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The stability for the switched Cohen-Grossberg neural networks with mixed time delays and α-
inverse Hölder activation functions is investigated under the switching rule with the average
dwell time property. By applying multiple Lyapunov-Krasovskii functional approach and linear
matrix inequality (LMI) technique, a delay-dependent sufficient criterion is achieved to ensure
such switched neural networks to be globally exponentially stable in terms of LMIs, and the
exponential decay estimation is explicitly developed for the states too. Two illustrative examples
are given to demonstrate the validity of the theoretical results.

1. Introduction

In the past few decades, there has been increasing interest in different classes of neural
networks such as Hopfield, Cellular, Cohen-Grossberg, and bidirectional associative neural
networks due to their potential applications in many areas such as classification, signal and
image processing, parallel computing, associate memories, optimization, and cryptography
[1–5]. In the design of practical neural networks, the qualitative analysis of neural
network dynamics plays an important role. To solve problems of optimization, neural
control, and signal processing, neural networks have to be designed in such a way that,
for a given external input, they exhibit only one globally asymptotically/exponentially
stable equilibrium point. Hence, much effort has been made in the stability of neural
networks, and a number of sufficient conditions have been proposed to guarantee the global
asymptotic/exponential stability for neural networks with or without delays in recent years,
see, for example, [6–26] and the references therein.
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Recently, by combing the theories of the switched systems and neural networks,
several classes of mathematics models of switched neural networks have been established. As
a special class of switched systems, switched neural networks, whose individual subsystems
are a set of neural networks, have found applications in fields of high speed signal processing,
artificial intelligence, and gene selection in a DNA microarray analysis [27–30].

Stability issues of switched neural networks have received great attention of
researchers so far [31–39]. In [31], based on the Lyapunov-Krasovskii method and LMI
approach, some sufficient conditions were derived for global robust exponential stability of
a class of switched Hopfield neural networks with time-varying delay under uncertainty. In
[32], by combining Cohen-Grossberg neural networks with an arbitrary switching rule, the
mathematical model of a class of switched Cohen-Grossberg neural networks with mixed
time varying delays was established, and the robust stability for such switched Cohen-
Grossberg neural networks was analyzed. In [33], by employing nonlinear measure and
LMI techniques, some new sufficient conditions were obtained to ensure global robust
asymptotical stability and global robust exponential stability of the unique equilibrium for
a class of switched recurrent neural networks with time-varying delay. In [34], authors
investigated a large class of switched recurrent neural networks with time-varying structured
uncertainties and time-varying delay, some delay-dependent robust periodicity criteria
guaranteeing the existence, uniqueness, and global asymptotic stability of periodic solution
for all admissible parametric uncertainties were devised by employing free weighting
matrices and LMIs. In [35], a new class of switched interval neural networks with discrete
and distributed time-varying delays of neural type was developed, and a delay-dependent
sufficient criterion was also obtained in terms of LMIs which guarantee the global robust
exponential stability for the proposed switched interval neural networks. It should be
pointed out that results in [31–35] focused on the stability of switched neural networks
under arbitrary switching rule by using common Lyapunov function method. However,
common Lyapunov function method requires all the subsystems of the switched system to
share a positive definite radially unbounded common Lyapunov function. Generally, this
requirement is difficult to achieve.

In past few years, much attention has been paid to making use of the dwell time
approach to deal with the analysis and synthesis of switched neural networks [36–39]. It
should be pointed out that the average dwell time method is regarded as an important and
attractive method to find a suitable switching signal to guarantee switched system stability
or improve other performance and has been widely applied to investigate the analysis and
synthesis for switched system with or without time-delay, see for example, [40–44]. Very
recently, in [36], based on multiple Lyapunov functions method and LMI techniques, the
authors presented some sufficient conditions in terms of LMIs which guarantee the robust
exponential stability for uncertain switched Cohen-Grossberg neural networks with interval
time-varying delay and distributed time-varying delay under the switching rule with the
average dwell time property. In [37], by using the average dwell time method, the delay-
dependent sufficient conditions were derived towards the robust exponential stability for a
class of discrete-time switchedHopfield neural networkswith time delay. In [38], by applying
a new Lyapunov-Krasovskii functional and the average dwell time method, a delay-range-
dependent exponential stability criteria and decay estimation are presented in terms of LMIs
for switched Hopfield neural networks.

It should be noted that, all the results reported in [31–39] are concerned with switched
neural networks with Lipschitz activation functions. To the best of our knowledge, very
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little attention has been paid to the problem of delay-dependent stability for switched neural
networks without Lipschitz activation functions, which motivates the work of this paper.

In this paper, our aim is to study the delay-dependent exponential stability problem
for a class of switched Cohen-Grossberg neural networks with mixed time delays and α-
inverse Hölder activation functions. Here, it should be pointed out that α-inverse Hölder
activation functions are a class of non-Lipschitz functions. By applying Brouwer degree
properties, LMI technique and constructing a novel Lyapunov-Krasovskii functional, the
existence, uniqueness and global exponential stability of equilibrium point are proved for
Cohen-Grossberg neural networks with mixed time delays and α-inverse Hölder activation
functions. By means of the multiple Lyapunov-Krasovskii functional and the average dwell
time approach, a delay-dependent sufficient condition in terms of LMIs is presented to ensure
to the considered switched neural networks to be globally exponentially stable, and a explicit
expression for the exponential decay estimation is also obtained for the states. Two illustrative
examples are given to demonstrate the validity of the theoretical results.

The rest of this paper is organized as follows. In Section 2, the model formulation and
some preliminaries are given. In Section 3, the existence, uniqueness, and global exponential
stability of equilibrium point are proved for Cohen-Grossberg neural networks with mixed
time delays and α-inverse Hölder activation functions. In Section 4, the global exponential
stability criterion and state decay estimation are presented for the switched Cohen-Grossberg
neural networks with mixed time delays and α-inverse Hölder activation functions. In
Section 5, two numerical examples are presented to demonstrate the validity of the proposed
results. Some conclusions are made in Section 6.

