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We study 2-step general Fibonacci sequences in the generalized quaternion groups Q4n. In cases
where the sequences are proved to be simply periodic, we obtain the periods of 2-step general
Fibonacci sequences.

1. Introduction

The study of the Fibonacci sequences in groups began with the earlier work of Wall [1] in
1960, where the ordinary Fibonacci sequences in cyclic groups were investigated. In the mid-
eighties, Wilcox [2] extended the problem to the abelian groups. In 1990, Campbell et al. [3]
expanded the theory to some classes of finite groups. In 1992, Knox proved that the periods
of k-nacci (k-step Fibonacci) sequences in the dihedral groups are equal to 2k + 2, in [4]. In
the progress of this study, the article [5] of Aydin and Smith proves that the lengths of the
ordinary 2-step Fibonacci sequences are equal to the lengths of the ordinary 2-step Fibonacci
recurrences in finite nilpotent groups of nilpotency class 4 and a prime exponent, in 1994.

Since 1994, the theory has been generalized and many authors had nice contributions
in computations of recurrence sequences in groups and we may give here a brief of these
attempts. In [6, 7] the definition of the Fibonacci sequence has been generalized to the
ordinary 3-step Fibonacci sequences in finite nilpotent groups. Then in [8] it is proved that
the period of 2-step general Fibonacci sequence is equal to the length of the fundamental
period of the 2-step general recurrence constructed by two generating elements of a group of
nilpotency class 2 and exponent p. In [9] Karaduman and Yavuz showed that the periods of
the 2-step Fibonacci recurrences in finite nilpotent groups of nilpotency class 5 and a prime
exponent are p·k(p), for 2 < p ≤ 2927, where p is a prime and k(p) is the period of the ordinary
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2-step Fibonacci sequence. The main role of [10, 11] in generalizing the theory was to study
the 2-step general Fibonacci sequences in finite nilpotent groups of nilpotency class 4 and
exponent p and to the 2-step Fibonacci sequences in finite nilpotent groups of nilpotency
class n and exponent p, respectively.

One may consult [12, 13] to see the results of the Fibonacci sequences in the
modular groups concerning the periodicity of 2-step Fibonacci sequences constructed by two
generating elements.

Going on a detailed literature in this area of research, we have tomention certain essen-
tial computation on the Fibonacci lengths of new structures like the semidirect products, the
direct products, and the automorphism groups of finite groups which have been studied
in [14–19]. Finally, we refer to [20] where Karaduman and Aydin studied the periodicity
property of 2-step general Fibonacci sequences in dihedral groups and the goal of this paper
is to calculate the periods of 2-step general Fibonacci sequences in the generalized quaternion
groups.

Let G = 〈a0, a1, a2, . . . , aj−1〉 be a finite group. A k-nacci sequence in group G is a
sequence {xn}∞n=0 of group elements for which each element is defined by x0 = a0, x1 =
a1, . . . , xj−1 = aj−1,

xn =

{
x0x1 · · ·xn−1, for j ≤ n < k,

xn−kxn−k+1 · · ·xn−1, for n ≥ k.
(1.1)

This sequence of the group G is denoted by Fk(G;a0, a1, a2, . . . , aj−1). We also call a 2-nacci
sequence of group elements a Fibonacci sequence of a finite group. A finite group G is k-
nacci sequenceable if there exists a k-nacci sequence of G such that every element of the
group appears in the sequence. A sequence of group elements is periodic if after a certain
point, it consists only of repetitions of a fixed subsequence. The number of elements in
the repeating subsequence is called the period of the sequence. For example, the sequence
a, b, c, d, d, e, b, c, d, e, . . . is periodic after the initial element a and has period 4. We denote the
period of a k-nacci sequence Fk(G;a0, a1, a2, . . . , aj−1) by Pk(G;a0, a1, a2, . . . , aj−1). A sequence
of group elements is called simply periodicwith period k if the first k elements in the sequence
form a repeating subsequence. For example, the sequence a, b, c, d, e, f, a, b, c, d, e, f, . . . is
simply periodic with period 6. The following theorem is well known.

Theorem 1.1 (see [4]). Every k-nacci sequence in a finite group is simply periodic.

