

ki

∫xi

0

[
fi(s) − ρ−i s

]
ds + 2

n∑

i=1

li

∫xi

0

[
ρ+i s − fi(s)

]
ds,

V2(xt) =
∫ t

t−τ1

[
x(s)

f(x(s))

]T[
P1 H1

∗ Q1

][
x(s)

f(x(s))

]
ds

+
2∑

i=1

∫ t−τi

t−τi−δi

[
σi(s)

hi(σi(s))

]T[
P̃i H̃i

∗ Q̃i

][
σi(s)

hi(σi(s))

]
ds

+
l∑

i=1

∫ t−τ1−(i−1)δ1

t−τ1−(i−1)δ1−ρ1(t)

[
x(s)

f(x(s))

]T[
X1i Y1i

∗ Z1i

][
x(s)

f(x(s))

]
ds

+
l∑

i=1

∫ t−τ1−(i−1)δ1−ρ1(t)

t−τ1−iδ1

[
x(s)

f(x(s))

]T[
X2i Y2i

∗ Z2i

][
x(s)

f(x(s))

]
ds

+
m∑

i=1

∫ t−τ2−(i−1)δ2

t−τ2−(i−1)δ2−ρ2(t)

[
x(s)

f(x(s))

]T[
X3i Y3i

∗ Z3i

][
x(s)

f(x(s))

]
ds

+
m∑

i=1

∫ t−τ2−(i−1)δ2−ρ2(t)

t−τ2−iδ2

[
x(s)

f(x(s))

]T[
X4i Y4i

∗ Z4i

][
x(s)

f(x(s))

]
ds,

V3(xt) =
l∑

i=1

∫−τ1−(i−1)δ1

−τ1−iδ1

∫ t

t+θ
δ1ẋ

T (s)W1iẋ(s)dsdθ

+
m∑

i=1

∫−τ2−(i−1)δ2

−τ2−iδ2

∫ t

t+θ
δ2ẋ

T (s)W2iẋ(s)dsdθ,

(3.4)
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with K = diag{k1, . . . , kn}, L = diag{l1, . . . , ln}, n × n constant matrices P, Q, P1, H1, Q1,

Xji, Yji, Zji (j = 1, 2, 3, 4),Wji (j = 1, 2), ln×ln constant matrices P̃1, Q̃1, H̃1,mn×mn constant
matrices P̃2, Q̃2, H̃2, and

σT
1 (s) =

[
xT (s) xT (s − δ1) · · · xT (s − (l − 1)δ1)

]
,

hT
1 (σ1(s)) =

[
fT (x(s)) fT (x(s − δ1)) · · · fT (x(s − (l − 1)δ1))

]
,

σT
2 (s) =

[
xT (s) xT (s − δ2) · · · xT (s − (m − 1)δ2)

]
,

hT
2 (σ2(s)) =

[
fT (x(s)) fT (x(s − δ2)) · · · fT (x(s − (m − 1)δ2))

]
.

(3.5)

Denoting a parameter set Φ = {P,Q,K, L,W1i,W2h,
[
P1 H1
∗ Q1

]
,

[
P̃j H̃j

∗ Q̃j

]
,
[
Xji Yji

∗ Zji

]
,
[
Xkh Ykh

∗ Zkh

]
, j =

1, 2, i = 1, . . . , l; k = 3, 4, h = 1, . . . , m}, then we give one proposition which is essential
in the following deduction.

Proposition 3.1. If the parameter set Φ satisfies the following condition:

P > 0, Q > 0, K > 0, L > 0, W1i > 0, W2h > 0,

[
P1 H1

∗ Q1

]
> 0,

[
P̃j H̃j

∗ Q̃j

]

> 0,
[
Xji Yji

∗ Zji

]
> 0,

[
Xkh Ykh

∗ Zkh

]
> 0, j = 1, 2, k = 3, 4; i = 1, . . . , l; h = 1, . . . , m,

(3.6)

then the Lyapunov-Krasovskii functional (3.3) is definitely positive.

Moreover, in order to simplify the subsequent proof, we also give some notations in
the following:

μ1 = μ2 − μ1, μ3 = μ4 − μ3, Σ̃i = diag {Σi, . . . ,Σi}ln×ln,

Σi = diag {Σi, . . . ,Σi}mn×mn, X̃i = diag{Xi1, . . . , Xil},

Ỹi = diag{Yi1, . . . , Yil}, Z̃i = diag{Zi1, . . . , Zil}, i = 1, 2,

S̃1 = diag{S11, . . . , S1l}, W̃1 = diag{W11, . . . ,W1l},

Ṽ1 = diag{V11, . . . , V1l}, R̃1 = diag{R11, . . . , R1l},

(3.7)
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X̃j = diag
{
Xj1, . . . , Xjm

}
, Ỹj = diag

{
Yj1, . . . , Yjm

}
,

Z̃j = diag
{
Zj1, . . . , Zjm

}
, j = 3, 4,

S̃2 = diag{S21, . . . , S2m}, W̃2 = diag{W21, . . . ,W2m},

Ṽ2 = diag{V21, . . . , V2m}, R̃2 = diag{R21, . . . , R2m}.