Notations. Throughout this paper, R denotes the set of real numbers, Rn denotes the n-
dimensional Euclidean space, Rm×n denotes the set of allm × n real matrices. For any matrix
A, AT denotes the transpose of A. A−1 denotes the inverse of A. If A is a real symmetric
matrix, A > 0 (A < 0)means that A is positive definite (negative definite). Given the column
vectors x = (x1, . . . , xn)

T , y = (y1, . . . , yn)
T ∈ Rn, xTy =

∑n
i=1 xiyi. ‖x‖ = (

∑n
i=1 x

2
i )

1/2. ẋ(t)
denotes the derivative of x(t), ∗ represents the symmetric form of matrix.

2. Neural Network Model and Preliminaries

The Cohen-Grossberg neural networks with mixed time delays can be described by the
following differential equation system

ẋ(t) = α(x(t))

[

−β(x(t)) +W0g(x(t)) +W1g(x(t − τ)) +W2

∫ t

t−τ
g(x(s))ds + J

]

, (2.1)

where x(t) = (x1(t), . . . , xn(t))
T is the vector of neuron states at time t; α(x(t)) =

diag(α1(x1(t)), . . . , αn(xn(t))) represents the amplification function; β(x(t)) =
diag(β1(x1(t)), . . . , βn(xn(t))) is the behaved function; g(x(t)) = (g1(x1(t)), . . . , gn(xn(t)))

T

is called the neuron activation function; Wi, i = 0, 1, 2, are the connection weight matrices;
τ > 0 denotes the discrete and distributed time delay; J = (J1, . . . , Jn)

T denotes the external
input. The initial value associated with (2.1) is assumed to be x(s) = ϕ(s), and ϕ(s) is a
continuous function on [−τ, 0].

In the following, some definitions and lemmas, which play important roles in the proof
of our theorems below, are introduced.
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Definition 2.1. The equilibrium point x∗ of the neural networks (2.1) is said to be globally
exponentially stable, if there exist scalars η > 0, T > 0, and δ > 0,such that

‖x(t) − x∗‖ ≤ ηe−δt, t ≥ T, (2.2)

where x(t) is the solution of the system (2.1)with the initial value x(s) = ϕ(s), and s ∈ [−τ, 0],
δ is called the exponential convergence rate.

Definition 2.2 (see [23, 24]). A continuous function G : R → R,is said to be an α-inverse
Hölder function, if

(i) G is a monotonic nondecreasing function,

(ii) for any ρ ∈ R, there exist constants qρ > 0 and rρ > 0 which are correlated with ρ,
satisfying

∣
∣G(θ) − G

(
ρ
)∣
∣ ≥ qρ

∣
∣θ − ρ

∣
∣α, ∀

∣
∣θ − ρ

∣
∣ ≤ rρ, (2.3)

where α > 0 is a constant.

The class of α-inverse Hölder functions is denoted by IH(α). There are a great number
of functions which belong to IH(α). For example, G(θ) = arctan θ, g(θ) = θ3 + θ ∈ IH(1),
and G(θ) = θ3 ∈ IH(3).

Remark 2.3. If a continuous function G : R → R satisfies that

∣
∣G(θ) − G

(
ρ
)∣
∣ ≤ 


∣
∣θ − ρ

∣
∣, ∀θ, ρ ∈ R, (2.4)

where 
 > 0 is a constant, then G is said to be a Lipschitz-continuous function. When α = 1
and qρ is independent on ρ, 1-inverse Hölder functions are called inverse Lipschitz functions.
It is easy to see that α-inverse Hölder functions are a class of non-Lipschitz functions.

Let functionF : Rn → Rn be locally Lipschitz continuous. According to Rademacher’s
theorem [45], F is differentiable almost everywhere. Let DF denote the set of those points
where F is differentiable, then, Ḟ(x) is the Jacobian of F at x ∈ DF and the set DF is dense in
Rn. The generalized Jacobian of a locally Lipschitz function is defined as follows.

Definition 2.4. For any x ∈ Rn, the generalized Jacobian ∂F(x) of a locally Lipschitz
continuous function F : Rn → Rn is a set of matrices defined by

∂F(x) = co
{

W | there exists a sequence
{
xk

}
⊂ DF with lim

xk →x
Ḟ
(
xk

)
= W

}

, (2.5)

where co(·) denotes the convex hull of a set.

The generalized Jacobian is a natural generalization of the Jacobian for continuously
differentiable functions, at those points x, where F is continuously differentiable, ∂F(x)
reduces to a single matrix which is Jacobian Ḟ(x) of F.
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Definition 2.5. For any switching signal σ(t) and any finite constants T1, T2 satisfying T2 >
T1 ≥ 0, let Nσ(T1, T2) denote the switching times on the time interval (T1, T2). If Nσ(T1, T2) ≤
N0 + (T2 − T1)/Ta holds for Ta > 0, N0 ≥ 0, then Ta is said to be the average dwell time.

Lemma 2.6 (see [23, 24]). If G(θ) ∈ IH(α), then for any ρ0 ∈ R, one has

∫+∞

ρ0

[
G(θ) − G

(
ρ0

)]
dθ =

∫−∞

ρ0

[
G(θ) − G

(
ρ0

)]
dθ = +∞. (2.6)

Lemma 2.7 (see [23, 24]). If G(θ) ∈ IH(α) and G(0) = 0, then there exist constants q0 > 0 and
r0 > 0, such that

|G(θ)| ≥ q0|θ|α, ∀|θ| ≤ r0. (2.7)

Moreover,

|G(θ)| ≥ q0r
α
0 , ∀|θ| ≥ r0. (2.8)

Lemma 2.8 (see [25]). Let F : Rn → Rn be locally Lipschitz continuous. For any given x, y ∈ Rn,
there exists an elementW in the union ∪z∈[x,y]∂F(z) such that

F
(
y
)
− F(x) = W

(
y − x

)
, (2.9)

where [x, y] denotes the segment connecting x and y.

