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In many applications, it is natural to use interval data to describe various kinds of uncertainties.
This paper is concerned with an interval neural network with a hidden layer. For the original
interval neural network, it might cause oscillation in the learning procedure as indicated in our
numerical experiments. In this paper, a smoothing interval neural network is proposed to prevent
the weights oscillation during the learning procedure. Here, by smoothing we mean that, in a
neighborhood of the origin, we replace the absolute values of the weights by a smooth function
of the weights in the hidden layer and output layer. The convergence of a gradient algorithm for
training the smoothing interval neural network is proved. Supporting numerical experiments are
provided.

1. Introduction

In the last two decades artificial neural networks have been successfully applied to various
domains, including pattern recognition [1], forecasting [2, 3], and data mining [4, 5].
One of the most widely used neural networks is the feedforward neural network with
the well-known error backpropagation learning algorithm. But in most neural network
architectures, input variables and the predicted results are represented in the form of single
point value, not in the form of intervals. However, in real-life situations, available information
is often uncertain, imprecise, and incomplete, which can be represented by fuzzy data, a
generalization of interval data. So in many applications it is more natural to treat the input
variables and the predicted results in the form of intervals than a set of single-point value.

Since multilayer feedforward neural networks have high capability as a universal
approximator of nonlinear mappings [6–8], some methods via neural networks for handling
interval data have been proposed. For instance, in [9], the BP algorithm [10, 11] was
extended to the case of interval input vectors. In [12], the author proposed a new extension
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of backpropagation by using interval arithmetic which called Interval Arithmetic Back-
propagation (IABP). This new algorithm permits the use of training samples and targets
which can be indistinctly points and intervals. In [13], the author proposed a new model of
multilayer perceptron based on interval arithmetic that facilitates handling input and output
interval data, where weights and biases are single valued and not interval valued.

However, weights oscillation phenomena during the learning procedure were
observed in our numerical experiments for these interval neural networks models. In order to
prevent the weights oscillation, a smoothing interval neuron is proposed in this paper. Here,
by smoothing we mean that, in the activation function and in a neighborhood of the origin,
we replace the absolute values of the weights by a smooth function of the weights. Gradient
algorithms [14–17] are applied to train the smoothing interval neural network. The weak and
strong convergence theorems of the algorithms are proved. Supporting numerical results are
provided.

The remainder of this paper is organized as follows. Some basic notations of interval
analysis are described in Section 2. The traditional interval neural network is introduced in
Section 3. Section 4 is devoted to our smoothing interval neural network and the gradient
algorithm. The convergence results of the gradient learning algorithm are shown in Section 5.
Supporting numerical experiments are provided in Section 6. The appendix is devoted to the
proof of the theorem.

2. Interval Arithmetic

Interval arithmetic as a tool appeared in numerical computing in late 1950s. Then the interval
mathematic is a theory introduced by Moore [18] and Sunaga [19] in order to give control of
errors in numeric computations. Fundamentals used in this paper are described below.

Let us denote the intervals by uppercase letters such as A and the real numbers by
lowercase letters such as a. An interval can be represented by its lower bounds L and upper
bounds U as A = [aL, aU], or equivalently by its midpoint C and radius R as A = 〈aC, aR〉,
where

aC =
aL + aU

2
,

aR =
aU − aL

2
.

(2.1)

For intervals A = [aL, aU] and B = [bL, bU], the basic interval operations are defined by

A + B =
[
aL + bL, aU + bU

]
,

A − B =
[
aL − bU, aU − bL

]
,

k ·A =

⎧
⎨
⎩

[
k · aL, k · aU

]
, k > 0,

[
k · aU, k · aL

]
, k < 0,

(2.2)

where k is a constant.
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If f is an increasing function, then the interval output is given by

f(A) =
[
f
(
aL
)
, f
(
aU
)]

. (2.3)

In this paper, we use the following weighted Euclidean distance for a pair of intervals A and
B

d(A,B) = β
(
aC − bC

)2
+
(
1 − β

)(
aR − bR

)2
, β ∈ (0, 1). (2.4)

The parameter β ∈ [0, 1] facilitates giving more importance to the prediction of the output
centres or to the prediction of the radii. For β = 1 learning concentrates on the prediction
of the output interval centre and no importance is given to the prediction of its radius. For
β = 0.5 both predictions (centres and radii) have the same weights in the objective function.
For our purpose, we assume β ∈ (0, 1).

3. Interval Neural Network

In this paper, we consider an interval neural network with three layers, where the input and
output are interval value, the weights are real value. The numbers of neurons for the input,
hidden and output layers are N,M, 1, respectively. Let Wm = (wm1, wm2, . . . , wmN)T ∈ R

N ,
m = 1, 2, . . . ,M be the weight matrix connecting the input and the hidden layers. The
weight vector connecting the hidden and the output layers is denoted by W0 = (w0,1, w0,2,
. . . , w0,M)T ∈ R

M. To simplify the presentation, we writeW = (WT
0 ,W

T
1 , . . . ,W

T
M)T ∈ R

NM+M.
In the interval neural network, a nonlinear activation function f(x) is used in the hidden
layer, and a linear activation function in the output layer.

For an arbitrary interval-valued input X = (X1, X2, . . . , XN), where Xi = 〈xC
i , x

R
i 〉, i =

1, 2, . . . ,N, as the weights of the proposed structure are real value, this linear combination
results in a interval given by

Sm =
N∑
i=1

wmiXi =
〈
sCm, s

R
m

〉
=

〈
N∑
i=1

wmix
C
i ,

N∑
i=1

|wmi|xR
i

〉
. (3.1)

Then the output of the interval neuron in the hidden layer is given by

Hm = f(Sm) =
[
f
(
sCm − sRm

)
, f
(
sCm + sRm

)]
=
〈
hC
m, h

R
m

〉

=

〈
f
(
sC − sR

)
+ f
(
sC + sR

)

2
,
f
(
sC + sR

) − f
(
sC − sR

)

2

〉
.

