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The numerical and analytic solutions of the mixed problem for multidimensional fractional
hyperbolic partial differential equations with the Neumann condition are presented. The stable
difference scheme for the numerical solution of the mixed problem for the multidimensional
fractional hyperbolic equation with the Neumann condition is presented. Stability estimates
for the solution of this difference scheme and for the first- and second-order difference
derivatives are obtained. A procedure of modified Gauss elimination method is used for solving
this difference scheme in the case of one-dimensional fractional hyperbolic partial differential
equations. He’s variational iteration method is applied. The comparison of these methods is
presented.

1. Introduction

It is known that various problems in fluid mechanics (dynamics, elasticity) and other areas
of physics lead to fractional partial differential equations. Methods of solutions of problems
for fractional differential equations have been studied extensively by many researchers (see,
e.g., [1–15] and the references given therein).

The role played by stability inequalities (well posedness) in the study of boundary-
value problems for hyperbolic partial differential equations is well known (see, e.g., [16–29]).
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In the present paper, finite difference and He’s iteration methods for the approximate
solutions of the mixed boundary-value problem for the multidimensional fractional
hyperbolic equation

∂2u(t, x)
∂t2

−
m∑

r=1

(ar(x)uxr )xr
+D1/2

t u(t, x) + σu(t, x) = f(t, x),

x = (x1, . . . , xm) ∈ Ω, 0 < t < 1,

u(0, x) = 0, ut(0, x) = 0, x ∈ Ω;
∂u(t, x)

∂n
= 0, x ∈ S,

(1.1)

are studied. Here Ω is the unit open cube in the m-dimensional Euclidean space: R
m : {Ω =

x = (x1, . . . , xm) : 0 < xj < 1, 1 ≤ j ≤ m} with boundary S, Ω = Ω ∪ S; ar(x)(x ∈ Ω) and
f(t, x)(t ∈ (0, 1), x ∈ Ω) are given smooth functions and ar(x) ≥ a > 0.

1.1. Definition

The Caputo fractional derivative of order α > 0 of a continuous function u(t, x) is defined by

Dα
a+u(t, x) =

1
Γ(1 − α)

∫ t

a

u′(t, x)
(t − s)α

ds, (1.2)

where Γ(·) is the gamma function.

2. The Finite Difference Method

In this section, we consider the first order of accuracy in t and the second-orders of accuracy in
space variables’ stable difference scheme for the approximate solution of problem (1.1). The
stability estimates for the solution of this difference scheme and its first- and second-order
difference derivatives are established. A procedure of modified Gauss elimination method is
used for solving this difference scheme in the case of one-dimensional fractional hyperbolic
partial differential equations.

2.1. The Difference Scheme: Stability Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, let us define
the grid space

Ω̃h =
{
x = xr = (h1r1, . . . , hmrm), r = (r1, . . . , rm), 0 ≤ rj ≤ Nj, hjNj = 1, j = 1, . . . , m

}
,

Ωh = Ω̃h ∩Ω, Sh = Ω̃h ∩ S.
(2.1)



Discrete Dynamics in Nature and Society 3

We introduce the Banach space L2h = L2(Ω̃h) of the grid functions ϕh(x) = {ϕ(h1r1, . . . , hmrm)}
defined on Ω̃h, equipped with the norm

∥∥∥ϕh
∥∥∥
L2(Ω̃h)

=

⎛

⎝
∑

x∈Ωh

∣∣∣ϕh(x)
∣∣∣

2
h1 · · ·hm

⎞

⎠
1/2

. (2.2)

To the differential operator Ax generated by problem (1.1), we assign the difference operator
Ax

h
by the formula

Ax
hu

h = −
m∑

r=1

(
ar(x)uh

xr

)

xr ,j
+ σuh

x (2.3)

acting in the space of grid functions uh(x), satisfying the conditions Dhu
h(x) = 0 for all x ∈ Sh.