Let Ω be a nonempty, bounded, and open subset of Rn. The closure and boundary of
Ω are denoted by Ω and ∂Ω, respectively.

Lemma 2.9 (see [46]). (1) Let H : [0, 1] × Ω → Rn be a continuous mapping. If
p ∈ H(λ, ∂Ω) for all λ ∈ [0, 1], then Brouwer degree deg(H(λ, ·),Ω, p) is constant (∀λ ∈ [0, 1]).
In this case, one has deg(H(0, ·),Ω, p) = deg(H(1, ·),Ω, p).

(2) LetH : Ω → Rn be a continuous mapping. If deg(H,Ω, p)/= 0, then the equationH(x) = p
has at least a solution in Ω.

Lemma 2.10. Let x, y ∈ Rn and G > 0, then

2xTy ≤ xTGx + yTG−1y. (2.10)

Lemma 2.11 (Schur complement). Given constant symmetric matrices Σ1,Σ2,Σ3 where Σ1 = ΣT
1

and 0 < Σ2 = ΣT
2 , then Σ1 + ΣT

3Σ
−1
2 Σ3 < 0 if and only if

[
Σ1 ΣT

3
Σ3 −Σ2

]

< 0, or
[
−Σ2 ΣT

3
Σ3 Σ1

]

< 0. (2.11)
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Lemma 2.12 (Jensen’s inequality). For any constant matrix Ω ∈ Rn×n, and Ω = ΩT >
0, scalar γ > 0, vector function ω : [0, γ] → Rn, such that the integrations concerned are well
defined, then

1
γ

(∫ γ

0
ω(s)ds

)T

Ω
(∫ γ

0
ω(s)ds

)

≤
∫ γ

0
ω(s)TΩω(s)ds. (2.12)

To give our main results in the next sections, we need to present the following
assumptions.

(H1) αi(s) is continuous, and 0 < αi < αi(s) < αi for all s ∈ R, i = 1, 2, . . . , n.

(H2) βi(s) is locally Lipschitz continuous, and there exists a constant βi > 0 such that
β̇i(s) ≥ βi for all s ∈ R at which βi(s) is differentiable, i = 1, 2, . . . , n.

(H3) gi(s) ∈ IH(α), i = 1, 2, . . . , n.

3. Exponential Stability of the Cohen-Grossberg Neural Network

In this section, the Cohen-Grossberg neural network (2.1) is considered the main results on
the existence and stability of equilibrium point of the neural network (2.1) will be presented
in the following theorem.

Theorem 3.1. Under the assumptions (H1)−−(H3), if there exist two positive definite matrices S, T ,
two positive definite diagonal matricesM, P and a scalar γ > 0 such that

⎡

⎢
⎢
⎢
⎢
⎣

γPA−1 − PB − BP PW0 + γMA−1 −MB PW1 PW2

WT
0 P + γA−1M − BM MW0 +WT

0 M + S + τT MW1 MW2

WT
1 P WT

1 M −e−γτS 0

WT
2 P WT

2 M 0 − e
−γτ

τ
T

⎤

⎥
⎥
⎥
⎥
⎦

< 0 (3.1)

is satisfied, where A = diag(α1, α2, . . . , αn), B = diag(β1, β2, . . . , βn), M = diag(m1, m2, . . . , mn),
P = diag(p1, p2, . . . , pn), then the Cohen-Grossberg neural network (2.1) has one unique equilibrium
point which is globally exponentially stable.

Proof. We should prove this theorem in three steps.

Step 1. In this step, we will prove the existence of the equilibrium point.
Let H(x) = β(x) − (W0 + W1 + τW2)g(x) − J . By the assumption (H1), x∗ ∈ Rn is an

equilibrium point of the system (2.1) if and only if H(x∗) = 0. Rewrite H(x) as

H(x) = β̃(x) − (W0 +W1 + τW2)g̃(x) + H(0), (3.2)

where β̃(x) = β(x) − β(0), g̃(x) = g(x) − g(0). Obviously, g̃i(0) = 0, g̃i ∈ IH(α) and xig̃i(xi) >
0 (xi /= 0). By Lemma 2.8 and the assumption (H2), it can follow that β̃(x) = β(x) − β(0) =
B̃x, B̃ ∈ ∪z∈[0,x]∂β(z), where B̃ = diag(β̃1, β̃2, . . . , β̃n)with β̃i ≥ βi, i = 1, 2, . . . , n.
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Let ΩR = {x ∈ Rn : ‖x‖ < R}, R > 0. Define the mapping H : [0, 1] ×Ω → Rn as

H(λ, x) = B̃x − λ(W0 +W1 + τW2)g̃(x) + λH(0), (3.3)

where ΩR = {x ∈ Rn : ‖x‖ ≤ R}.
From (3.1) and the definition of negative definite matrix, we can obtain

⎡

⎢
⎢
⎣

MW0 +WT
0 M + S + τT MW1 MW2

WT
1 M −e−γτS 0

WT
2 M 0 −e

−γτ

τ
T

⎤

⎥
⎥
⎦ < 0. (3.4)

By Lemma 2.11, (3.4) is equivalent to

MW0 +WT
0 M + S + eγτMW1S

−1WT
1 M + τeγτMW2T

−1WT
2 M + τT < 0. (3.5)

By means of Lemma 2.10, we have

g̃(x)TMW1g̃(x) ≤
1
2

[
g̃(x)TMW1S

−1WT
1 Mg̃(x) + g̃(x)TSg̃(x)

]
,

g̃(x)TMW2g̃(x) ≤
1
2

[
g̃(x)TMW2T

−1WT
2 Mg̃(x) + g̃(x)TTg̃(x)

]
.

