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We numerically investigate the dynamical behavior of the fractional-order Chua’s system. By
utilizing the multistep generalized differential transform method (MSGDTM), we find that the
fractional-order Chua’s system with “effective dimension” less than three can exhibit chaos as
well as other nonlinear behavior. Numerical results are presented graphically and reveal that the
multistep generalized differential transformmethod is an effective and convenient method to solve
similar nonlinear problems in fractional calculus.

1. Introduction

The characterization of real dynamical systems using fractional-order dynamical models has
proved to be superior to the traditional calculus [1]. Many generalized fundamentals were
extracted and were reduced to their known responses when the fractional orders converge
to integer values. Fractional derivatives provide an excellent instrument to describe memory
and hereditary properties of various materials and processes. Fractional differentiation and
integration operators are used to model problems in astrophysics [2–5], chemical physics,
signal processing, systems identification, control and robotics [6, 7], and many other areas
[8–15].

It is well known that chaos cannot occur in continuous systems of total order less than
three. This assertion is based on the usual concepts of order, such as the number of states in
a system or the total number of separate differentiations or integrations in the system. The
model of system can be rearranged to three single differential equations, where the equations
contain the noninteger (fractional) order derivative. The total order of system is changed from
3 to the sum of each particular order. Petrás [16] has studied the dynamics of fractional-order
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Chua’s system. The key finding of his study is that chaotic behavior exists in the fractional-
order Chua’s systemwith total order less than three. Hartley et al. [17] introduced a particular
form of the fractional-order Chua’s system which is known as the Chua-Hartley’s system.
This system is different from the usual Chua’s system in that the piecewise-linear nonlinearity
is replaced by an appropriate cubic nonlinearity which yields very similar behavior. They
found that the lowest value of the total order to have chaos in this system is 2.7.

In this paper, we intend to obtain the approximate solution of the fractional-
order Chua’s system and Chua-Hartley’s system via the multistep generalized differential
transform method (MSGDTM). This method is only a simple modification of the generalized
differential transform method (GDTM) [18–21], in which it is treated as an algorithm in a
sequence of small intervals (i.e., time step) for finding accurate approximate solutions to
the corresponding systems. The approximate solutions obtained by using GDTM are valid
only for a short time. The ones obtained by using the MSGDTM [22–24] are more valid
and accurate during a long time and are in good agreement with the classical Runge-Kutta
method numerical solution when the order of the derivative is one.

This paper is organized as follows. In Section 2, we present some necessary definitions
and notations related to fractional calculus. In Section 3, the proposed method is described.
In Section 4, the method is applied to the fractional-order Chua’s system and the Chua-
Hartley’s system. In Section 5, the numerical simulations are presented graphically. Finally,
the conclusions are given in Section 6.

2. Fractional Calculus

In this section, we give some basic definitions and properties of the fractional calculus theory
which are used further in this paper [1–5].

Definition 2.1. A function f(x) (x > 0) is said to be in the space Cα (α ∈ R) if it can be written
as f(x) = xpf1(x) for some p > α where f1(x) is continuous in [0,∞), and it is said to be in
the space Cm

α if f (m) ∈ Cα, m ∈ N.

Definition 2.2. The Riemann-Liouville integral operator of order α > 0 with a ≥ 0 is defined as

(
Jαaf
)
(x) =

1
Γ(α)

∫x

a

(x − t)α−1 f(t)dt, x > a,

(
J0af
)
(x) = f(x).

(2.1)

Properties of the operator can be found in [1–5]. We only need here the following: for f ∈ Cα,
α, β > 0, a ≥ 0, c ∈ R and γ > −1, we have

(
Jαa J

β
af
)
(x) =

(
J
β
aJ

α
af
)
(x) =

(
J
α+β
a f

)
(x),

Jαax
γ =

xγ+α

Γ(α)
B(x−a)/x

(
α, γ + 1

)
,

(2.2)
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where Bτ(α, γ + 1) is the incomplete beta function which is defined as

Bτ

(
α, γ + 1

)
=
∫ τ

0
tα−1(1 − t)γdt,

Jαa e
cx = eac(x − a)α

∞∑

k=0

[c(x − a)]k

Γ(α + k + 1)
.