(3.8)

Theorem 3.2. For two given positive integers l,m, and time-delay satisfying (2.2), the delayed neural
network (3.1) is globally asymptotically stable in the mean square sense, if there exists one parameter
set Φ satisfying Proposition 3.1, n × n matrices Ei (i = 1, 2), and n× n diagonal matricesUi > 0 (i =
1, 2, 3, 4, 5), V1i > 0, R1i > 0, S1i (i = 1, . . . , l) making

[
W1i S1i
∗ W1i

]
≥ 0, V2j > 0, R2j > 0, S2i (j =

1, . . . , m) making
[
W2i S2i
∗ W2i

]
≥ 0 such that the following LMIs in (3.9) hold:

Υ1ΘΥT
1 + Υ2ΞΥT

2 +
μ1

l

l∑

i=1

IT1i

[
Xei Yei

∗ Zei

]
I1i

+
μ3

m

m∑

i=1

IT2i

[
Xfi Yfi

∗ Zfi

]
I2i < 0, e = 1, 2; f = 3, 4,

(3.9)

where

I1i =
[
0n·(m+l+1+i)n −In 0n·(2l+2m+1)n −In ∗
0n·(m+l+1+i)n In 0n·(2l+2m+1)n In ∗

]
,

I2i =
[
0n·(m+2l+1+i)n −In 0n·(2l+2m+1)n −In ∗
0n·(m+2l+1+i)n In 0n·(2l+2m+1)n In ∗

]
,

Θ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Θ11 Q 0 0 Θ15 0 0 0 Θ19 0 0 Θ1,12 Θ1,13

∗ Θ22 0 0 0 −H1 0 0 0 0 0 0 0
∗ ∗ Θ33 0 0 0 U2Σ2 0 0 0 0 0 0
∗ ∗ ∗ Θ44 0 0 0 U3Σ2 0 0 0 0 0
∗ ∗ ∗ ∗ Θ55 0 0 0 Θ59 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Q1 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −U2 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −U3 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ99 0 0 Θ9,12 Θ9,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U4Σ1 0 U4Σ2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U5Σ1 0 U5Σ2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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Ξ =

[
Ξ1 Ξ2

∗ Ξ3

]

, Ξ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ11 0 0 0 S̃1 0
∗ Ξ22 0 0 S̃1 0
∗ ∗ Ξ33 0 0 S̃2

∗ ∗ ∗ Ξ44 0 S̃2

∗ ∗ ∗ ∗ Ξ55 0
∗ ∗ ∗ ∗ ∗ Ξ66

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ξ2 = diag{Ξ17,Ξ28,Ξ39,Ξ4,10,Ξ5,11,Ξ6,12}, Ξ3 = diag{Ξ77,Ξ88,Ξ99,Ξ10,10,Ξ11,11,Ξ12,12},

Υ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

In ∗
0n·n In ∗

0n·(l+1)n In ∗
0n·(m+l+1)n In ∗
0n·2(m+l+1)n In ∗
0n·(2m+2l+3)n In ∗
0n·(2m+3l+3)n In ∗
0n·3(m+l+1)n In ∗
0n·4(m+l+1)n In ∗
0n·(4m+4l+5)n In ∗
0n·(4m+4l+6)n In ∗
0n·(4m+4l+7)n In ∗
0n·(4m+4l+8)n In

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Υ2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0ln·n Iln ∗
0ln·2n Iln ∗

0mn·(l+1)n Imn ∗
0mn·(l+2)n Imn ∗
0ln·(m+l+2)n Iln ∗
0mn·(m+2l+2)n Imn ∗
0ln·(2m+2l+3)n Iln ∗
0ln·(2m+2l+4)n Iln ∗
0mn·(2m+3l+3)n Imn ∗
0mn·(2m+3l+4)n Imn ∗
0ln·(3m+3l+4)n Iln ∗
0mn·(3m+4l+4)n Imn ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(3.10)

with the notations ∗ in Iji (j = 1, . . . , 6) and Υg (g = 1, 2) denoting the appropriately dimensional
zero matrices making them (4l + 4m + 9)n columns:

Θ11 = −ET
1C − CTE1 + P1 −Q −U1Σ1, Θ15 = ET

1A +H1 +U1Σ2,

Θ19 = P − ΣK + ΣL − ET
1 − CTE2, Θ1,12 = δ0E

T
1B,

Θ1,13 = (1 − δ0)ET
1B, Θ22 = −P1 −Q, Θ33 = −U2Σ1,

Θ44 = −U3Σ1, Θ55 = −U1 +Q1, Θ59 = K − L +ATE2,

Θ99 = −ET
2 − E2 + τ21Q +

l∑

i=1

δ2
1W1i +

m∑

i=1

δ2
2W2i,

Θ9,12 = δ0E
T
2B, Θ9,13 = (1 − δ0)ET

2B,

Ξ11 = P̃1 + X̃1 − W̃1 − Ṽ1Σ̃1, Ξ22 = −P̃1 − X̃2 − W̃1,

Ξ33 = P̃2 + X̃3 − W̃2 − Ṽ2Σ1, Ξ44 = −P̃2 − X̃4 − W̃2,

Ξ55 =
(
1 − μ2

l

)
X̃2 −

(
1 − μ1

l

)
X̃1 − 2W̃1 − R̃1Σ̃1,

Ξ66 =
(
1 − μ4

m

)
X̃4 −

(
1 − μ3

m

)
X̃3 − 2W̃2 − R̃2Σ1,
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Ξ77 = Q̃1 + Z̃1 − Ṽ1, Ξ88 = −Q̃1 − Z̃2, Ξ99 = −Ṽ2 + Q̃2 + Z̃3, Ξ10,10 = −Q̃2 − Z̃4,

Ξ11,11 =
(
1 − μ2

l

)
Z̃2 −

(
1 − μ1

l

)
Z̃1 − R̃1, Ξ12,12 =

(
1 − μ4

m

)
Z̃4 −

(
1 − μ3

m

)
Z̃3 − R̃2,

Ξ17 = H̃1 + Ỹ1 + Ṽ1Σ̃2, Ξ28 = −H̃1 − Ỹ2, Ξ39 = H̃2 + Ỹ3 + Ṽ2Σ2, Ξ4,10 = −H̃2 − Ỹ4,

Ξ5,11 =
(
1 − μ2

l

)
Ỹ2 −

(
1 − μ1

l

)
Ỹ1 + R̃1Σ̃1, Ξ6,12 =

(
1 − μ4

l

)
Ỹ4 −

(
1 − μ3

l

)
Ỹ3 + R̃2Σ2.

(3.11)

Proof. Firstly, we show the uniqueness of the equilibrium point by the method of contradic-
tion. Here we can denote the equilibrium point as z∗ of DNNs (2.9), then we have

0 = −Cz∗ +Af(z∗) + δ(t)Bf(z∗) + (1 − δ(t))Bf(z∗)

= −Cz∗ + (A + B)f(z∗).
(3.12)

Now we suppose that the other equilibrium point z∗ /= 0 exists, then it follows that

2(z∗)TET
1

[−Cz∗ + (A + B)f(z∗)
]
= 0, (3.13)

−(z∗)TU1Σ1z
∗ + 2(z∗)TU1Σ2f(z∗) − fT (z∗)U1f(z∗) ≥ 0. (3.14)

Then combining (3.13) and (3.14) yields that

[
z∗

f(z∗)

]T[
Π11 Π12

ΠT
12 Π22

][
z∗

f(z∗)

]
≥ 0 (3.15)

with Π11 = −ET
1C − CTE1 −U1Σ1, Π12 = ET

1 (A + B) +U1Σ2, and Π22 = −U1. Meanwhile, it is
noted that

[
z∗

f(z∗)

]T[
P1 H1

∗ Q1

][
z∗

f(z∗)

]
≥ 0. (3.16)

Yet on the other hand, let

Ψ =
[

In In 0n×(4l+4m+7)n

0n×(2l+2m+2)n In 0n×(2l+2m+4)n In In

]
. (3.17)

Then multiplying the term Υ1ΘΥT
1 + Υ2ΞΥT

2 in (3.9) by Ψ and ΨT on its left hand and right
one, respectively, and using (3.15) and (3.16), we can deduce that

[
Π11 + P1 Π12 +H1

ΠT
12 +HT

1 Π22 +Q1

]
< 0 =⇒ Π =

[
Π11 Π12

ΠT
12 Π22

]
< −

[
P1 H1

HT
1 Q1

]
. (3.18)
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Thus we can deriveΠ < 0, which contradicts with (3.15) and implies z∗ = 0. This is to say, the
origin of the DNNs (3.1) is the unique equilibrium point.

Next, through directly calculating and using the denotations in (3.7)-(3.8), the
stochastic differential of Vi(xt) (i = 1, 2) in (3.3) along the trajectories of system (3.1) yields

LV1(xt) = 2xT (t)Pẋ(t) + ẋT (t)τ21Qẋ(t) −
∫ t

t−τ1
τ1ẋ

T (s)Qẋ(s)ds

+ 2
[
fT (x(t))(K − L) + xT (t)

(
ΣL − ΣK

)]
ẋ(t)

≤ 2xT (t)Pẋ(t) + ẋT (t)τ21Qẋ(t) − [x(t) − x(t − τ1)]TQ[x(t) − x(t − τ1)]

+ 2
[
fT (x(t))(K − L) + xT (t)

(
ΣL − ΣK

)]
ẋ(t),

LV2(xt) =
[
xT (t)P1x(t) + 2xT (t)H1f(x(t)) + fT (x(t))Q1f(x(t))

]

−
[
xT (t − τ1)P1x(t − τ1) + 2xT (t − τ1)H1f(x(t − τ1)) + fT (x(t − τ1))Q1f(x(t − τ1))

]

+
[
σT
1 (t − τ1)P̃1σ1(t − τ1) + 2σT

1 (t − τ1)H̃1h1(σ1(t − τ1))