It is known that Ax
h

is a self-adjoint positive definite operator in L2(Ω̃h). With the help of Ax
h

we arrive at the initial boundary value problem

d2vh(t, x)
dt2

+D1/2
t vh(t, x) +Ax

hv
h(t, x) = fh(t, x), 0 ≤ t ≤ 1, x ∈ Ωh,

vh(0, x) = 0,
dvh(0, x)

dt
= 0, x ∈ Ω̃,

(2.4)

for an infinite system of ordinary fractional differential equations.
In the second step, we replace problem (2.4) by the first order of accuracy difference

scheme

uh
k+1(x) − 2uh

k(x) + uh
k−1(x)

τ2
+

1√
π

k∑

m=1

Γ(k −m + 1/2)
(k −m)!

uh
m − uh

m−1

τ1/2
+Ax

hu
h
k+1 = fh

k (x), x ∈ Ω̃h,

fh
k (x) = f(tk, x), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1, x ∈ Ω̃h,

uh
1(x) − uh

0(x)
τ

= 0, uh
0(x) = 0, x ∈ Ω̃h.

(2.5)

Here Γ(k −m + 1/2) =
∫∞

0 tk−m−1/2e−tdt.
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Theorem 2.1. Let τ and |h| =
√
h2

1 + · · · + h2
m be sufficiently small numbers. Then, the solutions of

difference scheme (2.5) satisfy the following stability estimates:

max
1≤k≤N

∥∥∥uh
k

∥∥∥
L2h

+ max
1≤k≤N

∥∥∥∥∥
uh
k
− uh

k−1

τ

∥∥∥∥∥
L2h

≤ C1 max
1≤k≤N−1

∥∥∥fh
k

∥∥∥
L2h

,

max
1≤k≤N−1

∥∥∥τ−2
(
uh
k+1 − 2uh

k + uh
k−1

)∥∥∥
L2h

+ max
1≤k≤N

∥∥∥∥
(
uh
k

)

xrxr

∥∥∥∥
L2h

≤ C2

[∥∥∥fh
1

∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥τ−1
(
fh
k
− fh

k−1

)∥∥∥
L2h

]
.

(2.6)

Here C1 and C2 do not depend on τ , h, and fh
k , 1 ≤ k ≤ N − 1.

The proof of Theorem 2.1 is based on the self-adjointness and positive definitness of
operator Ax

h
in L2h and on the following theorem on the coercivity inequality for the solution

of the elliptic difference problem in L2h.

Theorem 2.2. For the solutions of the elliptic difference problem

Ax
hu

h(x) = ωh(x), x ∈ Ωh,

Dhu
h(x) = 0, x ∈ Sh,

(2.7)

the following coercivity inequality holds [30]:

m∑

r=1

∥∥∥uh
xrxr

∥∥∥
L2h

≤ C
∥∥∥ωh

∥∥∥
L2h

. (2.8)

Finally, applying this difference scheme, the numerical methods are proposed in the
following section for solving the one-dimensional fractional hyperbolic partial differential
equation. The method is illustrated by numerical examples.

2.2. Numerical Results

For the numerical result, the mixed problem

D2
t u(t, x) +D1/2

t u(t, x) − uxx(t, x) + u(t, x) = f(t, x),

f(t, x) =

(
2 + t2 +

8t3/2

3
√
π

+ (πt)2

)
cos(πx), 0 < t, x < 1,

u(0, x) = 0, ut(0, x) = 0, 0 ≤ x ≤ 1,

ux(t, 0) = ux(t, 1) = 0, 0 ≤ t ≤ 1

(2.9)
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for solving the one-dimensional fractional hyperbolic partial differential equation is
considered. Applying difference scheme (2.5), we obtained

uk+1
n −2uk

n+u
k−1
n

τ2
+

1√
π

k∑

m=1

Γ(k−m+1/2)
(k−m)!

(
um
n −um−1

n

τ1/2

)
−
(

uk+1
n+1−2uk+1

n +uk+1
n−1

h2

)
+uk

n=ϕ
k
n,

ϕk
n = f(tk, xn), 1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

u0
n = 0, τ−1

(
u1
n − u0

n

)
= 0, 0 ≤ n ≤ M,

uk
1 − uk

0 = uk
M − uk

M−1 = 0, 0 ≤ k ≤ N.

(2.10)

We get the system of equations in the matrix form:

AUn+1 + BUn + CUn−1 = Dϕn, 1 ≤ n ≤ M − 1,

U1 = U0, UM = UM−1,
(2.11)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 a 0 · · · 0 0
0 0 0 a · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · a 0
0 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1 0 0 0 · · · 0 0
b2,1 b2,2 0 0 · · · 0 0
b3.1 b3,2 b3,3 0 · · · 0 0
b4,1 b4,2 b4,3 b4,4 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
bN,1 bN,2 bN,3 bN,4 · · · bN,N 0
bN+1,1 bN+1,2 bN+1,3 bN+1,4 · · · bN+1,N bN+1,N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

C = A,
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D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

Us =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0
s

U1
s

U2
s

U3
s

· · ·
UN−1

s

UN
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(1)

, s = n − 1, n, n + 1.