(3.2)
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Finally, the output of the interval neuron in the output layer is given by

Y =
〈
yC, yR

〉
, (3.3)

yC =
M∑
m=1

w0mh
C
m, (3.4)

yR =
M∑
m=1

|w0m|hR
m. (3.5)

4. Smoothing Interval Neural Network

4.1. Smoothing Interval Neural Network Structure

As revealed in the numerical experiment below in this paper, there appear weights oscillation
phenomena during the learning procedure for the original interval neural network presented
in the last section. In order to prevent the weights oscillation, we propose a smoothing
interval neural network by replacing |wmi| and |w0m| with a smooth function ϕ(wmi) and
ϕ(w0m) in (3.1) and (3.5). Then, the output of the smoothing interval neuron in the hidden
layer is defined as

Sm =
N∑
i=1

wmiXi =

〈
N∑
i=1

wmix
C
i ,

N∑
i=1

ϕ(wmi)xR
i

〉
, (4.1)

Hm = f(Sm) =
[
f
(
sCm − sRm

)
, f
(
sCm + sRm

)]
=
〈
hC
m, h

R
m

〉

=

〈
f
(
sCm − sRm

)
+ f
(
sCm + sRm

)

2
,
f
(
sCm + sRm

) − f
(
sCm − sRm

)

2

〉
.

(4.2)

The output of the smoothing interval neuron in the output layer is given by

yC =
M∑
m=1

w0mh
C
m,

yR =
M∑
m=1

ϕ(w0m)hR
m.

(4.3)

For our purpose, ϕ(x) can be chosen as any smooth function that approximates |x| near the
origin. For definiteness and simplicity, we choose ϕ(x) as a polynomial function:

ϕ(x) =

⎧
⎪⎪⎨
⎪⎪⎩

−x, x ≤ −μ,
ϕ̂(x), −μ < x < μ,

x, x ≥ μ,

(4.4)
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where μ > 0 is a small constant and

ϕ̂(x) = − 1
8μ3

x4 +
3
4μ

x2 +
3
8
μ. (4.5)

We observe that the above defined ϕ(x) is a convex function in C2(R), and it is identical to
the absolute value function |x| outside the zero neighborhood (−μ, μ).

4.2. Gradient Algorithm of the Smoothing Interval Neural Network

Suppose that we are supplied with a training sample set {Xj,Oj}Jj=1, where Xj ’s and Oj ’s

are input and ideal output samples, respectively, as follows: Xj = (X1j , X2j , . . . , XNj)
T , Xij =

[xL
ij , x

U
ij ] = 〈xC

ij , x
R
ij〉, i = 1, 2, . . . ,N, Oj = [oLj , o

U
j ] = 〈oCj , oRj 〉. Our task is to find the weights

W = (WT
0 ,W

T
1 , . . . ,W

T
M)T such that

Oj = Y
(
Xj

)
, j = 1, 2, . . . , J. (4.6)

But usually, the weight W = (WT
0 ,W

T
1 , . . . ,W

T
M)T satisfying (4.6) does not exit and, instead,

the aim of the network learning is to choose the weight W to minimize an error function of
the smoothing interval neural network. By (2.4), a simple and typical error function is the
quadratic error function:

E(W) =
1
2

J∑
j=1

(
β
(
oCj − yC

j

)2
+
(
1 − β

)(
oRj − yR

j

)2)
. (4.7)

Let us denote fC
j (t) = (1/2)(oCj − tCj )

2, fR
j (t) = (1/2)(oRj − tRj )

2, j = 1, 2, . . . , J , t ∈ R, then the
error function (4.7) is rewritten as

E(W) =
J∑
j=1

(
βfC

j

(
y
)
+
(
1 − β

)
fR
j

(
y
))

. (4.8)

Now, we introduce the gradient algorithm [15, 16] for the smoothing interval neural network.
The gradient of the error function E(W)with respect toW0 is given by

∂E(W)
∂W0

=
J∑
j=1

⎛
⎝β
(
yC
j − oCj

) ∂yC
j

∂W0
+
(
1 − β

)(
yR
j − oRj

) ∂yR
j

∂W0

⎞
⎠

=
J∑
j=1

⎛
⎝βf

′C
j

(
y
) ∂yC

j

∂W0
+
(
1 − β

)
f

′R
j

(
y
) ∂yR

j

∂W0

⎞
⎠,

(4.9)
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where

∂yC
j

∂W0
= hC

j ,

∂yR
j

∂W0
= ϕ′(W0)hR

j .