(3.6)

By using (3.5) and (3.6), we have

g̃(x)TMH(λ, x)

= g̃(x)TMB̃x + λg̃(x)TMH(0) − λg̃(x)TM(W0 +W1 + τW2)g̃(x)

= g̃(x)TM
(
B̃x + λH(0)

)
− λg̃(x)TM(W0 +W1 + τW2)g̃(x)

≥ g̃(x)TM
(
B̃x + λH(0)

)
− λ

2

[
g̃(x)T

(
MW0+WT

0 M+S +MW1S
−1WT

1 M

+τMW2T
−1WT

2 M+τT
)
g̃(x)

]

≥ g̃(x)TM
(
B̃x + λH(0)

)

≥
n∑

i=1

[
miβ̃i

∣
∣g̃i(xi)

∣
∣|xi| −

∣
∣g̃i(xi)

∣
∣|(MH(0))i|

]

=
n∑

i=1

miβ̃i
∣
∣g̃i(xi)

∣
∣

[

|xi| −
|(MH(0))i|

miβ̃i

]

,

(3.7)

where (MH(0))i (i = 1, 2, . . . , n) denotes the ith element of vector (MH(0)).
By virtue of Lemma 2.7, there exist constants qi0 > 0 and ri0 > 0, i = 1, 2, . . . , n, such

that

∣
∣g̃i(xi)

∣
∣ ≥ qi0r

α
i0
, ∀|xi| ≥ ri0 , i = 1, 2, . . . , n. (3.8)
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Let a = max1≤i≤n(|(MH(0))i|/miβ̃i), Nk = {n1, . . . , nk} ⊂ {1, 2, . . . , n}, forall k < n.
Define ΩNk = {x : |xi| ≤ a, i ∈ Nk, x ∈ Rk}, g̃Nk(x) =

∑
i∈Nk

miβ̃i|g̃i(xi)|[|xi| − a]. Noting that
ΩNk is a compact subset of Rk, and g̃Nk is continuous onΩNk , it follows that g̃Nk can reach its
the minimum minx∈ΩNk

g̃Nk(x) on ΩNk .

Let r0 = max1≤i≤nri0 , l = min1≤i≤n{miβ̃iqi0r
α
i0
}, MNk = minx∈ΩNk

g̃Nk(x), and M =
min{MNk : Nk ⊂ {1, 2, . . . , n}}. Set R > max{

√
n(a − M/l),

√
nr0} and x ∈ ∂ΩR, then there

exist two index sets N and N, such that

|xi| ≤ a, i ∈ N, |xi| > a, i ∈ N, (3.9)

where N
⋃
N = {1, 2, . . . , n}. Furthermore, there exists an index i0 in N such that

∣
∣
∣xi0

∣
∣
∣ ≥

R√
n
≥ max{a, r0}. (3.10)

By (3.8) and (3.10), for any x ∈ ∂ΩR and λ ∈ [0, 1],

(
g̃(x)

)T
MH(λ, x) ≥

∑

i∈N
miβ̃i

∣
∣g̃i(xi)

∣
∣[|xi| − a] +

∑

i∈N

miβ̃i
∣
∣g̃i(xi)

∣
∣[|xi| − a]

≥ M +mi0
β̃i0

∣
∣
∣g̃i0

(
xi0

)∣
∣
∣
[∣
∣
∣xi0

∣
∣
∣ − a

]

≥ M +mi0
β̃i0qi0r

α

i0

[∣
∣
∣xi0

∣
∣
∣ − a

]

≥ mi0
β̃i0qi0r

α

i0

[∣
∣
∣xi0

∣
∣
∣ − a +

M
l

]

≥ mi0
β̃i0qi0r

α

i0

[ R√
n
− a +

M
l

]

> 0.

(3.11)

Hence, this implies that H(λ, x)/= 0 for any x ∈ ∂ΩR and λ ∈ [0, 1]. By applying Lemma 2.9
(1), it follows

deg(H(0, x),ΩR, 0) = deg(H(1, x),ΩR, 0), (3.12)

that is, deg(H(x),ΩR, 0) = deg(B̃x,ΩR, 0) = sgn|B̃|/= 0, where |B̃| is the determinant of B̃. By
Lemma 2.9 (2), H(x) = 0 has at least one solution in ΩR, that is, the system (2.1) has at least
an equilibrium point.

Step 2. In this step, the proof of the uniqueness of the equilibrium point by the method of
contradiction will be given.

Assume that x∗
1 and x∗

2 are two different equilibrium points of the system (2.1), then

β
(
x∗
1

)
− β

(
x∗
2
)
= (W0 +W1 + τW2)

[
g
(
x∗
1

)
− g

(
x∗
2
)]
. (3.13)
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From Lemma 2.8, it can follow that

β
(
x∗
1

)
− β

(
x∗
2
)
= B̂

(
x∗
1 − x∗

2
)
, (3.14)

where B̂ ∈ ∪z∈[x∗
1,x

∗
2]∂β(z), B̂ = diag(β̂1, β̂2, . . . , β̂n)with β̂i ≥ βi, i = 1, 2, . . . , n.

By means of (3.5), (3.6), (3.13), and (3.14), it follows that

0 <
[
g
(
x∗
1

)
− g

(
x∗
2
)]T

MB̂
(
x∗
1 − x∗

2
)

=
[
g
(
x∗
1

)
− g

(
x∗
2
)]T

M(W0 +W1 + τW2)
[
g
(
x∗
1

)
− g

(
x∗
2
)]

≤ 1
2
[
g
(
x∗
1

)
− g

(
x∗
2
)]T

×
(
MW0 +WT

0 M + S +MW1S
−1WT

1 M + τMW2T
−1WT

2 M + τT
)[

g
(
x∗
1

)
− g

(
x∗
2
)]

< 0.