2. Main Theorems

The generalized quaternion group Q4n, (n ≥ 2) is a group with a presentation of the form

〈
a, b | a2n = 1, an = b2, b−1ab = a−1

〉
. (2.1)

It is easy to see thatQ4n is of order 4n, a has order 2n, b has order 4, and the relation akb = ba−k

holds for all k ∈ Z.
First we consider the following lemma which will be used frequently without further

reference.
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Lemma 2.1. For an integer r, where 1 ≤ r < 2n, and for s ∈ {1, 3}, the following relations hold in
Q4n:

(i) (arbs)t = bst, where t is any even integer;

(ii) (arbs)t = arbst, where t is any odd integer.

Proof. We may use an induction method on t for both parts, simultaneously.

Theorem 2.2. Pk(Q4n;a, b) = 2k + 2.

Proof. Obviously, the order of ab is 4. If k = 2, then

x0 = a, x1 = b, x2 = ab, x3 = an−1,

x4 = an+2b, x5 = ab, x6 = a, x7 = b, . . . ,
(2.2)

and hence the sequence has period 6. If k = 3, then

x0 = a, x1 = b, x2 = ab, x3 = (ab)2 = b2, x4 = a−1,

x5 = a2b3, x6 = ab, x7 = 1, x8 = a, x9 = b, . . . ,
(2.3)

and so the period is 8. Now let k ≥ 4. Then, the first k + 1 elements of Fk(Q4n;a, b) are

x0 = a, x1 = b, x2 = ab, x3 = (ab)2, x4 = (ab)4, . . . , xk = (ab)2
k−2
. (2.4)

Since ab is of order 4, this sequence reduces to

x0 = a, x1 = b, x2 = ab, x3 = b2, xj = 1,
(
4 ≤ j ≤ k

)
. (2.5)

Thus,

xk+1 =
k∏
i=1

xi = b(ab)b2 = a−1,

xk+2 =
k+1∏
i=2

xi = (ab)b2a−1 = a2b3,

xk+3 =
k+2∏
i=3

xi = b2a−1
(
a2b3

)
= ab,

xk+4 =
k+3∏
i=4

xi = a−1
(
a2b3

)
(ab) = 1.

(2.6)
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It follows that xk+j = 1 for j (4 ≤ j ≤ k + 1). We also have

x2k+2 =
2k+1∏
i=k+2

xi =
(
a2b3

)
(ab) = a,

x2k+3 =
2k+2∏
i=k+3

xi = (ab)a = b.

(2.7)

It shows that Pk(Q4n;a, b) = 2k + 2.

Let G = 〈a, b〉 be a finite nonabelian 2-generated group. A 2-step general Fibonacci
sequence in the group G is defined by x0 = a, x1 = b, xi = xm

i−2x
l
i−1, for i ≥ 2, and the integers

m and l. Now we study this sequence for group Q4n.

Theorem 2.3. Let m and l be integers. If m ≡ 0 (mod2n) or m ≡ 0 (mod 4), then 2-step general
Fibonacci sequence in Q4n is not simply periodic.

Proof. First we consider the case m ≡ 0 (mod 2n). Then the sequence is

x0 = a, x1 = b, x2 = ambl = bl, x3 = bmbl
2
= bm+l2 , . . . . (2.8)

Obviously, the cycle does not begin again with a and b, and hence the sequence is not simply
periodic.

Now let m ≡ 0 (mod 4). Four cases occur.

Case 1 (l ≡ 0 (mod 4)). Then

x0 = a, x1 = b, x2 = am, x3 = aml,

x4 = am2+ml2 , x5 = a2m2l+ml3 , x6 = am3+3m2l2+ml4 , . . . .
(2.9)

Since the cycle does not begin again with a and b, the sequence is not simply periodic.

Case 2 (l ≡ 1 (mod 4)). Then

x0 = a, x1 = b, x2 = amb, x3 = amb, x4 = amb, . . . . (2.10)

Clearly, the sequence is not simply periodic.

Case 3 (l ≡ 2 (mod 4)). Note that b2 is a central element of Q4n. Thus

x0 = a, x1 = b, x2 = amb2, x3 = aml, x4 = am2+ml2 , x5 = a2m2l+ml3 , . . . .