+hT
1 (σ1(t − τ1))Q̃1h1(σ1(t − τ1))

]

−
[
σT
1 (t − τ1 − δ1)P̃1 × σ(t − τ1 − δ1) + 2σT

1 (t − τ1 − δ1)H̃1h1(σ(t − τ1 − δ1))

+hT
1 (σ(t − τ1 − δ1))Q̃1 × h1(σ(t − τ1 − δ1))

]

+
[
σT
2 (t − τ2)P̃2σ2(t − τ2) + 2σT

2 (t − τ2)H̃2h2(σ2(t − τ2))

+hT
2 (σ2(t − τ2))Q̃2h2(σ2(t − τ2))

]

−
[
σT
2 (t − τ2 − δ2)P̃2σ(t − τ2 − δ2) + 2σT

2 (t − τ2 − δ2)H̃2h2(σ(t − τ2 − δ2))

+hT
2 (σ(t − τ2 − δ2))Q̃2h2(σ(t − τ2 − δ2))

]

+
[
σT
1 (t − τ1)X̃1σ1(t − τ1) + σT

1

(
t − τ1 − ρ1(t)

)(
1 − τ̇1(t)

l

)(
X̃2 − X̃1

)

×σ1
(
t − τ1 − ρ1(t)

) − σT
1 (t − τ1 − δ1)X̃2σ1(t − τ1 − δ1)

]

+
[
2σT

1 (t − τ1)Ỹ1h1(σ1(t − τ1)) + 2σT
1

(
t − τ1 − ρ1(t)

) ×
(
1 − τ̇1(t)

l

)(
Ỹ2 − Ỹ1

)

×h1
(
σ1
(
t − τ1 − ρ1(t)

)) − 2σT
1 (t − τ1 − δ1)Ỹ2h1(σ1(t − τ1 − δ1))

]

+
[
hT
1 (σ1(t − τ1))Z̃1h1(σ1(t − τ1)) + hT

1

(
σ1
(
t − τ1 − ρ1(t)

))(
1 − τ̇1(t)

l

)
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×
(
Z̃2 − Z̃1

)
h1
(
σ1
(
t − τ1 − ρ1(t)

)) − hT
1 (σ1(t − τ1 − δ1))Z̃2h

T
1 (σ1(t − τ1 − δ1))

]

+
[
σT
2 (t − τ2)X̃3σ2(t − τ2) + σT

2
(
t − τ2 − ρ2(t)

)(
1 − τ̇2(t)

m

)(
X̃4 − X̃3

)

×σ2
(
t − τ2 − ρ2(t)

) − σT
2 (t − τ2 − δ2)X̃4σ2(t − τ2 − δ2)

]

+
[
2σT

2 (t − τ2)Ỹ3h2(σ2(t − τ2)) + 2σT
2
(
t − τ2 − ρ2(t)

) ×
(
1 − τ̇2(t)

m

)

×
(
Ỹ4 − Ỹ3

)
h2
(
σ2
(
t − τ2 − ρ2(t)

)) − 2σT
2 (t − τ2 − δ2)Ỹ4h2(σ2(t − τ2 − δ2))

]

+
[
hT
2 (σ2(t − τ2))Z̃3h2(σ2(t − τ2)) + hT

2
(
σ2
(
t − τ2 − ρ2(t)

))(
1 − τ̇2(t)

m

)

×
(
Z̃4 − Z̃3

)
h2
(
σ2
(
t − τ2 − ρ2(t)

)) − hT
2 (σ2(t − τ2 − δ2))Z̃4h

T (σ2(t − τ2 − δ2))
]
.

(3.19)

Moreover, we can compute out LV3(xt) as follows:

LV3(xt) =
l∑

i=1

ẋT (t)
(
δ2
1W1i

)
ẋ(t) −

l∑

i=1

∫ t−τ1−(i−1)δ1

t−τ1−iδ1
δ1ẋ

T (s)W1iẋ(s)ds

+
m∑

i=1

ẋT (t)
(
δ2
2W2i

)
ẋ(t)

−
m∑

i=1

∫ t−τ2−(i−1)δ2

t−τ2−iδ2
ẋT (s)(δ2W2i)ẋ(s)ds.

(3.20)

Then, by resorting to Lemmas 2.4 and 2.5
[
W1i S1i
∗ W1i

]
≥ 0,

[
W2i S2i
∗ W2i

]
≥ 0, and using the donations

W̃i, S̃i (i = 1, 2), the following inequalities can be derived:

−
l∑

i=1

∫ t−τ1−(i−1)δ1

t−τ1−iδ1
δ1ẋ

T (s)W1iẋ(s)ds

≤
l∑

i=1

[
−[x(t − τ1 − (i − 1)δ1 − ρ1(t)

) − x(t − τ1 − iδ1)
]T
W1i

× [
x
(
t − τ1 − (i − 1)δ1 − ρ1(t)

) − x(t − τ1 − iδ1)
]

− 2
[
x
(
t − τ1 − (i − 1)δ1 − ρ1(t)