(3.15)

This is a contradiction. Hence, x∗
1 = x∗

2. This shows that the equilibrium point of the system
(2.1) is unique.

Step 3. In this step, we will prove that the system (2.1) is globally exponentially stable.
Let F(x, t) = α(x)[−β(x) + W0g(x) + W1g(xτ) + W2

∫ t
t−τ g(x(s))ds + J], where xτ(t) =

x(t − τ). Since gi ∈ IH(α), α(x), β(x) are continuous functions, F(x, t) are continuous and
locally bounded. Hence, we can obtain the existence of the local solution of the system (2.1)
with initial value x(t) = ϕ(t), t ∈ [−τ, 0] on [0, t∗(ϕ)), where t∗(ϕ) ∈ (0,+∞) or t∗(ϕ) = +∞,
and [0, t∗(ϕ)) is the maximal right-side existence interval of the local solution.

Let x∗ be the unique equilibrium point of the system (2.1). Make a transformation
u(t) = x(t) − x∗, then system (2.1) is transformed into

u̇(t) = α(u(t))

[

−β(u(t)) +W0g(u(t)) +W1g(u(t − τ)) +W2

∫ t

t−τ
g(u(s))ds

]

, (3.16)

where

α(u(t)) = diag(α1(u1(t)), α2(u2(t)), . . . , αn(un(t))),

β(u(t)) = (β1(u1(t)), β2(u2(t)), . . . , βn(un(t)))
T
,

g(u(t)) = (g1(u1(t)), g2(u2(t)), . . . , gn(un(t)))
T ,

αi(ui(t)) = αi(ui(t) + x∗
i ),

βi(ui(t)) = βi(ui(t) + x∗
i ) − βi(x∗

i ),

gi(ui(t)) = gi(ui(t) + x∗
i ) − gi(x∗

i ), i = 1, 2, . . . , n.

Similarly to (3.14), from Lemma 2.8, we have

β(u) = β(u + x∗) − β(x∗) = Bu, (3.17)

where B ∈ ∪z∈[x∗,u+x∗]∂β(z), B = diag(β1, β2, . . . , βn) with βi ≥ βi, i = 1, 2, . . . , n.
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Consider the following Lyapunov-Krasovskii functional candidate

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (3.18)

where

V1(t) = 2eγt
n∑

i=1

pi

∫ui(t)

0

s

αi(s)
ds,

V2(t) = 2eγt
n∑

i=1

mi

∫ui(t)

0

gi(s)
αi(s)

ds,

V3(t) =
∫ t

t−τ
g(u(θ))TSg(u(θ))eγθdθ,

V4(t) =
∫0

−τ

∫ t

t+θ
eγsg(u(s))TTg(u(s))dsdθ.

(3.19)

Calculating the time derivative of V (t) along the trajectories of the system (3.16) on [0, t∗(ϕ))
with (3.17), by the assumption (H1) and Lemma 2.12, we have

V̇1(t) ≤ γeγtu(t)TPA−1u(t) + 2eγtu(t)TP

×
[

−Bu(t) +W0g(u(t)) +W1g(u(t − τ(t))) +W2

∫ t

t−τ(t)
g(u(s))ds

]

≤ eγtu(t)T
(
γPA−1 − 2PB

)
u(t) + 2eγtu(t)TPW0g(u(t))

+ 2eγtu(t)TPW1g(u(t − τ)) + 2eγtu(t)TPW2

∫ t

t−τ
g(u(s))ds,

V̇2(t) ≤ 2γeγtu(t)TMA−1g(u(t)) + 2eγtg(u(t))TM

×
[

−Bu(t) +W0g(u(t)) +W1g(u(t − τ(t))) +W2

∫ t

t−τ(t)
g(u(s))ds

]

≤ 2eγtu(t)T
(
γMA−1 −MB

)
g(u(t)) + 2eγtg(u(t))TMW0g(u(t))

+ 2eγtg(u(t))TMW1g(u(t − τ)) + 2eγtg(u(t))TMW2

∫ t

t−τ
g(u(s))ds,
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V̇3(t) = eγtg(u(t))TSg(u(t)) − eγte−γτg(u(t − τ))TSg(u(t − τ)),

V̇4(t) ≤ τeγtg(u(t))TTg(u(t)) −
∫ t

t−τ
eγsg(u(s))TTg(u(s))ds

≤ τeγtg(u(t))TTg(u(t)) − eγ(t−τ)
∫ t

t−τ
g(u(s))TTg(u(s))ds

≤ τeγtg(u(t))TTg(u(t)) − eγ(t−τ)
1
τ

(∫ t

t−τ
g(u(s))Tds

)

T

(∫ t

t−τ
g(u(s))ds

)

.

(3.20)

Let ξ(t) = [u(t)T , g(u(t))T , g(u(t−τ))T , (
∫ t
t−τ g(u(s))ds)

T ]T . By (3.17) and (3.20), we can obtain

V̇ (t) ≤ eγτξT (t)

⎡

⎢
⎢
⎢
⎢
⎣

γPA−1 − PB − BP PW0 + γMA−1 −MB PW1 PW2

WT
0 P + γA−1M − BM MW0 +WT

0 M + S + τT MW1 MW2

WT
1 P WT

1 M −e−γτS 0

WT
2 P WT

2 M 0 −e
−γτ

τ
T

⎤

⎥
⎥
⎥
⎥
⎦
ξ(t)

< 0, for any ξT (t)/= 0.
(3.21)

This implies V (t) ≤ V (0), t ∈ [0, t∗(ϕ)). Furthermore, from (3.18), it follows that

2
n∑

i=1

mi

αi

∫ui(t)

0
gi(s)ds ≤ 2

n∑

i=1

mi

∫ui(t)

0

gi(s)
αi(s)

ds ≤ V (0)e−γt ≤ V (0). (3.22)

By (3.22) and Lemma 2.6, it is easy to derive that ui(t), i = 1, 2, . . . , n, are bounded on [0, t∗).
By virtue of the continuous theorem [47], t∗(ϕ) = +∞.