(2.12)

Here

a = − 1
h2

, b1,1 = 1, b2,1 = −1, b2,2 = 1, b3,1 =
1
τ2

− 1
τ1/2

,

b3,2 = − 2
τ2

+
1

τ1/2
, b3,3 = 1 +

1
τ2

+
2
h2

,

bk+2,1 = − 1√
π

Γ(k − 1 + 1/2)
Γ(k)τ1/2

, 2 ≤ k ≤ N − 1,

bk+2,k+1 = − 2
τ2

+
1

τ1/2
, 1 ≤ k ≤ N − 1,

bk+2,k =
1
τ2

+
1√
π

(
Γ(1 + 0.5)

Γ(2)
− Γ(0.5)

Γ(1)

)
1

τ1/2
, 2 ≤ k ≤ N − 1,

bk+2,k+2 = 1 +
1
τ2

+
2
h2

, 1 ≤ k ≤ N − 1,

bk+2,i+1 =
1√
π

(
Γ(k − i + 1/2)
Γ(k − (i − 1))

− Γ(k − (i + 1) + 1/2)
Γ(k − (i − 1) − 1)

)
1

τ1/2
, 3 ≤ k ≤ N − 1, 1 ≤ i ≤ k − 2,

ϕk
n =

(
2 + (kτ)2 +

8(kτ)3/2

3
√
π

+ (πkτ)2

)
cosπ(nh),

ϕn =

⎡
⎢⎢⎢⎢⎢⎣

ϕ0
n

ϕ1
n

ϕ2
n

· · ·
ϕN
n

⎤
⎥⎥⎥⎥⎥⎦

(N+1)×1

.

(2.13)
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So, we have the second-order difference equation with respect to n matrix coefficients. To
solve this difference equation, we have applied a procedure of modified Gauss elimination
method for difference equation with respect to k matrix coefficients. Hence, we seek a solution
of the matrix equation in the following form:

Uj = αj+1Uj+1 + βj+1, (2.14)

n = M−1, . . . , 2, 1, αj(j = 1, . . . ,M) are (N +1)× (N +1) square matrices, and βj(j = 1, . . . ,M)
are (N + 1) × 1 column matrices defined by

αn+1 = (B + Cαn)−1(−A),

βn+1 = (B + Cαn)−1(Dϕn − Cβn
)
, n = 2, 3, . . . ,M,

(2.15)

where

α1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

β1 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
· · ·
0

⎤
⎥⎥⎥⎥⎥⎦

(N+1)×1

.

(2.16)

Now, we will give the results of the numerical analysis. First, we give an estimate for
the constants C1 and C2 figuring in the stability estimates of Theorem 2.1. We have

C1 = max
f,u

(Ct1), C2 = max
f,u

(Ct2),

Ct1 =
[

max
1≤k≤N

∥∥∥uh
k

∥∥∥
L2h

+ max
1≤k≤N

∥∥∥τ−1
(
uh
k − uh

k−1

)∥∥∥
L2h

]
×
(

max
1≤k≤N−1

∥∥∥fh
k

∥∥∥
L2h

)−1

, Ct2

=

[
max

1≤k≤N−1

∥∥∥τ−2
(
uh
k+1 − 2uh

k + uh
k−1

)∥∥∥
L2h

+ max
1≤k≤N

n∑

r=1

∥∥∥∥
(
uh
k

)

xr ,xr

∥∥∥∥
L2h

]

×
(

max
2≤k≤N−1

∥∥∥τ−1
(
fh
k
− fh

k−1

)∥∥∥
L2h

+
∥∥∥fh

1

∥∥∥
L2h

)−1

.

(2.17)

The constants Ct1 and Ct2 in the case of numerical solution of initial-boundary value problem
(2.9) are computed. The constants Ct1 and Ct2 are given in Table 1 for N = 20, 40, 80, and
M = 80, respectively.
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Table 1: Stability estimates for (2.9).

M = 80 M = 80 M = 80
N = 20 N = 40 N = 80

The values of Ct1 0.2096 0.2073 0.2061
The values of Ct2 0.2075 0.1223 0.0670

Table 2: Comparison of the errors for the difference scheme.