) − x(t − τ1 − iδ1)
]T
S1i

× [
x(t − τ1 − (i − 1)δ1) − x

(
t − τ1 − (i − 1)δ1 − ρ1(t)

)]



12 Discrete Dynamics in Nature and Society

− [
x(t − τ1 − (i − 1)δ1) − x

(
t − τ1 − (i − 1)δ1 − ρ1(t)

)]T
W1i

×[x(t − τ1 − (i − 1)δ1) − x
(
t − τ1 − (i − 1)δ1 − ρ1(t)

)]]

= −
[
σT
1

(
t − τ1 − ρ1(t)

)
W̃1σ

(
t − τ1 − ρ1(t)

) − 2σT
1

(
t − τ1 − ρ1(t)

)

×S̃1σ1(t − τ1 − δ1) + σT
1 (t − τ1 − δ1)W̃1σ1(t − τ1 − δ1)

]

−
[
σT
1

(
t − τ1 − ρ1(t)

)
W̃1σ1

(
t − τ1 − ρ1(t)

)

−2σT
2
(
t − τ2 − ρ2(t)

)
S̃1σ2(t − τ2) + σT

2 (t − τ2)W̃2σ2(t − τ2)
]
,

−
m∑

i=1

∫ t−τ2−(i−1)δ2

t−τ2−iδ2
δ2ẋ

T (s)W2iẋ(s)ds

≤ −
[
σT
2
(
t − τ2 − ρ2(t)

)
W̃2σ

(
t − τ2 − ρ2(t)

) − 2σT
2
(
t − τ2 − ρ2(t)

)

×S̃2σ2(t − τ2 − δ2) + σT
2 (t − τ2 − δ2)W̃2σ2(t − τ2 − δ2)

]

−
[
σT
2
(
t − τ2 − ρ2(t)

)
W̃2σ2

(
t − τ2 − ρ2(t)

)

−2σT
2
(
t − τ2 − ρ2(t)

)
S̃2σ2(t − τ2) + σT

2 (t − τ2)W̃2σ2(t − τ2)
]
.

(3.21)

Then, it follows from (3.21) that LV3(xt) satisfies

LV3(xt) ≤
l∑

i=1

ẋT (t)
(
δ2
1W1i

)
ẋ(t) +

l∑

i=1

ẋT (t)
(
δ2
2W2i

)
ẋ(t)

−
[
σT
1

(
t − τ1 − ρ1(t)

)
W̃1σ

(
t − τ1 − ρ1(t)

)

−2σT
1

(
t − τ1 − ρ1(t)

)
S̃1σ1(t − τ1 − δ1) + σT

1 (t − τ1 − δ1)W̃1σ1(t − τ1 − δ1)
]

−
[
σT
1

(
t − τ1 − ρ1(t)

)
W̃1σ1

(
t − τ1 − ρ1(t)

) − 2σT
2
(
t − τ2 − ρ2(t)

)
S̃1σ2(t − τ2)

+σT
2 (t − τ2)W̃1σ2(t − τ2)

]

−
[
σT
2
(
t− τ2 − ρ2(t)

)
W̃2σ

(
t − τ2 − ρ2(t)

) − 2σT
2
(
t − τ2 − ρ2(t)

) × S̃2σ2(t − τ2 − δ2)

+σT
2 (t − τ2 − δ2)W̃2σ2(t − τ2 − δ2)

]

−
[
σT
2
(
t − τ2 − ρ2(t)

) × W̃2σ2
(
t − τ2 − ρ2(t)

)

−2σT
2
(
t − τ2 − ρ2(t)

)
S̃2σ2(t − τ2) + σT

2 (t − τ2)W̃2σ2(t − τ2)
]
.

(3.22)
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From (2.10), for any n × n diagonal matrices Ui > 0 (i = 1, 2, 3, 4, 5), V1i > 0, R1i > 0 (i =
1, . . . , l), V2j > 0, R2j > 0 (j = 1, . . . , m), and setting Ṽ1, R̃1 in (3.7), Ṽ2, R̃2 in (3.8), the following
inequality holds:

0 ≤
[
−xT (t)U1Σ1x(t) + 2xT (t)U1Σ2f(x(t)) − fT (x(t))U1f(x(t))

]

+
[
−xT (t − τ2)U2Σ1x(t − τ2) + 2xT (t − τ2)U2Σ2f(x(t − τ2))

−fT (x(t − τ2))U2f(x(t − τ2))
]

+
[
−xT (t − τ3)U3Σ1x(t − τ3) + 2xT (t − τ3)

×U3Σ2f(x(t − τ3)) − fT (x(t − τ3))U3f(x(t − τ3))
]

+
[
−xT (t − τ1(t)) ×U4Σ1x(t − τ1(t)) + 2xT (t − τ1(t))U4Σ2f(x(t − τ1(t)))

−fT (x(t − τ1(t)))U4f(x(t − τ1(t)))
]

+
[
−xT (t − τ2(t))U5Σ1x(t − τ2(t)) + 2xT (t − τ2(t))U5Σ2f(x(t − τ2(t)))