(4.10)

The gradient of the error function E(W)with respect toWm, m = 1, 2, . . . ,M is given by

∂E(W)
∂Wm

=
J∑
j=1

⎛
⎝β
(
yC
j − oCj

) ∂yC
j

∂hC
jm

∂hC
jm

∂Wm
+
(
1 − β

)(
yR
j − oRj

) ∂yR
j

∂hR
jm

∂hR
jm

∂Wm

⎞
⎠

=
J∑
j=1

⎛
⎝βf

′C
j

(
y
) ∂yC

j

∂hC
jm

∂hC
jm

∂Wm
+
(
1 − β

)
f

′R
j

(
y
) ∂yR

j

∂hR
jm

∂hR
jm

∂Wm

⎞
⎠,

(4.11)

where

∂yC
j

∂hC
jm

= w0m,

∂yR
j

∂hR
jm

= ϕ(w0m),

∂hC
jm

∂Wm
=

f ′
(
sCjm − sRjm

)(
xC
j − ϕ′(Wm)xR

j

)

2
+
f ′
(
sCjm + sRjm

)(
xC
j + ϕ′(Wm)xR

j

)

2
,

∂hR
jm

∂Wm
=

f ′
(
sCjm + sRjm

)(
xC
j + ϕ′(Wm)xR

j

)

2
−
f ′
(
sCjm − sRjm

)(
xC
j − ϕ′(Wm)xR

j

)

2
.

(4.12)

In the learning procedure, the weights W are iteratively refined as follows:

Wk+1 = Wk + ΔWk, (4.13)

where

ΔWk = −η∂E
(
Wk
)

∂W
, (4.14)

where η > 0 a constant learning rate and k = 1, 2, . . . .
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5. Convergence Theorem for SINN

For any x ∈ R
n, its Euclidean norm is ‖x‖ =

√∑n
i=1 x

2
i . Let Ω0 = {W ∈ Ω : EW(W) = 0} be

the stationary point set of the error function E(W), where Ω ⊂ R
NM+M is a bounded region

satisfying (A2) below. Let Ω0,s ⊂ R be the projection of Ω0 onto the sth coordinate axis, that
is,

Ω0,s =
{
ws ∈ R : W = (w1, . . . , ws, . . . , wNM+M)T ∈ Ω0

}
, (5.1)

for s = 1, 2, . . . ,NM+M. To analyze the convergence of the algorithm, we need the following
assumptions.

(A1) |f(t)|, |f ′(t)|, |f ′′(t)| are uniformly bounded for t ∈ R.

(A2) There exists a bounded region Ω ⊂ R
n such that {Wk} ⊂ Ω (k ∈ N).

(A3) The learning rate η is small enough such that (A.10) below is valid.

(A4) Ω0,s does not contain any interior point for every s = 1, 2, . . . ,NM +M.

Now we are ready to present one convergence theorem of the learning algorithms. Its proof
is given in the appendix later on.

Theorem 5.1. Let the error function E(W) be defined by (4.7), and the weight sequence {Wk} be
generated by the learning procedure (4.13) and (4.14) for smoothing interval neuron with W0 being
an arbitrary initial guess. If Assumptions (A1), (A2), and (A3) are valid, then we have

E
(
Wk+1

)
≤ E
(
Wk
)
, (5.2)

lim
k→∞

∥∥∥EW

(
Wk
)∥∥∥ = 0. (5.3)

Furthermore, if Assumption (A4) also holds, there exists a pointW∗ ∈ Ω0 such that

lim
k→∞

Wk = W∗. (5.4)

6. Numerical Experiment

We compare the performances of the interval neural network and the smoothing interval
neural network by approximating a simple interval function

Y = 0.01 × (X + 11)2. (6.1)

In this example, the training set contains five training samples. Their midpoints are all 0 and
their radii are (0.8552 2.6248 8.0101 0.2922 9.2885), respectively. The corresponding
outputs of the samples are Y = 〈yC, yR〉 = 0.01 × (X + 11)2.
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(a) Interval neural network
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(b) Smoothing interval neural network

Figure 1: Norm of gradient of the interval neural network and the smoothing interval neuron in the
training.
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Figure 2: Values of the error functionD for the interval neural network and the smoothing neural network.

For the above two interval neural networks, the error function E(W) is defined as in
(4.7). But in order to see the error more clearly in the figures, we will also use the error D
defined by

D = lnE = ln

⎛
⎝1

2

J∑
j=1

(
β
(
oCj − yC

j

)2
+
(
1 − β

)(
oRj − yR

j

)2)
⎞
⎠ . (6.2)

The number of training iterations is 2000, the initial midpoint of weight vector is
selected randomly from [−0.01, 0.01], and two neurons are selected in the hidden layer. The
fix learning rate is η = 0.2, β = 0.5, and μ = 0.5.

In the learning procedure for the interval neural network, we clearly see from
Figure 1(a) that the gradient norm is not convergent. Figure 2(a) shows that the error function
D is oscillating and not convergent. On the contrary, we see from Figure 1(b) that the gradient
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norm of the smoothing interval neural network is convergent. Figure 2(b) shows that the
error function D, as well as E, is monotone decreasing and convergent.

From this numerical experiment, we can see that the proposed smoothing neural
network can efficiently avoid the oscillation during the training process.

Appendix

First, we give Lemmas A.1 and A.2. Then, we use them to prove Theorem 5.1.

Lemma A.1. Let {bm} be a bounded sequence satisfying limm→∞(bm+1 − bm) = 0. Write γ1 =
limn→∞infm>nbm, γ2 = limn→∞supm>nbm, and S = {a ∈ R : There exists a subsequence {bik} of
{bm} such that bik → a as k → ∞}. Then we have

S =
[
γ1, γ2

]
. (A.1)

Proof. It is obvious that γ1 ≤ γ2 and S ⊂ [γ1, γ2]. If γ1 = γ2, then (A.1) follows simply from
limm→∞bm = γ1 = γ2. Let us consider the case γ1 < γ2 and proceed to prove that S ⊃ [γ1, γ2].