(2.3)

The Riemann-Liouville derivative has certain disadvantages when trying to model real-
world phenomena with fractional differential equations. Therefore, we will introduce a
modified fractional differential operatorDα

a proposed by Caputo in his work on the theory of
viscoelasticity.

Definition 2.3. The Caputo fractional derivative of f(x) of order α > 0 with a ≥ 0 is defined as

(
Dα

af
)
(x) =

(
Jm−α
a f (m)

)
(x) =

1
Γ(m − α)

∫x

a

f (m)(t)

(x − t)α+1−m
dt, (2.4)

for m − 1 < α ≤ m, m ∈ N, x ≥ a, f(x) ∈ Cm
−1.

The Caputo fractional derivative was investigated by many authors, form−1 < α ≤ m,
f(x) ∈ Cm

α and α ≥ −1, we have

(
JαaD

α
a f
)
(x) = JmDmf(x) = f(x) −

m−1∑

k=0

f (k)(a)
(x − a)k

k!
. (2.5)

For mathematical properties of fractional derivatives and integrals one can consult the
mentioned references.

3. Multistep Generalized Differential Transform Method (MSGDTM)

To describe the multistep generalized differential transform method (MSGDTM) [22–24], we
consider the following initial value problem for systems of fractional differential equations

Dα1∗ y1(t) = f1
(
t, y1, y2, . . . , yn

)
,

Dα2∗ y2(t) = f1
(
t, y1, y2, . . . , yn

)
,

...

Dαn∗ yn(t) = f1
(
t, y1, y2, . . . , yn

)
,

(3.1)

subject to the initial conditions

yi(t0) = ci, i = 1, 2, . . . , n, (3.2)
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where Dαi∗ is the Caputo fractional derivative of order αi, where 0 < αi ≤ 1, for i = 1, 2, . . . , n.
Let [t0, T] be the interval over which we want to find the solution of the initial value problem
((3.1)-(3.2)). In actual applications of the generalized differential transformmethod (GDTM),
theKth-order approximate solution of the initial value problem ((3.1)-(3.2)) can be expressed
by the finite series

yi(t) =
K∑

i=0

Yi(k)(t − t0)kαi , t ∈ [t0, T], (3.3)

where Yi(k) satisfied the recurrence relation

Γ((k + 1)αi + 1)
Γ(kαi + 1)

Yi(k + 1) = Fi(k, Y1, Y2, . . . , Yn), (3.4)

Yi(0) = ci, and Fi(k, Y1, Y2, . . . , Yn) is the differential transform of function fi(t, y1, y2, . . . , yn)
for i = 1, 2, . . . , n. The basics steps of the GDTM can be found in [18–21].

Assume that the interval [t0, T] is divided into M subintervals [tm−1, tm], m =
1, 2, . . . ,M of equal step size h = (T − t0)/M by using the nodes tm = t0 + mh. The main
ideas of the MSGDTM are as follows.

First, we apply the GDTM to the initial value problem ((3.1)-(3.2)) over the interval
[t0, t1], we will obtain the approximate solution yi,1(t), t ∈ [t0, t1], using the initial condition
yi(t0) = ci, for i = 1, 2, . . . , n. For m ≥ 2 and at each subinterval [tm−1,tm], we will use the
initial condition yi,m(tm−1) = yi,m−1(tm−1) and apply the GDTM to the initial value problem
((3.1)-(3.2)) over the interval [tm−1,tm]. The process is repeated and generates a sequence
of approximate solutions yi,m(t), m = 1, 2, . . . ,M, for i = 1, 2, . . . , n. Finally, the MSGDTM
assumes the following solution:

yi(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi,1(t), t ∈ [t0, t1]
yi,2(t), t ∈ [t1, t2]
...
yi,M(t), t ∈ [tM−1, tM].