−fT (x(t − τ2(t)))U5f(x(t − τ2(t)))
]

+
[
−σT

1 (t − τ1)Ṽ1Σ̃1σ1(t − τ1) + 2σT
1 (t − τ1)Ṽ1Σ̃2h1(σ1(t − τ1))

−hT
1 (σ1(t − τ1))Ṽ1h1(σ1(t − τ1))

]

+
[
−σT

1

(
t − τ1 − ρ1(t)

)
R̃1Σ̃1σ1

(
t − τ1 − ρ1(t)

)

+ 2σT
1

(
t − τ1 − ρ1(t)

)
R̃1Σ̃2h1

(
σ1
(
t − τ1 − ρ1(t)

))

−hT
1

(
σ1
(
t − τ1 − ρ1(t)

))
R̃1h1

(
σ1
(
t − τ1 − ρ1(t)

))]

+
[
−σT

2 (t − τ2)Ṽ2Σ1σ2(t − τ2) + 2σT
2 (t − τ2)Ṽ2Σ2h2(σ2(t − τ2))

−hT
2 (σ2(t − τ2)) × Ṽ2h2(σ2(t − τ2))

]

+
[
−σT

2
(
t − τ2 − ρ2(t)

)
R̃2Σ1σ2

(
t − τ2 − ρ2(t)

)

+ 2σT
2
(
t − τ2 − ρ2(t)

) × R̃2Σ2h2
(
σ2
(
t − τ2 − ρ2(t)

))

−hT
2
(
σ2
(
t − τ2 − ρ2(t)

))
R̃2h2

(
σ2
(
t − τ2 − ρ2(t)

))]
.

(3.23)
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Moreover, together with (3.1) and any n × n constant matrices E1, E2, one can deduce

0 =
[
xT (t)ET

1 + ẋT (t)ET
2

]

× [−ẋ(t) − Cx(t) +Af(x(t)) + δ0Bf(x(t − τ1(t))) + (1 − δ0)Bf(x(t − τ2(t)))

+(δ(t) − δ0)B
[
f(x(t − τ1(t))) − f(x(t − τ2(t)))

]]
.

(3.24)

Now adding the right terms (3.19) and (3.22)–(3.24) to LV (xt) and taking the mathematical
expectation on its both sides, we can deduce

E{LV (xt)} ≤ ζT(t)

{

Υ1ΘΥT
1 +

τ̇1(t) − μ1

l

l∑

i=1

IT1i

[
X1i Y1i

∗ Z1i

]
I1i

+
μ2 − τ̇1(t)

l

l∑

i=1

IT1i

[
X2i Y2i

∗ Z2i

]
I1i

+ Υ2ΞΥT
2 +

τ̇2(t) − μ3

m

m∑

i=1

IT2i

[
X3i Y3i

∗ Z3i

]
I2i

+
μ4 − τ̇2(t)

m

m∑

i=1

IT2i

[
X4i Y4i

∗ Z2i

]
I2i

}

ζ(t)

:= ζT (t)Λ(t)ζ(t),

(3.25)

where Θ,Ξ,Υl (l = 1, 2), Iki (k = 1, 2) are presented in (3.9), and

ζT (t) =
[
xT (t)σT

1 (t − τ1)σT
2 (t − τ2)xT (t − τ3)σT(t − τ1 − ρ1(t)

)

× σT(t − τ2 − ρ2(t)
)
fT (x(t))hT

1 (σ1(t − τ1))hT
2 (σ2(t − τ2))fT (x(t − τ3))

× hT
1

(
σ1
(
t − τ1 − ρ1(t)

))
hT
2
(
σ2
(
t − τ2 − ρ2(t)

))

×ẋT (t)xT (t − τ1(t))xT (t − τ2(t))fT (x(t − τ1(t)))fT (x(t − τ2(t)))
]
.

(3.26)

Then utilizing the general convex technique in [28, 39], the LMIs described by (3.9) can
guarantee Λ(t) < 0, which indicates that there must exist a positive scalar χ > 0 such that
E{LV (xt)} ≤ ζT (t)Λ(t)ζ(t) ≤ −χ‖x(t)‖2 < 0 for any x(t)/= 0. Then, it follows from the
Lyapunov-Krasovskii stability theorem that the system (3.1) is asymptotically stable in the
mean-square sense, and it completes the proof.

Remark 3.3. Transmitted delays are always existent in various dynamical networks due to the
finite switching speed of amplifiers in electronic neural networks or the finite signal prop-
agation time in biological networks. Furthermore, with the development of network delay
tomography, the probability of time-delay distribution can be estimated. Thus, when the
probability is available, it will be helpful to utilize such information to reduce the conser-
vatism [29–35]. Yet, up till now, few authors have utilized the delay-partitioning idea to
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investigate the stability of DNNs with probabilistic time-varying delay, and, in this work, we
applied one improved idea, which can fully consider the information of delay subinterval.
Moreover, though the stability criterion in (3.9) is not presented in the forms of standard
LMIs, it is still convenient and straightforward to check the feasibility without tuning any
parameters by resorting to LMI in Matlab Toolbox.