For any a ∈ (γ1, γ2), there exists ε > 0 such that (a − ε, a + ε) ⊂ (γ1, γ2). Noting
limm→∞(bm+1 − bm) = 0, we observe that bm travels between γ1 and γ2 with very small pace
for all large enough m. Hence, there must be infinite number of points of the sequence {bm}
falling into (a − ε, a + ε). This implies a ∈ S and thus (γ1, γ2) ⊂ S. Furthermore, (γ1, γ2) ⊂ S
immediately leads to [γ1, γ2] ⊂ S. This completes the proof.

For any k = 0, 1, 2, . . ., 1 ≤ j ≤ J , we define the following notations.

ΦC
0,k,j = Wk

0 · hC
k,j , ΦR

0,k,j = ϕ
(
Wk

0

)
· hR

k,j , ΨC
k,j = hC

k+1,j − hC
k,j , ΨR

k,j = hR
k+1,j − hR

k,j .

(A.2)

Lemma A.2. Suppose Assumption (A2), (A3) holds, for any k = 0, 1, 2, . . . and 1 ≤ j ≤ J , then we
have

max
{∥∥∥xC

j

∥∥∥,
∥∥∥xR

j

∥∥∥,
∥∥∥oCj
∥∥∥,
∥∥∥oRj
∥∥∥
∥∥∥Wk

0

∥∥∥,
∥∥∥ΦC

0,k,j

∥∥∥,
∥∥∥ΦR

0,k,j

∥∥∥
}
≤ M0, (A.3)

J∑
j=1

(
βf

′C
j

(
ΦC

0,k,j

)
hC
k,jΔWk

0 +
(
1 − β

)
f

′R
j

(
ΦR

0,k,j

)
hR
k,jϕ

′
(
Wk

0

)
ΔWk

0

)
= −η

∥∥∥∥∥
∂E
(
Wk
)

∂W0

∥∥∥∥∥
2

, (A.4)

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

)(
ΔWk

0 ·ΨC
k,j

)
≤ M1η

2

∥∥∥∥∥
∂E
(
Wk
)

∂W

∥∥∥∥∥
2

, (A.5)

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

)(
Wk

0 ·ΨC
k,j

)
+

J∑
j=1

(
1 − β

)
f

′R
j

(
φR
0,k,j

)(
ϕ
(
Wk

0

)
·ΨR

k,j

)

≤
(
−η +M2η

2
) M∑
m=1

∥∥∥∥∥
∂E
(
Wk
)

∂Wm

∥∥∥∥∥
2

,

(A.6)
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1
2

J∑
j=1

βf ′′C
j

(
ξC0,k,j

)(
ΦC

0,k+1,j −ΦC
0,k,j

)2 ≤ M3η
2

∥∥∥∥∥
∂E
(
Wk
)

∂W

∥∥∥∥∥
2

, (A.7)

J∑
j=1

(
1 − β

)
f

′R
j

(
φR
0,k,j

)
ϕ′
(
ζk1

)(
ΔWk

0 ·ΨR
k,j

)
≤ M4η

2

∥∥∥∥∥
∂E
(
Wk
)

∂W

∥∥∥∥∥
2

, (A.8)

1
2

J∑
j=1

(
1 − β

)
f

′R
j

(
φR
0,k,j

)
ϕ′′
(
ζk2

)((
ΔWk

0

)2 · hR
k,j

)
≤ M5η

2

∥∥∥∥∥
∂E
(
Wk
)

∂W0

∥∥∥∥∥
2

, (A.9)

1
2

J∑
j=1

(
1 − β

)
f ′′R
j

(
ξR0,k,j

)(
ΦR

0,k+1,j −ΦR
0,k,j

)2 ≤ M6η
2

∥∥∥∥∥
∂E
(
Wk
)

∂W

∥∥∥∥∥
2

, (A.10)

where Mi (i = 0, 1, 2, 3, 4, 5, 6) is independent of k and j, ξC0,k,j lies on the segment between ΦC
0,k+1,j

and ΦC
0,k,j , ξ

R
0,k,j lies on the segment between ΦR

0,k+1,j and Φ
R
0,k,j , ζ

k
1 , ζ

k
2 both lie on the segment between

Wk+1
0 and Wk

0 .

Proof. The proof of (A.3) in Lemma A.2: For the given training sample set, by Assumption
(A2), (4.2), and (4.4), it is easy to known that (A.3) is valid.

The proof of (A.4) in Lemma A.2: by (4.9) and (4.14), we have

J∑
j=1

(
βf

′C
j

(
ΦC

0,k,j

)
hC
k,jΔWk

0 +
(
1 − β

)
f

′R
j

(
ΦR

0,k,j

)
hR
k,jϕ

′
(
Wk

0

)
ΔWk

0

)

=
∂E
(
Wk
)

∂W0
·
(
−η∂E

(
Wk
)

∂W0

)
= −η

∥∥∥∥∥
∂E
(
Wk
)

∂W0

∥∥∥∥∥
2

.