(3.5)

The new algorithm, MSGDTM, is simple for computational performance for all values of
h. As we will see in the next section, the main advantage of the new algorithm is that the
obtained solution converges for wide time regions.

4. Solving the Fractional-Order Chua’s System and Chua-Hartley’s
System Using the MSGDTM Algorithm

In order to demonstrate the performance and efficiency of the multistep generalized
differential transformmethod for solving linear and nonlinear fractional-order equations, we
have applied the method to two examples. In the first example, we consider the fractional-
order Chua’s chaotic system, while in the second example, we consider the fractional-order
Chua-Hartley’s system.
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4.1. The Fractional-Order Chua’s System

The classical Chua’s oscillator is a simple electronic circuit that exhibits nonlinear dynamical
phenomena such as bifurcation and chaos [16]. Now, we consider a fractional-order Chua’s
system, where integer-order derivatives are replaced by fractional-order ones. This system is
expressed as

Dq1x(t) = α
(
y − z − f(x)

)
, (4.1)

Dq2y(t) = x − y + z, (4.2)

Dq3z(t) = −βy − γz, (4.3)

f(x) = m1x(t) +
1
2
(m0 −m1)(|x(t) + 1| − |x(t) − 1|), (4.4)

where (x, y, z) are the state variables, m0, m1, α, β, γ are constants, and qi, i = 1, 2, 3 are
parameters describing the order of the fractional time derivatives in the Caputo sense.

Applying the MSGDTM Algorithm to (4.1)–(4.3) gives

X(k + 1) =
Γ
(
q1k + 1

)

Γ
(
q1(k + 1) + 1

)

× α

(
Y (k) −X(k)−

(
m1X(k)+

1
2
(m0 −m1)(|X(k)+δ(k)| − |X(k)− δ(k)|)

))
,

Y (k + 1) =
Γ
(
q2k + 1

)

Γ
(
q2(k + 1) + 1

) (X(k) − Y (k) + Z(k)),

Z(k + 1) =
Γ
(
q3k + 1

)

Γ
(
q3(k + 1) + 1

)
(−βY (k) − γZ(k)

)
,

(4.5)

where X(k), Y (k), and Z(k) are the differential transformation of x(t), y(t), and z(t),
respectively, and δ(k) equals 1 when k = 0 and equals 0 otherwise. The differential transform
of the initial conditions is given by X(0) = c1, Y (0) = c2, Z(0) = c3. In view of the differential
inverse transform, the differential transform series solution for the system (4.1)–(4.3) can be
obtained as

x(t) =
N∑

n=0

X(n)tq1n,

y(t) =
N∑

n=0

Y (n)tq2n,

z(t) =
N∑

n=0

Z(n)tq3n.

(4.6)
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According to the multistep generalized differential transform method, the series solution for
the system (4.1)–(4.3) is suggested by

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

X1(n)tq1n, t ∈ [0, t1]

K∑

n=0

X2(n)(t − t1)q1n, t ∈ [t1, t2]

...
K∑

n=0

XM(n)(t − tM−1)q1n, t ∈ [tM−1, tM],

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

Y1(n)tq2n, t ∈ [0, t1]

K∑

n=0

Y2(n)(t − t1)q2n, t ∈ [t1, t2]

...
K∑

n=0

YM(n)(t − tM−1)q2n, t ∈ [tM−1, tM],

z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

Z1(n)tq3n, t ∈ [0, t1]

K∑

n=0

Z2(n)(t − t1)q3n, t ∈ [t1, t2]

...
K∑

n=0

ZM(n)(t − tM−1)q3n, t ∈ [tM−1, tM],

(4.7)

where Xi(n), Yi(n), and Zi(n) for i = 1, 2, . . . ,M satisfy the following recurrence relations:

Xi(k+1) =
Γ
(
q1k + 1

)

Γ
(
q1(k + 1) + 1

)