Since gi(s) ∈ IH(α), gi(0) = 0, by Lemma 2.7, there exist constants qi0 > 0 and ri0 > 0,
such that

∣
∣gi(s)

∣
∣ ≥ qi0 |s|

α, ∀|s| ≤ ri0 , i = 1, 2, . . . , n. (3.23)

Moreover, from (3.22), we can get that

lim
t→+∞

ui(t) = 0, i = 1, 2, . . . , n. (3.24)
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Thus there exists a scalar T > 0, when t ≥ T, ui(t) ∈ [−r0, r0], where r0 = min1≤i≤nri0 . Let
m = min1≤i≤nmi, α = max1≤i≤nαi, and q0 = min1≤i≤nqi0 . From (3.22) and (3.23), we have

V (0)
2

e−γt ≥
n∑

i=1

mi

αi

∫ui(t)

0
gi(s)ds

≥
n∑

i=1

mi

αi

∫ |ui(t)|

0
qi0 |s|

αds

≥
n∑

i=1

mi

αi

∫ |ui(t)|

0
q0|s|

αds

≥
mq0

α(α + 1)

{

max
1≤i≤n

|ui(t)|
}α+1

, t ≥ T.

(3.25)

That is, when t ≥ T,

max
1≤i≤n

|ui(t)| ≤
[
α(α + 1)V (0)

2mq0

]1/(1+α)

e−(γ/(1+α))t, (3.26)

where

V (0) = 2
n∑

i=1

pi

∫ϕi(0)−x∗
i

0

s

αi(s)
ds + 2

n∑

i=1

mi

∫ϕi(0)−x∗
i

0

gi(s)
αi(s)

ds

+
∫0

−τ
g
(
ϕ(θ) − x∗)TSg

(
ϕ(θ) − x∗)eγθdθ

+
∫0

−τ

∫0

θ

eγsg
(
ϕ(s) − x∗)TTg

(
ϕ(s) − x∗)dsdθ.

(3.27)

Let η =
√
n[α(α + 1)V (0)/2mq0]

1/(1+α). By (3.26), ‖x(t) − x∗‖ ≤ ηe−(γ/(1+α))t, for all t ≥ T. This
shows that the equilibrium point of the system (2.1) is globally exponentially stable. This
completes the proof of Theorem 3.1.

4. Stability of the Switched Cohen-Grossberg Neural Network

The switched Cohen-Grossberg neural networks with mixed time delays consist of a set of
Cohen-Grossberg neural networks with mixed time delays and a switching rule. Each of
the Cohen-Grossberg neural networks with mixed time delays is regarded as an individual
subsystem. The operation mode of the switched neural networks is determined by the
switching rule. In the following, we will develop the switched Cohen-Grossberg neural
networks model with mixed time delays.
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Figure 1: The convergence of the state x1(t) of the network in Example 5.1.
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Figure 2: The convergence of the state x2(t) of the network in Example 5.1.

Suppose that x∗ is the unique equilibrium point of the system (2.1). Similar to (3.16),
make a transformation u(t) = x(t) − x∗, then system (2.1) is transformed into

u̇(t) = α(u(t))

[

−β(u(t)) +W0g(u(t)) +W1g(u(t − τ)) +W2

∫ t

t−τ
g(u(s))ds

]

. (4.1)
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Figure 3: The convergence of the state x1(t) of the network in Example 5.2.

The switched Cohen-Grossberg neural networks with mixed time delays can be
described as

u̇(t) = α(u(t))

[

−β(u(t)) +W0σ(t)g(u(t)) +W1σ(t)g(u(t − τ)) +W2σ(t)

∫ t

t−τ
g(u(s))ds

]

, (4.2)

where σ(t) : [0,+∞) → Γ = {1, 2, . . . ,N} is the switching signal, which
is a piecewise constant function of time. This means that the matrices
(W0σ(t) ,W1σ(t) ,W2σ(t) , Jσ(t)) are allowed to take values, at an arbitrary time, in the finite
set {(W01 ,W11 ,W21 , J1), (W02 ,W12 ,W22 , J2), . . . , (W0N ,W1N ,W2N , JN)}. The initial value
associated with (4.3) is assumed to be u(s) = ϕ̃(s), ϕ̃(s) is a continuous function on [−τ, 0].

In this paper, it is assumed that the switching rule σ is not known a priori and its
instantaneous value is available in real time. Corresponding to the switching signal σ(t), we
have the switching sequence {xt0 ; (i0, t0), . . . , (ik, tk), . . . , | ik ∈ Γ, k = 0, 1, . . .}, which means
that the ikth subsystem is activated when t ∈ [tk, tk+1).

In the following, we will consider the switched Cohen-Grossberg neural networks
with mixed time delays in (4.2). The average dwell time approach will be used to derive
the exponential stability of the network.

Theorem 4.1. Under the assumptions (H1) − −(H3), if there exist positive definite matrices Si, Ti,
positive definite diagonal matricesMi, Pi and scalars γ > 0, μ ≥ 1 such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

γPA−1 − PiBi − BiPi PiW0i + γMiA
−1 −MiBi PiW1i PiW2i

WT
0i
Pi + γA−1Mi − BiMi MiW0i +WT

0i
Mi + Si + τTi MiW1i MiW2i

WT
1i
Pi WT

1i
Mi −e−γτSi 0

WT
2i
Pi WT

2i
Mi 0 − e

−γτ

τ
Ti

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (4.3)
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Pi ≤ μPj, Mi ≤ μMj, Si ≤ μSj, Ti ≤ μTj , ∀i, j ∈ Γ, (4.4)

whereMi = diag(mi1, mi2, . . . , min), Pi = diag(pi1, pi2, . . . , pin), then the switched Cohen-Grossberg
neural network (4.2) is globally exponentially stable for any switching signal with average dwell time
satisfying