(A.11)

This proves (A.4).
The proof of (A.5) in Lemma A.2: using the Mean Value Theorem, for any 1 ≤ m ≤ M,

1 ≤ j ≤ J , and k = 0, 1, 2, . . ., we have

ΨC
k,j,m = hC

k+1,j,m − hC
k,j,m

=
1
2

(
f
(
sCk+1,j,m − sRk+1,j,m

)
− f
(
sCk,j,m − sRk,j,m

)
+ f
(
sCk+1,j,m + sRk+1,j,m

)
− f
(
sCk,j,m + sRk,j,m

))

=
1
2

(
f ′
(
t1k,j,m

)((
sCk+1,j,m − sRk+1,j,m

)
−
(
sCk,j,m − sRk,j,m

))

+f ′
(
t2k,j,m

)((
sCk+1,j,m + sRk+1,j,m

)
−
(
sCk,j,m + sRk,j,m

)))
,

(A.12)
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where t1k,j,m is on the segment between sCk+1,j,m−sRk+1,j,m and sCk,j,m−sRk,j,m, t2k,j,m is on the segment

between sCk+1,j,m + sRk+1,j,m and sCk,j,m + sRk,j,m. By (A.3), we have

∣∣∣ΨC
k,j,m

∣∣∣ ≤ M0

2

(∣∣∣
(
sCk+1,j,m − sRk+1,j,m

)
−
(
sCk,j,m − sRk,j,m

)∣∣∣+
∣∣∣
(
sCk+1,j,m + sRk+1,j,m

)
−
(
sCk,j,m + sRk,j,m

)∣∣∣
)

≤ M0

2

(∣∣∣sCk+1,j,m − sCk,j,m

∣∣∣ +
∣∣∣sRk+1,j,m − sRk,j,m

∣∣∣ +
∣∣∣sCk+1,j,m − sCk,j,m

∣∣∣ +
∣∣∣sRk+1,j,m − sRk,j,m

∣∣∣
)

= M0

(∣∣∣sCk+1,j,m − sCk,j,m

∣∣∣ +
∣∣∣sRk+1,j,m − sRk,j,m

∣∣∣
)

= M0

(∣∣∣ΔWk
mx

C
j

∣∣∣ +
∣∣∣
(
ϕ
(
Wk+1

m

)
− ϕ
(
Wk

m

))
xR
j

∣∣∣
)

≤ M2
0

(∥∥∥ΔWk
m

∥∥∥ +
∥∥∥ϕ′
(
τk1,m

)∥∥∥
∥∥∥ΔWk

m

∥∥∥
)
,

(A.13)

where τk1,m is on the segment between Wk+1
m and Wk

m. Since

ϕ(x) =

⎧
⎨
⎩
−x, if x ≤ −μ,
ϕ̂(x), if − μ < x < μ,
x, if x ≥ μ,

(A.14)

if x ≤ −μ and x ≥ μ, |ϕ′(x)| = 1, |ϕ′′(x)| = 0.
If −μ < x < μ, we have

ϕ′(x) = − 1
2μ3

x3 +
3
2μ

x ∈ (−1, 1),

ϕ′′(x) = − 3
2μ3

x2 +
3
2μ

∈
(
0,

3
2μ

)
,

(A.15)

so if x ∈ R, we have

∣∣ϕ′(x)
∣∣ ≤ 1,

∣∣ϕ′′(x)
∣∣ ≤ 3

2μ
. (A.16)

According to (A.16) and (A.13), we can obtain that

∣∣∣ΨC
k,j,m

∣∣∣ ≤ 2M2
0

∥∥∥ΔWk
m

∥∥∥. (A.17)
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By (A.17), for any 1 ≤ j ≤ J and k = 0, 1, 2, . . ., we have

∥∥∥ΨC
k,j

∥∥∥
2
=

∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎝

hC
k+1,j,1 − hC

k,j,1

hC
k+1,j,2 − hC

k,j,2
...

hC
k+1,j,M − hC

k,j,M

⎞
⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥

2

≤ 4M4
0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2
. (A.18)

According to the definition of fC
j (t), we get that f

′C
j (t) = tCj − oCj , combining with (A.3), we

deduce that |f ′C
j (ΦC

0,k,j)| ≤ 2M0. By (A.18), we have

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

)(
ΔWk

0 ·ΨC
k,j

)
≤ 2βM0

J∑
j=1

∥∥∥ΔWk
0

∥∥∥
∥∥∥ΨC

k,j

∥∥∥

≤ βM0

J∑
j=1

(∥∥∥ΔWk
0

∥∥∥
2
+
∥∥∥ΨC

k,j

∥∥∥
2
)

≤ βJM0

∥∥∥ΔWk
0

∥∥∥
2
+ 4βJM5

0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2

≤ M1

M∑
m=0

∥∥∥ΔWk
m

∥∥∥
2

= M1η
2

∥∥∥∥∥
∂E
(
Wk
)

∂W

∥∥∥∥∥
2

,

(A.19)

where M1 = βJM0 max{1, 4M4
0}. This proves (A.5).

The proof of (A.6) in Lemma A.2: using the Taylor expansion, we get that

ΨC
k,j,m = hC

k+1,j,m − hC
k,j,m

=
1
2

(
f
(
sCk+1,j,m − sRk+1,j,m

)
− f
(
sCk,j,m − sRk,j,m

)
+ f
(
sCk+1,j,m + sRk+1,j,m

)
− f
(
sCk,j,m + sRk,j,m

))

=
1
2

(
f ′
(
sCk,j,m − sRk,j,m

)((
sCk+1,j,m − sRk+1,j,m

)
−
(
sCk,j,m − sRk,j,m

))

+ f ′′
(
t3k,j,m

)((
sCk+1,j,m − sRk+1,j,m

)
−
(
sCk,j,m − sRk,j,m

))2
+ f ′
(
sCk,j,m + sRk,j,m

)

×
((

sCk+1,j,m + sRk+1,j,m

)
−
(
sCk,j,m + sRk,j,m

))

+f ′′
(
t4k,j,m

)((
sCk+1,j,m + sRk+1,j,m

)
−
(
sCk,j,m + sRk,j,m

))2)
,

(A.20)
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where t3k,j,m is on the segment between sCk+1,j,m−sRk+1,j,m and sCk,j,m−sRk,j,m, t4k,j,m is on the segment

between sCk+1,j,m + sRk+1,j,m and sCk,j,m + sRk,j,m. By (A.3), (A.16), we deduce that