× α

(
Yi(k) −Xi(k)

−
(
m1X(k) +

1
2
(m0 −m1)(|Xi(k) + δ(k)| − |Xi(k) − δ(k)|)

))
,

Yi(k + 1) =
Γ
(
q2k + 1

)

Γ
(
q2(k + 1) + 1

) (Xi(k) − Yi(k) + Zi(k)),

Zi(k + 1) =
Γ
(
q3k + 1

)

Γ
(
q3(k + 1) + 1

)
(−βYi(k) − γZi(k)

)
,

(4.8)

such that Xi(0) = xi(ti−1) = xi−1(ti−1), Yi(0) = yi(ti−1) = yi−1(ti−1), and Zi(0) = zi(ti−1) =
zi−1(ti−1).
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Finally, we start with X0(0) = c1, Y0(0) = c2, and Z0(0) = c3, using the recurrence
relation given in (4.8), then we can obtain the multistep solution given in (4.7).

4.2. The Fractional-Order Chua-Hartley’s System

The Chua-Hartley’s system is different from the usual Chua’s system in that the piecewise-
linear nonlinearity is replaced by an appropriate cubic nonlinearity which yields a very
similar behavior. Derivatives on the left side of the differential equations are also replaced
by the fractional derivatives as follows [16, 17]:

Dq1x(t) = α

(
y +

1
7

(
x − 2x3

))
, (4.9)

Dq2y(t) = x − y + z, (4.10)

Dq3z(t) = −100
7

y, (4.11)

where (x, y, z) are the state variables, α is a positive constant and qi, i = 1, 2, 3 are parameters
describing the order of the fractional time-derivatives in the Caputo sense.

Following the same procedure as the previous system and applying MSGDTM
algorithm to (4.9)–(4.11) yields

X(k + 1) =
Γ
(
q1k + 1

)

Γ
(
q1(k + 1) + 1

)

× α

⎛

⎝Y (k) +
1
7

⎛

⎝X(k) − 2
k∑

j=0

j∑

i=0

X(i)X
(
j − i
)
X
(
k − j

)
⎞

⎠

⎞

⎠,

Y (k + 1) =
Γ
(
q2k + 1

)

Γ
(
q2(k + 1) + 1

) (X(k) − Y (k) + Z(k)),

Z(k + 1) =
Γ
(
q3k + 1

)

Γ
(
q3(k + 1) + 1

)
(
−100

7
Y (k)

)
,

(4.12)

where X(k), Y (k), and Z(k) are the differential transformation of x(t), y(t), and z(t)
respectively. The differential transform of the initial conditions is given by X(0) = c1,
Y (0) = c2, and Z(0) = c3. In view of the differential inverse transform, the differential
transform series solution for the system (4.9)–(4.11) can be obtained as

x(t) =
N∑

n=0

X(n)tq1n,

y(t) =
N∑

n=0

Y (n)tq2n,

z(t) =
N∑

n=0

Z(n)tq3n.

(4.13)
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Now, according to the MSGDTM algorithm, the series solution for the system (4.8)–(4.11) is
suggested by

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

X1(n)tq1n, t ∈ [0, t1]

K∑

n=0

X2(n)(t − t1)q1n, t ∈ [t1, t2]

...
K∑

n=0

XM(n)(t − tM−1)q1n, t ∈ [tM−1, tM],

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

Y1(n)tq2n, t ∈ [0, t1]

K∑

n=0

Y2(n)(t − t1)q2n, t ∈ [t1, t2]

...
K∑

n=0

YM(n)(t − tM−1)q2n, t ∈ [tM−1, tM],

z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑

n=0

Z1(n)tq3n, t ∈ [0, t1]

K∑

n=0

Z2(n)(t − t1)q3n, t ∈ [t1, t2]

...
K∑

n=0

ZM(n)(t − tM−1)q3n, t ∈ [tM−1, tM],

(4.14)

where Xi(n), Yi(n), and Zi(n) for i = 1, 2, . . . ,M satisfy the following recurrence relations:

Xi(k +1) =
Γ
(
q1k + 1

)

Γ
(
q1(k + 1) + 1

)

× α

(

Yi(k)+
1
7

(

Xi(k) − 2
k∑

J=0

J∑

r=0

Xi(I)Xi(J − I)Xi(k − J)

))

,

Yi(k + 1) =
Γ
(
q2k + 1

)

Γ
(
q2(k + 1) + 1

) (Xi(k) − Yi(k) + Zi(k)),

Zi(k + 1) =
Γ
(
q3k + 1

)

Γ
(
q3(k + 1) + 1

)
(
−100

7
Yi(k)

)

(4.15)

such that Xi(0) = xi(ti−1) = xi−1(ti−1), Yi(0) = yi(ti−1) = yi−1(ti−1), and Zi(0) = zi(ti−1) =
zi−1(ti−1).

Starting withX0(0) = c1, Y0(0) = c2, Z0(0) = c3 and using the recurrence relation given
in (4.15), then we can obtain the multistep solution given in (4.14).
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Figure 1: Phase plot of Chua’s chaotic attractor with q1 = q2 = q3 = 1, α = 9.085: (a) in the x-y space, (b) in
the x-y-z space.
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Figure 2: Phase plot of Chua’s chaotic attractor in the x-y-z space: (a) q1 = q2 = 0.98, q3 = 0.94, α = 10.1911,
(b) q1 = q3 = 0.87, q2 = 0.88, α = 9.085.

5. Numerical Results

The MSGDTM is coded in the computer algebra package Mathemtica. The Mathemtica
environment variable digits controlling the number of significant digits is set to 20 in all the
calculations done in this paper. The time range studied in this work is [0, 200] and the step
size Δt = 0.02. We take the initial conditions for Chua’s system and Chua-Hartley’s system:
x(0) = 0.6, y(0) = 0.1 and z(0) = −0.6.

We consider the case q1 = q2 = q3 = 1 which corresponds to the classical Chua’s
system. Figure 1 represents the phase portrait for chaotic solutions. The effective dimension
Σ of (4.1)–(4.3) is defined as the sum of orders q1 + q2 + q3 = Σ. We can see that the
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Figure 3: Phase plot of Chua-Hartley’s chaotic attractor with α = 9.5 and q1 = q2 = q3 = 1: (a) in the x-y
space, (b) in the x-y-z space.
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Figure 4: Phase plot of Chua-Hartley’s chaotic attractor in the x-y-z space: (a) q1 = q2 = 0.92, q3 = 0.86,
α = 12.75, (b) q1 = 0.90, q2 = 0.89, q3 = 0.86, α = 12.75.

chaotic attractors of the fractional-order system are similar to that of the integer-order Chua’s
attractor as shown in Figure 2. Figure 2(b) shows the lowest order we found to yield chaos
in this system is 2.62. From the numerical results in Figure 2, it is clear that the approximate
solutions depend continuously on the time-fractional derivative qi, i = 1, 2, 3.

Simulations were performed for the classical integer-order Chua-Hartley’s system
in Figure 3. Figure 4(b) shows the lowest order we found to yield chaos in the fractional-
order Chua-Hartley’s system is 2.65. From the graphical results in Figures 1–4, it is to
conclude that the approximate solutions obtained using themultistep generalized differential
transform method are in good agreement with the approximate solutions obtained in
[16, 17].
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6. Conclusions

In this present work, the multistep generalized differential transformmethod was introduced
to obtain the solutions of the fractional-order Chua’s system and Chua-Hartley’s system
by time discretization. This method has the advantage of giving an analytical form of the
solution within each time interval which is not possible using purely numerical techniques
like the fourth-order Runge-Kutta method (RK4). We conclude that MSGDTM is a very
reliable method in solving a broad array of dynamical problems in fractional calculus due
to its consistency used in a longer time frame.
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