Remark 3.4. Presently, in the literatures [21–28], various convex combination techniques have
been widely employed and improved to tackle constant or time-varying delays owing to
that they can help reduce the conservatism efficiently. In [41], the authors put forward the
reciprocal convex approach, which can consider those important terms ignored and be more
effective than the ones [21–28]. Yet it has come to our attention that the reciprocal convex one
cannot efficiently tackle the case that both the bounds on delay derivatives are available. In
this paper, we first combine the reciprocal convex technique and the convex ones to study the
stability for DNNs with probabilistic time-varying delay.

Remark 3.5. As for V2(xt) in (3.3), if we denote
[
X2i Y2i
∗ Z2i

]
=

[
X4i Y4i
∗ Z4i

]
= 0 (resp.,

[
X1i Y1i
∗ Z1i

]
=

[
X3i Y3i
∗ Z3i

]
= 0), our results can be true as only μ2, μ4 (resp., μ1, μ3) are available. If we set

[
Xji Yji

∗ Zji

]
= 0 (j = 1, 2, 3, 4) in (3.3) simultaneously, Theorem 3.2 still holds as that μi (i =

1, 2, 3, 4) are unknown, or τi(t)(i = 1, 2) are not differentiable. Moreover, the number of free-
weighting matrices in Theorem 3.2 is much smaller than the ones of these present results
[34, 37], and the reciprocal convex technique is used, it can induce much more computational
simplicity in a mathematical point of view.

Remark 3.6. In view of the delay-partitioning idea employed in this work, with integers
l,m increasing, the dimension of the derived LMIs will become higher and it will take
more computing time to check them. Yet, if the lower bound of τ1(t) is set and l ≥ 5, the
maximum allowable delay upper bound will become unapparently larger and approach to
an approximate upper limitation [22–27]. Thus, if we want to employ the idea to real cases,
we do not necessarily partition two delay intervals into too many segments.

Remark 3.7. In order to give the more general results, the delay intervals [τ1, τ2] and [τ2, τ3]
are, respectively, divided into l,m subintervals in this work, which makes the condition of
Theorem 3.2 seem to be very complicated. Yet if we set l = m ≤ 5, our results will avoid
the complexity in some degree. Moreover, if we choose the simple Lyapunov-Krasovskii
functional in (3.3)withH1 = Y1i = Y2i = Y3i = Y4i = 0 and H̃i = 0, the condition of Theorem 3.2
also will become much less complicated.

4. Numerical Examples

In this section, four numerical examples will be presented to illustrate the derived results.
Firstly, we will utilize a numerical example to illustrate the significance of studying the lower
bound of delay derivative.

Example 4.1. As a special case of δ0 = 1, we revisit the delayed neural networks considered in
[21, 28]with

C =
[
2 0
0 2

]
, A =

[
1 1
−1 −1

]
, B =

[
0.88 1
1 1

]
, Σ =

[
0 0
0 0

]
, Σ =

[
0.4 0
0 0.8

]
, (4.1)
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Table 1: Calculated MAUBs τmax for l = 1, unavailable μ1 in Example 4.1.

Methods\μ2 0.6 0.8 0.9 1.2
Theorem 3.2 [21] 3.5209 2.8654 1.9508 —
Theorem 3.2 [28] 3.4877 2.8456 1.9149 1.1168
Theorem 3.2 3.5102 2.8554 1.9447 1.1212

Table 2: Calculated MAUBs τmax for l = 1 and μ1 = 0.5 in Example 4.1.

Methods\μ2 0.6 0.8 0.9 1.2
Theorem 3.2 [28] 3.5871 2.8813 1.9652 1.2052
Theorem 3.2 3.6198 2.9018 2.0012 1.2853

and τ1 = 0 is set. If we do not consider the existence of μ1, then, by utilizing Theorem 3.2
and Remark 3.5, the corresponding maximum allowable upper bounds (MAUBs) τmax for
different μ2 derived by the results in [21] and in the paper can be summarized in Table 1,
which demonstrates that Theorem 3.2 of l = 1 is somewhat more conservative than the one
in [21, 28]. Yet, if we set μ1 = 0.5, it is easy to verify that our results can yield much less
conservative results than the ones in [21, 28], which can be shown in Table 2.

Based on Tables 1 and 2, it is indicated that the conservatism of stability criterion can
be greatly deduced if we take the available μ1 into consideration. Moreover, though the delay-
partitioning idea has been used in [28], the corresponding MAUBs τmax derived by [28] and
Theorem 3.2 are summarized in Table 3, which shows that our idea can be more efficient than
the one in [18] even for l = 1, 2.