Ta > T ∗
a = (1 + α)

lnμ
γ

. (4.5)

Moreover, an estimate of the state decay for the system (4.2) is given by

‖u(t)‖ ≤
√
n

{

e−γt0
α(α + 1)
2mq0

}1/(1+α)

max
i∈Γ

Vi(t0)e−(γ/(1+α)−(lnμ)/Ta)(t−t0), t > t0. (4.6)

Proof. Consider the multiple Lyapunov-Krasovskii functional candidate

Vσ(t)(t) = V1σ(t) (t) + V2σ(t) (t) + V3σ(t) (t) + V4σ(t) (t), (4.7)

where

V1σ(t) (t) = 2eγt
n∑

j=1

pσ(t)j

∫uj (t)

0

s

αj(s)
ds,

V2σ(t) (t) = 2eγt
n∑

j=1

mσ(t)j

∫uj (t)

0

gj(s)

αj(s)
ds,

V3σ(t) (t) =
∫ t

t−τ
g(u(θ))TSσ(t)g(u(θ))eγθdθ,

V4σ(t) (t) =
∫0

−τ

∫ t

t+θ
eγsg(u(s))TTσ(t)g(u(s))dsdθ.

(4.8)

When t ∈ [tk, tk+1), the ikth subsystem is activated. Arguing as in the proof Theorem 3.1, we
can get V̇σ(t)(t) ≤ 0. Thus, Vσ(t)(t) ≤ Vσ(tk)(tk). In the light of (4.4) and (4.7), it follows that
Vσ(tk)(tk) ≤ μVσ(t−

k
)(t−k). Therefore, when t ∈ [tk, tk+1), we have

Vσ(t)(t) ≤ Vσ(tk)(tk) ≤ μVσ(t−
k
)
(
t−k
)

≤ μVσ(tk−1)(tk−1) ≤ μ2Vσ(t−
k−1)

(
t−k−1

)

≤ μ2Vσ(tk−2)(tk−2) ≤ · · · ≤ μkVσ(t0)(t0).

(4.9)
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By (4.9); there exist constants T > t0, when t ≥ T, we have

Vσ(t0)(t0)
2

μke−γt ≥
n∑

j=1

mσ(t)j

αj

∫uj (t)

0
gi(s)ds

≥
n∑

j=1

mσ(t)j

αj

∫ |ui(t)|

0
qi0 |s|

αds

≥
n∑

j=1

mσ(t)j

αj

∫ |ui(t)|

0
q0|s|

αds

≥
mq0

α(α + 1)

{

max
1≤i≤n

|ui(t)|
}α+1

,

(4.10)

where m = minj∈Γ,1≤i≤nmji, α = max1≤i≤nαi and q0 = min1≤i≤nqi0 . Hence,

max
1≤i≤n

|ui(t)| ≤
{
α(α + 1)Vσ(t0)(t0)

2mq0

}1/(1+α)

μke−(γ/(1+α))t. (4.11)

This implies that

‖u(t)‖ ≤
√
n

{
α(α + 1)Vσ(t0)(t0)

2mq0

}1/(1+α)

μke−(γ/(1+α))t. (4.12)

Due to k ≤ (t − t0)/Ta and Ta > T ∗
a = (1 + α)((lnμ)/γ), then we can get

‖u(t)‖ ≤
√
n

{

e−γt0
α(α + 1)
2mq0

}1/(1+α)

max
i∈Γ

Vi(t0)μke−(γ/(1+α))(t−t0)

=
√
n

{

e−γt0
α(α + 1)
2mq0

}1/(1+α)

max
i∈Γ

Vi(t0)ek lnμe−(γ/(1+α))(t−t0)

≤
√
n

{

e−γt0
α(α + 1)
2mq0

}1/(1+α)

max
i∈Γ

Vi(t0)e−(γ/(1+α)−(lnμ)/Ta)(t−t0), t > t0.

(4.13)

This implies that the switched Cohen-Grossberg neural network (4.2) is globally exponen-
tially stable. The proof is completed.

Remark 4.2. It is clear that, according to Theorem 4.1, the delay-dependent stability of the
considered neural networks is dependent on μ for given γ . If μ = 1, we have from (4.5) that
the switching signal can be arbitrary, and (4.4) reduces to Pi ≤ Pj, Mi ≤ Mj, Si ≤ Sj, Ti ≤
Tj , for all i, j ∈ Γ, which implies Pi = Pj, Mi = Mj, Si = Sj, Ti = Tj , for all i, j ∈ Γ, which
means that it requires a common Lyapunov functional for all subsystems. If μ → +∞, we get
from (4.5) that there is no switching, that is, switching signal will have a great dwelltime on
the average.
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Remark 4.3. In the existing literature [2, 3, 17, 22, 27–29, 34–38], the activation functions of
switched neural networks are required to be Lipschitz continuous. However, in this paper,
the activation function is inverse Hölder function. It is obvious the results of this paper
are different from the results in the above literatures. Hence, the work in this paper is an
extension of the scope of the current investigation in this field.

5. Illustrative Examples

In this section, two illustrative examples will be given to check the validity of the results
obtained in Theorems 3.1 and 4.1.

Example 5.1. Consider a second-order Cohen-Grossberg neural networks with mixed time
delays in (2.1) with the following parameters:

W0 =
(
−9999 0.009
0.0001 −9999

)

, W1 =
(
0.25 0.03
0.01 0.25

)

, W2 =
(
0.05 0.03
0.02 0.45

)

, J = (0, 0)T .