(
sCk+1,j,m − sRk+1,j,m

)
−
(
sCk,j,m − sRk,j,m

)

= ΔWk
mx

C
j −
(
φ′
(
Wk

m

)
ΔWk

m + φ′′
(
τk2,m

)(
ΔWk

m

)2)
xR
j

=
(
xC
j − φ′

(
Wk

m

)
xR
j

)
ΔWk

m − φ′′
(
τk2,m

)(
ΔWk

m

)2
xR
j ,

((
sCk+1,j,m − sRk+1,j,m

)
−
(
sCk,j,m − sRk,j,m

))2

=
(
ΔWk

mx
C
j − φ′

(
τk3,m

)
ΔWk

mx
R
j

)2
=
((

xC
j − φ′

(
τk3,m

)
xR
j

)
ΔWk

m

)2
,

(A.21)

where τk2,m, τ
k
3,m both lie on the segment betweenWk+1

m andWk
m. Similarly, we can deduce that

(
sCk+1,j,m + sRk+1,j,m

)
−
(
sCk,j,m + sRk,j,m

)
=
(
xC
j + φ′

(
Wk

m

)
xR
j

)
ΔWk

m + φ′′
(
τk4,m

)(
ΔWk

m

)2
xR
j ,

((
sCk+1,j,m + sRk+1,j,m

)
−
(
sCk,j,m + sRk,j,m

))2
=
((

xC
j + φ′

(
τk5,m

)
xR
j

)
ΔWk

m

)2
,

(A.22)

where τk4,m, τ
k
5,m both lie on the segment between Wk+1

m and Wk
m. Combining with (A.20), we

have

ΨC
k,j,m = hC

k+1,j,m − hC
k,j,m

=
1
2

(
f ′
(
sCk,j,m − sRk,j,m

)((
xC
j − φ′

(
Wk

m

)
xR
j

)
ΔWk

m − φ′′
(
τk2,m

)(
ΔWk

m

)2
xR
j

)
+ f

′ ′
(
t3k,j,m

)

×
((

xC
j − φ′

(
τk3,m

)
xR
j

)
ΔWk

m

)2
+ f ′
(
sCk,j,m + sRk,j,m

)

×
((

xC
j + φ′

(
Wk

m

)
xR
j

)
ΔWk

m + φ′′
(
τk4,m

)(
ΔWk

m

)2
xR
j

)

+f ′′
(
t4k,j,m

)((
xC
j + φ′

(
τk5,m

)
xR
j

)
ΔWk

m

)2)

=
1
2

((
f ′
(
sCk,j,m − sRk,j,m

)(
xC
j − φ′

(
Wk

m

)
xR
j

)
+f ′
(
sCk,j,m + sRk,j,m

)(
xC
j + φ′

(
Wk

m

)
xR
j

))
ΔWk

m

− f ′
(
sCk,j,m − sRk,j,m

)
φ′′
(
τk2,m

)(
ΔWk

m

)2
xR
j + f ′′

(
t3k,j,m

)((
xC
j − φ′

(
τk3,m

)
xR
j

)
ΔWk

m

)2

+f ′
(
sCk,j,m+s

R
k,j,m

)
φ′′
(
τk4,m

)(
ΔWk

m

)2
xR
j +f

′′
(
t4k,j,m

)((
xC
j +φ

′
(
τk5,m

)
xR
j

)
ΔWk

m

)2)
.

(A.23)
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By (A.23), we get that

Wk
0 ·ΨC

k,j =
1
2

M∑
m=1

wk
0,m

((
f ′
(
sCk,j,m − sRk,j,m

)(
xC
j − φ′

(
Wk

m

)
xR
j

)

+f ′
(
sCk,j,m + sRk,j,m

)(
xC
j + φ′

(
Wk

m

)
xR
j

))
ΔWk

m

− f ′
(
sCk,j,m − sRk,j,m

)
φ′′
(
τk2,m

)(
ΔWk

m

)2
xR
j

+ f ′′
(
t3k,j,m

)((
xC
j − φ′

(
τk3,m

)
xR
j

)
ΔWk

m

)2

+ f ′
(
sCk,j,m + sRk,j,m

)
φ′′
(
τk4,m

)(
ΔWk

m

)2
xR
j

+f ′′
(
t4k,j,m

)((
xC
j + φ′

(
τk5,m

)
xR
j

)
ΔWk

m

)2)

= Δ1 + Δ2,

(A.24)

where

Δ1 =
1
2

M∑
m=1

wk
0,m

(
f ′
(
sCk,j,m − sRk,j,m

)(
xC
j − φ′

(
Wk

m

)
xR
j

)

+f ′
(
sCk,j,m + sRk,j,m

)(
xC
j + φ′

(
Wk

m

)
xR
j

))
ΔWk

m,

(A.25)

Δ2 =
1
2

M∑
m=1

wk
0,m

(
−f ′
(
sCk,j,m − sRk,j,m

)
φ′′
(
τk2,m

)(
ΔWk

m

)2
xR
j

+ f ′′
(
t3k,j,m

)((
xC
j − φ′

(
τk3,m

)
xR
j

)
ΔWk

m

)2

+ f ′
(
sCk,j,m + sRk,j,m

)
φ′′
(
τk4,m

)(
ΔWk

m

)2
xR
j

+f ′′
(
t4k,j,m

)((
xC
j + φ′

(
τk5,m

)
xR
j

)
ΔWk

m

)2)
.