Example 4.2. Considering the special case of δ0 = 1, we consider the delayed neural networks
(2.1) with

C = diag{1.2769, 0.6231, 0.9230, 0.4480},

Σ = 03×3, Σ = diag{0.1137, 0.1279, 0.7994, 0.2368},

A =

⎡

⎢⎢
⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

⎤

⎥⎥
⎦,

B =

⎡

⎢⎢
⎣

0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

⎤

⎥⎥
⎦,

(4.2)

which has been addressed extensively; see [26, 27] and the references therein. Together with
the delay-partitioning idea and for different μ2, the work [27] has calculated the MAUBs
τmax such that the origin of the system is globally asymptotically stable for τ1(t) satisfying
3 = τ1 ≤ τ1(t) ≤ τ2 ≤ τmax. By resorting to Theorem 3.2 and Remark 3.5, the corresponding
results can be given Table 4, which indicates that our delay-partitioning idea can be more
effective than the relevant ones in [27] even for l = 1, 2 and μ1 = 0.
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Table 3: Calculated MAUBs τmax for various l and μ1 = 0.5 in Example 4.1.

Methods\μ2 0.8 0.9 unknown μ2

Theorem 3.2 [28]
l = 1 2.8813 1.9655 1.2052
l = 2 3.1486 2.1967 1.4073

Theorem 3.2
l = 1 2.8873 1.9677 1.2100
l = 2 3.1678 2.2011 1.4244

Table 4: Calculated MAUBs τmax for various l, μ2 in Example 4.2.

Methods\μ2 0.1 0.5 0.9 unknown μ2

Theorem 3.2 [27]
l = 1 3.33 3.16 3.10 3.09
l = 2 3.65 3.32 3.26 3.24

Theorem 3.2
l = 1 3.35 3.22 3.15 3.13
l = 2 3.77 3.42 3.34 3.32

Example 4.3. We still consider the DNNs with the following parameters [24, 28] by setting
δ0 = 1:

C =

⎡

⎣
4.1889 0 0

0 0.7160 0
0 0 1.9985

⎤

⎦, B =

⎡

⎣
−0.1052 −0.5069 −0.1121
−0.0257 −0.2808 0.0212
0.1205 −0.2153 0.1315

⎤

⎦,

Σ =

⎡

⎣
0.4129 0 0

0 3.8993 0
0 0 1.016

⎤

⎦,

(4.3)

A = Σ = 03×3, and time-varying delay τ(t) satisfies 0 ≤ τ(t) ≤ τ2, 0 ≤ τ̇(t) ≤ μ2. Then,
the MAUBs for this example with time-varying delay τ(t) are given in Table 5 by using the
delay-partitioning idea in [28] and the one in this paper, which can illustrate that our delay-
decomposition idea is superior over the one by [28].

Example 4.4. Consider DNN (2.3) of the following parameters, which has been considered in
[33]:

C =
[
7 0
0 6

]
, A =

[
0.2 −4
0.1 0.3

]
, B =

[
0.4 0.2
0.1 0.7

]
, f(x) =

[
tanh(−0.2x1)
tanh(x2)

]
. (4.4)

If we set τ1 = 0, τ2 = 0.4, μ1 = μ3 = 0.1, and μ2 = μ4, the relevant MAUBs τmax are computed
and listed in Tables 6 and 7 by setting l = m = 1, for various μ2, and the delay probability
distribution δ0 = 0.2, which can guarantee the addressed system to be asymptotically stable
in the mean-squared sense.
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Table 5: Calculated MAUBs τmax for l = 2, μ2 in Example 4.3.

Methods\μ2 0.1 0.5 0.9 1
Theorem 3.2 [28] 2.0011 1.3450 1.0687 1.0685
Theorem 3.2 2.0148 1.3485 1.0701 1.0698

Table 6: Calculated MAUBs τmax for l = m = 1, various μ2, and δ0 = 0.2 in Example 4.4.

Methods\μ2 0.2 0.6 1 1.5 2.5
Theorem 3.2 [33] 1.1281 1.1279 1.1278 1.1277 1.1276
Theorem 3.2 [28] 1.3149 1.3086 1.3031 1.3026 1.3025
Theorem 3.2 1.4242 1.4189 1.4134 1.4131 1.4130

Table 7: Calculated MAUBs τmax for l = m = 1, various μ2, and δ0 = 0.8 in Example 4.4.

Methods\μ2 0.2 0.6 1 1.5 2.5
Theorem 3.2 [33] 1.7177 1.6869 1.5758 1.5757 1.5757
Theorem 3.2 [28] 1.9778 1.8863 1.7742 1.7741 1.7740
Theorem 3.2 2.0285 1.9678 1.9112 1.8785 1.7876

Based on Tables 6 and 7, even for m = l = 1, our results still can be less conservative
than the one in [33]. As for m = 1, l = 2, one verifies that our results can reduce the conser-
vatism much more evidently.

5. Conclusions

This paper has investigated the asymptotical stability for DNNswith probability-distribution
delay. Through employing an improved idea of delay partitioning and constructing one
novel Lyapunov-Krasovskii functional, one stability criterion with significantly reduced
conservatism has been established in terms of LMIs. The proposed stability condition benefits
from both bounds of time-varying delay and variation and combined convex technique. Four
numerical examples have been given to demonstrate the effectiveness of the derived criteria
and the improvements over some existent ones.
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