(5.1)

Set αi(θ) = 2 + sin θ, βi(θ) =
{

θ, θ≥0,
2θ, θ≤0, . The activation functions are taken as gi(θ) = θ3,

i = 1, 2, and τ = 1.
It is easy to check that assumptions (H1)−−(H3) hold. βi(θ) is locally Lipschitz;A and

B is the second-order identity matrix.
Take γ = 0.3. Solving the LMI in (3.1) by using appropriate LMI solver in the Matlab,

the feasible positive definite matrices P,M,S, T could be as

P =
(
0.0017 0

0 0.0017

)

, M =
(
23.3316 0

0 23.3316

)

,

S =
(

3.4137 −0.0019
−0.0019 3.4137

)

, T =
(

3.4137 −0.0019
−0.0019 3.4137

)

.

(5.2)

All assumptions of Theorem 3.1 hold. Hence, this neural network has one unique equilibrium
point, which is globally exponentially stable.

Figures 1 and 2 display the state trajectories of this neural network with initial
values ϕ(t) = (cos t, sin t)T , (0.5 cos t,−0.5 sin t)T , (−1.5 cos t, 1.5 sin t)T , (2 cos t, 2 sin t)T and
(−2.5 cos t, 2.5 sin t)T , t ∈ [−1, 0]. It can be seen that these trajectories converge to the unique
equilibrium x∗ = (0, 0)T of the network. This is in accordance with the conclusion of
Theorem 3.1.
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Figure 4: The convergence of the state x2(t) of the network in Example 5.2.
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Example 5.2. Consider a third-order switched Cohen-Grossberg neural networks with mixed
time delays in (4.3) with the switching signal σ(t) : [0,+∞) → Γ = {1, 2} and the following
parameters:

W01 =

⎛

⎝
−832.651 3.13 0.51

6.01 −807.439 3.52
2.03 3.05 −478.954

⎞

⎠, W02 =

⎛

⎝
−4959 4.03 3.31
0.01 −8079 2.82
8.03 6.05 −9278

⎞

⎠,

W11 =

⎛

⎝
0.25 0.16 0.03
0.01 0.32 0.25
0.21 0.32 0.06

⎞

⎠, W12 =

⎛

⎝
0.25 0.16 0.03
0.01 0.32 4.25
0.21 0.32 0.06

⎞

⎠,

W21 =

⎛

⎝
0.95 1.04 0.03
1.02 1.03 1.45
20.04 5.02 80.37

⎞

⎠, W22 =

⎛

⎝
0.05 0.04 0.03
0.56 0.03 2.45
0.04 0.02 0.37

⎞

⎠.

(5.3)

Set αi(θ) = 2 − cos θ, βi(θ) are the functions in Example 5.1, and the activation functions are
taken as gi(θ) = θ3 + θ, i = 1, 2, 3, and τ = 1.

It is easy to check that assumptions (H1) − −(H3) hold; A and B is the third-order
identity matrix.

Take γ = 0.1, μ = 1.2. Solving the LMIs in (4.3) and (4.4) by using appropriate LMI
solver in the Matlab, the feasible positive definite matrices P1, P2,M1,M2, S1, S2, T1, T2 could
be as

P1 =

⎛

⎝
0.6334 0 0

0 0.6334 0
0 0 0.6334

⎞

⎠, M1 =

⎛

⎝
0.0418 0 0

0 0.0418 0
0 0 0.0418

⎞

⎠,

S1 =

⎛

⎝
0.7500 0.0182 −0.0685
0.0182 0.8893 −0.0165
−0.0685 −0.0165 0.2732

⎞

⎠, T1 =

⎛

⎝
0.7811 0.0266 0.0679
0.0266 0.8895 0.0183
0.0679 0.0183 0.8362

⎞

⎠,

P2 =

⎛

⎝
0.6620 0 0

0 0.6620 0
0 0 0.6620

⎞

⎠, M2 =

⎛

⎝
0.0365 0 0

0 0.0365 0
0 0 0.0365

⎞

⎠,

S2 =

⎛

⎝
0.7855 0.0191 −0.0717
0.0191 0.9312 −0.0173
−0.0717 −0.0173 0.2862

⎞

⎠, T2 =

⎛

⎝
0.4710 0.0161 0.0411
0.0161 0.5368 0.0111
0.0411 0.0111 0.5045

⎞

⎠.

(5.4)

By using (4.5), it follows that the average dwell time T ∗
a = 3.6461. All the assumptions of

Theorem 4.1 hold. Hence, this switched neural network is globally exponentially stable.
For numerical simulation, assume that the two subsystems

are switched every four seconds. Figures 3, 4, and 5 display the
state trajectories of this neural network with initial values ϕ̃(t) =
(−0.5 cos t, 0.5 sin t, 0.5 cos t)T , (cos t,− sin t,− cos t)T , (−1.5 cos t, 1.5 sin t, 1.5 cos t)T ,
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(−2 cos t, 2 sin t, 2 sin t)T and (2.5 cos t,−2.5 sin t,−2.5 cos t)T , t ∈ [−1, 0]. It can be seen that
these trajectories converge to the unique equilibrium u∗ = (0, 0, 0)T of the network. This is
in accordance with the conclusion of Theorem 4.1.

6. Conclusion

In this paper, the existence, uniqueness, and global stability of the equilibrium point
for Cohen-Grossberg neural networks with mixed time delays, α-inverse Hölder neuron
activation functions, and nonsmooth behaved functions have been discussed. By applying
multiple Lyapunov-Krasovskii functional, a delay-dependent global exponential stability
criterion has been obtained in terms of LMIs for the switched Cohen-Grossberg neural
networkswithmixed time delays and α-inverseHölder neuron activation functions under the
switching rule with the average dwell time property. The results obtained are easily checked
and applied in practice engineering.

When neuron activation functions are non-Lipschitz functions, it is possible that the
neural network system has not the global solution and the equilibrium point. This leads to
difficulty in solving the stability problem, particularly exponential stability for the switched
neural networks with non-Lipschitz activation functions. In the future, the stability problem
for the switched neural networks with other non-Lipschitz activation functions will be
expected to be solved.
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