Method M = 80 M = 80 M = 60
N = 20 N = 40 N = 60

Comparison of errors (E0) for approximate solutions 0.0071 0.0037 0.0008
Comparison of errors (E1) for approximate solutions 0.1030 0.0521 0.0491
Comparison of errors (E2) for approximate solutions 0.1224 0.0806 0.0882

Second, for the accurate comparison of the difference scheme considered, the errors
computed by

E0 = max
1≤k≤N−1

(
M−1∑

n=1

∣∣∣u(tk, xn) − uk
n

∣∣∣
2
h

)1/2

,

E1 = max
1≤k≤N−1

⎛

⎝
M−1∑

n=1

∣∣∣∣∣ut(tk, xn) −
(uk+1

n − uk−1
n )

2τ

∣∣∣∣∣

2

h

⎞

⎠
1/2

,

E2 = max
1≤k≤N−1

⎛

⎝
M−1∑

n=1

∣∣∣∣∣utt(tk, xn) −
(uk+1

n − 2uk
n + uk−1

n )
τ2

∣∣∣∣∣

2

h

⎞

⎠
1/2

(2.18)

of the numerical solutions are recorded for higher values of N = M, where u(tk, xn)
represents the exact solution and uk

n represents the numerical solution at (tk, xn). The errors
E0, E1 and E2 results are shown in Table 2 for N = 20, 40, 60 and M = 60, respectively.

The figure of the difference scheme solution of (2.9) is given by the Figure 2. The exact
solution of (2.9) is given by as follows:

u(t, x) = t2 cos(πx). (2.19)

The figure of the exact solution of (2.9) is shown by the Figure 1.
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Figure 1: The surface shows the exact solution u(t, x) for (2.9).
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Figure 2: Difference scheme solution for (2.9).

3. He’s Variational Iteration Method

In the present paper, the mixed boundary value problem for the multidimensional
fractional hyperbolic equation (1.1) is considered. The correction functional for (1.1) can be
approximately expressed as follows:

un+1(t, x) = un(t, x)

+
∫ t

0
λ

[
∂2u(s, x)

∂s2
−

m∑

r=1

(ar(x)ũxr )xr
+ D1/2

s ũ(s, x) + σũ(s, x) − f(s, x)

]
ds,

(3.1)

where λ is a general Lagrangian multiplier (see, e.g., [31]) and ũ is considered as a restricted
variation as a restricted variation (see, e.g., [32]); that is, δũ = 0, u0(t, x) is its initial
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approximation. Using the above correction functional stationary and noticing that δũ = 0,
we obtain

δun+1(t, x) = δun(t, x) +
∫ t

0
δλ

[
∂u2

n(t, x)
∂s2

]
ds,

δun+1(t, x) = δun(t, x) − ∂λ

∂s
δun(s, x)

∣∣∣∣
s=t

+ λ
∂

∂s
(δun(s, x))

∣∣∣∣
s=t

+
∫ t

0

∂2λ(t, s)
∂s2

δun(s, x)ds = 0.

(3.2)

From the above relation for any δun, we get the Euler-Lagrange equation:

∂λ2(t, s)
∂s2

= 0, (3.3)

with the following natural boundary conditions:

1 − ∂λ(t, s)
∂s

∣∣∣∣
s=t

= 0,

λ(t, s)|s=t = 0.

(3.4)

Therefore, the Lagrange multiplier can be identified as follows:

λ(t, s) = s − t. (3.5)

Substituting the identified Lagrange multiplier into (3.1), the following variational iteration
formula can be obtained:

un+1(t, x)=un(t, x)+
∫ t

0
(s−t)

[
∂2un(s, x)

∂s2
−

m∑

r=1

(
ar(x)unxr

)
xr
+D1/2

s un(s, x)+un(s, x)−f(s, x)
]
ds.

(3.6)

In this case, let an initial approximation u0(t, x) = u(0, x) + tut(0, x). Then approximate
solution takes the form u(t, x) = limn→∞un(t, x).
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3.1. Variational Iteration Solution 1

For the numerical result, the mixed problem

D2
t u(t, x) +D1/2

t u(t, x) − uxx(t, x) + u(t, x) = f(t, x),

f(t, x) =

(
2 + t2 +

8t3/2

3
√
π

+ (πt)2

)
cos(πx), 0 < t, x < 1,

u(0, x) = 0, ut(0, x) = 0, 0 ≤ x ≤ 1,

ux(t, 0) = ux(t, 1) = 0, 0 ≤ t ≤ 1

(3.7)

for solving the one-dimensional fractional hyperbolic partial differential equation is
considered.