(A.26)

This together with (A.25) leads to

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

)
Δ1

=
1
2

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

) M∑
m=1

wk
0,m

(
f ′
(
sCk,j,m − sRk,j,m

)(
xC
j − φ′

(
Wk

m

)
xR
j

)

+f ′
(
sCk,j,m + sRk,j,m

)(
xC
j + φ′

(
Wk

m

)
xR
j

))
ΔWk

m.

(A.27)
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This together with (A.26) leads to

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

)
Δ2

=
1
2

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

) M∑
m=1

wk
0,m

(
− f ′
(
sCk,j,m − sRk,j,m

)
φ′′
(
τk2,m

)(
ΔWk

m

)2
xR
j

+ f ′′
(
t3k,j,m

)((
xC
j − φ′

(
τk3,m

)
xR
j

)
ΔWk

m

)2

+ f ′
(
sCk,j,m + sRk,j,m

)
φ′′
(
τk4,m

)(
ΔWk

m

)2
xR
j

+f ′′
(
t4k,j,m

)((
xC
j + φ′

(
τk5,m

)
xR
j

)
ΔWk

m

)2)
.

(A.28)

By (A.3), (A.16) and |f ′C
j (ΦC

0,k,j)| ≤ 2M0, we have

1
2

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

) M∑
m=1

wk
0,m

(
−f ′
(
sCk,j,m − sRk,j,m

)
φ′′
(
τk2,m

)(
ΔWk

m

)2
xR
j

)

≤ 1
2
β

J∑
j=1

M∑
m=1

∥∥∥f ′C
j

(
ΦC

0,k,j

)∥∥∥ ·
∥∥∥wk

0,m

∥∥∥ ·
∥∥∥f ′
(
sCk,j,m − sRk,j,m

)∥∥∥ ·
∥∥∥φ′′
(
τk2,m

)∥∥∥ ·
∥∥∥ΔWk

m

∥∥∥
2 ·
∥∥∥xR

j

∥∥∥

≤ 1
2
β

J∑
j=1

M∑
m=1

2M0 ·M0 ·M0 · 3
2μ

·M0 ·
∥∥∥ΔWk

m

∥∥∥
2

=
3
2μ

βJM4
0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2
.

(A.29)

Similarly, we can obtain that

1
2

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

) M∑
m=1

wk
0,mf

′′
(
t3k,j,m

)((
xC
j − φ′

(
τk3,m

)
xR
j

)
ΔWk

m

)2

≤ 4βJM5
0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2
,

1
2

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

) M∑
m=1

wk
0,mf

′
(
sCk,j,m + sRk,j,m

)
φ′′
(
τk4,m

)(
ΔWk

m

)2
xR
j

≤ 3
2μ

βJM4
0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2
,
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1
2

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

) M∑
m=1

wk
0,mf

′′
(
t4k,j,m

)((
xC
j + φ′

(
τk5,m

)
xR
j

)
ΔWk

m

)2

≤ 4βJM5
0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2
.

(A.30)

So by (A.28), (A.29), and (A.30), we have

J∑
j=1

βf
′C
j

(
ΦC

0,k,j

)
Δ2

≤ 3
2μ

βJM4
0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2
+ 4βJM5

0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2

+
3
2μ

βJM4
0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2
+ 4βJM5

0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2

=
(
3
μ
+ 8M0

)
βJM4

0

M∑
m=1

∥∥∥ΔWk
m

∥∥∥
2
,

(A.31)

with (A.23), similarly, we get that

ΨR
k,j,m = hR

k+1,j,m − hR
k,j,m

=
1
2

(
f ′
(
sCk,j,m + sRk,j,m

)((
xC
j + φ′

(
Wk

m

)
xR
j

)
ΔWk

m + φ′′
(
τk6,m

)(
ΔWk

m

)2
xR
j

)
+ f ′′

(
t5k,j,m

)

×
((

xC
j + φ′

(
τk7,m

)
xR
j

)
ΔWk

m

)2 − f ′
(
sCk,j,m − sRk,j,m

)

×
((

xC
j − φ′

(
Wk

m

)
xR
j

)
ΔWk

m − φ′′
(
τk8,m

)(
ΔWk

m

)2
xR
j

)

−f ′′
(
t6k,j,m

)((
xc
j − φ′

(
τk9,m

)
xR
j

)
ΔWk

m

)2)

=
1
2

((
f ′
(
sCk,j,m+s

R
k,j,m

)(
xC
j +φ

′
(
Wk

m

)
xR
j

)
−f ′
(
sCk,j,m−sRk,j,m

)(
xC
j −φ′

(
Wk

m

)
xR
j

))
ΔWk

m

+ f ′
(
sCk,j,m + sRk,j,m

)
φ′′
(
τk6,m

)(
ΔWk

m

)2
xR
j + f ′′

(
t5k,j,m

)((
xC
j + φ′

(
τk7,m

)
xR
j

)
ΔWk

m

)2

+ f ′
(
sCk,j,m − sRk,j,m

)
φ′′
(
τk8,m

)(
ΔWk

m

)2
xR
j

−f ′′
(
t6k,j,m

)((
xC
j − φ′

(
τk9,m

)
xR
j

)
ΔWk

m

)2)
,

(A.32)
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where τk6,m, τ
k
7,m, τ

k
8,m, τ

k
9,m lie on the segment between Wk+1

m and Wk
m, t

5
k,j,m lies on the segment

between sCk+1,j,m + sRk+1,j,m and sCk,j,m + sRk,j,m, t
6
k,j,m lies on the segment between sCk+1,j,m − sRk+1,j,m

and sCk,j,m − sRk,j,m. By (A.32), we have

ϕ
(
Wk

0

)
·ΨR

k,j

=
1
2

M∑
m=1

ϕ
(
wk

0,m

)((
f ′
(
sCk,j,m + sRk,j,m

)(
xC
j + φ′

(
Wk

m

)
xR
j

)