According to formula (3.6), the iteration formula for (3.7) is given by

un+1(t, x) = un(t, x)

+
∫ t

0
(s − t)

[
∂u2

n(s, x)
∂s2

+D1/2
s un(s, x) −

∂u2
n(s, x)
∂x2

+ un(s, x) − f(s, x)

]
ds.

(3.8)

Now we start with an initial approximation

u0(t, x) = u(0, x) + tut(0, x). (3.9)

Using the above iteration formula (3.8), we can obtain the other components as

u0(t, x) = 0,

u1(t, x) =
1

420
√
π

(
128t7/2 + 35t4

√
π + 35t4π5/2 + 420t2

√
π
)

cos(πx),

u2(t, x) =
1

420
√
π

cos(πx)
(
128t7/2 + 35t4

√
π + 35t4π5/2 + 420t2

√
π
)

+ cos(πx)[ − 0.9058003666t4 − 0.1510268880t11/2

−0.1719434921t7/2 − 0.3281897218t6 − 0.01666666667t5 ]

...

(3.10)

The figure of (3.10) is given by the Figure 3.
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Variational iteration solution

Figure 3: Variational iteration method for (3.10).

Figure 4: Variational iteration method for (3.14).

3.2. Variational Iteration Solution 2

For the numerical result, the mixed problem

D2
t u
(
t, x, y

)
+D1/2

t u
(
t, x, y

) − uxx

(
t, x, y

) − uyy

(
t, x, y

)
+ u

(
t, x, y

)
= f

(
t, x, y

)
,

f
(
t, x, y

)
=

(
2 + t2 +

8t3/2

3
√
π

+ (πt)2

)
cos(πx) cos

(
πy

)
, 0 < t, x < 1, y < 1,

u
(
0, x, y

)
= 0, ut

(
0, x, y

)
= 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

ux

(
t, 0, y

)
= ux

(
t, 1, y

)
= 0, 0 ≤ t ≤ 1, 0 ≤ y ≤ 1,

uy(t, x, 0) = uy(t, x, 1) = 0, 0 ≤ t ≤ 1, 0 ≤ x ≤ 1

(3.11)

for solving the two-dimensional fractional hyperbolic partial differential equation is consid-
ered.
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Figure 5: The surface shows the exact solution u(t, x, y) for (3.11).

According to formula (3.6), the iteration formula for (3.11) is given by

un+1
(
t, x, y

)
= un

(
t, x, y

)

+
∫ t

0
(s − t)

[
∂2un

(
s, x, y

)

∂s2
+D1/2

s un

(
s, x, y

) − ∂u2
n

(
s, x, y

)

∂x2

− ∂u2
n

(
s, x, y

)

∂y2
+ un

(
s, x, y

) − f
(
s, x, y

)
]
ds;

(3.12)

we start with an initial approximation

u0
(
t, x, y

)
= u

(
0, x, y

)
+ tut

(
0, x, y

)
. (3.13)

Using the above iteration formula (3.12), we can obtain the other components as

u0
(
t, x, y

)
= 0,

u1
(
t, x, y

)
=

1
420

√
π

(
128t7/2 + 35t4

√
π + 35t4π5/2 + 420t2

√
π
)

cos(πx) cos
(
πy

)
,
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u2
(
t, x, y

)
= cos(πx) cos

(
πy

)
[

32
105

(
1
t

)5/2

t7/2 +
(

1
12

)(
1
t

)5/2

t4
√
π

+
1
12

(
1
t

)5/2

t4π5/2 +
(

1
t

)5/2

t2
√
π

]
+ cos(πx) cos

(
πy

)

×
[
−0.2195931203t11/2√π

(
1
t

)5/2

− 0.1719434921
√
πt7/2

×
(

1
t

)5/2

− 0.6261860981t6
√
π

(
1
t

)5/2

−1.728267400
√
πt4

(
1
t

)5/2

− 0.01666666667
√
πt5/2

]

...

(3.14)

The exact solution of (3.11) is given by as follows:

u
(
t, x, y

)
= t2 cos(πx) cos

(
πy

)
. (3.15)

The figure of the exact solution of (3.11) is shown by the Figure 5.
The figure of (3.14) is given by the Figure 4, and so on; in the same manner the rest of

the components of the iteration formula (3.12) can be obtained using the Maple package.
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