−f ′
(
sCk,j,m − sRk,j,m

)(
xC
j − φ′

(
Wk

m

)
xR
j

))
ΔWk

m

+ f ′
(
sCk,j,m + sRk,j,m

)
φ′′
(
τk6,m

)(
ΔWk

m

)2
xR
j

+ f ′′
(
t5k,j,m

)((
xC
j + φ′

(
τk7,m

)
xR
j

)
ΔWk

m

)2

+ f ′
(
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where
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(A.34)
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(A.35)

By (A.34), we have
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(A.36)



18 Discrete Dynamics in Nature and Society

with (A.31), similarly, this together with (A.35) leads to
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(A.37)

By (A.27), (A.31), (A.36) and (A.37), we obtain that
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(A.38)
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Combining with (4.11), (4.12), and (4.14), we get that
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(A.39)

where M2 = ((3/μ) + 8M0)JM4
0. This proves (A.6).

The proof of (A.7) in Lemma A.2: According to the definition of fC
j (t), we get that

f ′′C
j (t) = 1, combining with (A.3), (A.18), we have
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(A.40)

where M3 = βJM2
0 max{1, 4M4

0}. This proves (A.7).
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The proof of (A.8) in Lemma A.2: With (A.17), similarly, for any 1 ≤ j ≤ J and k =
0, 1, 2, . . ., we can get that
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. (A.41)

According to the definition of fR
j (t), we get that f

′R
j (t) = tRj − oRj , combining with (A.3), we

can obtain that |f ′R
j (ΦR

0,k,j)| ≤ 2M0. By (A.16) and (A.41), we deduce that
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(A.42)

where M4 = (1 − β)JM0 max{1, 4M4
0}. This proves (A.8).

The proof of (A.9) in lemma A.2: By |f ′R
j (ΦR

0,k,j)| ≤ 2M0, (A.3) and (A.16), we get that
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(A.43)

where M5 = (3/2μ)(1 − β)JM2
0. This proves (A.9).
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The proof of (A.10) in Lemma A.2: According to the definition of fR
j (t), we get that

f ′′R
j (t) = 1, combining with (A.3) and (A.41), we have
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(A.44)

where M6 = (1 − β)JM2
0 max{1, 4M4

0}. This proves (A.10). Thus this completes the proof of
Lemma A.2.

Now we are ready to prove Theorem 5.1.

Proof. Using the Taylor expansion and Lemma A.2, for any k = 0, 1, 2, . . ., we have
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(A.45)

whereM7 = M1+M2+M3+M4+M5+M6, ξC0,k,j lies on the segment betweenΦC
0,k+1,j andΦC

0,k,j ,
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Obviously, we require the learning rate η to satisfy

0 < η <
1

M7
. (A.47)

Thus, we can obtain that
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This together with (A.46) leads to
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(A.49)

Since E(Wk+1) ≥ 0, we have
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Letting k → ∞ results in
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So this immediately gives
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According to (4.14) and (A.52), we get that

lim
k→∞

∥∥∥ΔWk
∥∥∥ = 0. (A.53)

According to (A1), the sequence {wm} (m ∈ N) has a subsequence {wmk} (k ∈ N) that
is convergent to, say, w∗ ∈ Ω0. It follows from (5.3) and the continuity of Ew(w) that

‖Ew(w∗)‖ = lim
k→∞

‖Ew(wmk)‖ = lim
m→∞

‖Ew(wm)‖ = 0. (A.54)
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This implies thatw∗ is a stationary point of E(w). Hence, {wm} has at least one accumulation
point and every accumulation point must be a stationary point.

Next, by reduction to absurdity, we prove that {wm} has precisely one accumulation
point. Let us assume the contrary that {wm} has at least two accumulation points w/= w̃. We
writewm = (wm

1 , w
m
2 , . . . , w

m
n(p+1))

T . It is easy to see from (4.13) and (4.14) that limm→∞‖wm+1−
wm‖ = 0, or equivalently, limm→∞|wm+1

i − wm
i | = 0 for i = 1, 2, . . . , n(p + 1). Without loss

of generality, we assume that the first components of w and w̃ do not equal to each other,
that is, w1 /= w̃1. For any real number λ ∈ (0, 1), let wλ

1 = λw1 + (1 − λ)w̃1. By Lemma A.1,
there exists a subsequence {wmk1

1 } of {wm
1 } converging to wλ

1 as k1 → ∞. Due to the
boundedness of {wmk1

2 }, there is a convergent subsequence {wmk2
2 } ⊂ {wmk1

2 }. We define
wλ

2 = limk2 →∞w
mk2
2 . Repeating this procedure, we end up with decreasing subsequences

{mk1} ⊃ {mk2} ⊃ · · · ⊃ {mkn(p+1)} with wλ
i = limki →∞w

mki

i for each i = 1, 2, . . . , n(p + 1). Write
wλ = (wλ

1 , w
λ
2 , . . . , w

λ
n(p+1))

T . Then, we see that wλ is an accumulation point of {wm} for any
λ ∈ (0, 1). But this means thatΩ0,1 has interior points, which contradicts (A4). Thus,w∗ must
be a unique accumulation point of {wm}∞m=0. This proves (5.4). Thus this completes the proof
of Theorem 5.1.
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