(2.11)

Similar to Case 1, the sequence is not simply periodic.
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Case 4 (l ≡ 3 (mod 4)). So

x0 = a, x1 = b, x2 = amb3, x3 = amb, x4 = amb3, x5 = amb, . . . . (2.12)

Thus the sequence is not simply periodic.

Theorem 2.4. Let n be an even integer.

(i) If m ≡ 1 (mod 2n) and l ≡ 0 (mod 2n), then 2-step general Fibonacci sequence in Q4n is
simply periodic with period 2.

(ii) If m ≡ −1 (mod 2n) and l ≡ −1 (mod 2n), then 2-step general Fibonacci sequence in Q4n

is simply periodic with period 3.

(iii) If m ≡ 1 (mod 2n) and l ≡ 1 (mod 2n), then 2-step general Fibonacci sequence in Q4n is
simply periodic with period 6.

Proof. (i) Since n is even, m ≡ 1 (mod 4) and l ≡ 0 (mod 4). Thus

x0 = a, x1 = b, x2 = a, x3 = b, . . . , (2.13)

and the period is 2.
(ii) Since n is even, m ≡ 3 (mod 4) and l ≡ 3 (mod 4). Note that m and l are odd

integers. So the sequence reduces to

x0 = a, x1 = b, x2 = a−1b3, x3 = a, x4 = b, . . . , (2.14)

and the period is 3.
(iii) Because n is even,m ≡ 1 (mod 4) and l ≡ 1 (mod 4). Furthermore,m and l are odd

integers. Then the sequence reduces to

x0 = a, x1 = b, x2 = ab, x3 = an−1,

x4 = a2b3, x5 = ab, x6 = a, x7 = b, . . . ,
(2.15)

and the period is 6.

Theorem 2.5. Let n be an odd integer.

(i) If m ≡ 1 (mod2n), m ≡ 1 (mod4), l ≡ 0 (mod4) and (l, n) = 1, then 2-step general
Fibonacci sequence in Q4n is simply periodic with period 2n.

(ii) If m ≡ 1 (mod2n), m ≡ 3 (mod4), l ≡ 0 (mod4) and (l, n) = 1, then 2-step general
Fibonacci sequence in Q4n is simply periodic with period 4n.

Proof. (i) By induction on k ≥ 0, we can show that x2k = a and x2k+1 = a−klb. In particular, the
period must be even. Now we have

x2k+1 = b ⇐⇒ 2n | kl ⇐⇒ n | k (because (l, n) = 1), (2.16)

and so the period is 2n.
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(ii) By induction on k ≥ 0, it may be shown that

x2k = a, x2k+1 =

{
a−klb if k is even,
a−klb3 if k is odd.

(2.17)

Therefore, the period must be even. Now we have

x2k+1 = b ⇐⇒ 2n | kl ⇐⇒ 2n | k (because (l, n) = 1 and n is odd), (2.18)

and thus the period is 4n.

Theorem 2.6. Let n and l be odd integers,m ≡ −1 (mod 2n) and (l + 1, n) = 1.

(i) If m ≡ 1 (mod4), then 2-step general Fibonacci sequence in Q4n is simply periodic with
period 6n.

(ii) If m ≡ 3 (mod4) and l ≡ 1 (mod4), then 2-step general Fibonacci sequence in Q4n is
simply periodic with period 6n.

(iii) If m ≡ 3 (mod4) and l ≡ 3 (mod4), then 2-step general Fibonacci sequence in Q4n is
simply periodic with period 3n.

Proof. (i) Two cases occur.

Case 1 (l ≡ 1 (mod 4)). By induction on k ≥ 0, we can prove that the following relations hold:

x6k = a,

x6k+1 = a−2k(l+1)b,

x6k+2 = a−(2k(l+1)+1)b,

x6k+3 = an+1,

x6k+4 = a−(n+(2k+1)(l+1))b,

x6k+5 = a−((2k+1)(l+1)+1)b.

(2.19)

Consequently, the period must be a multiple of 6. Now we have

x6k+1 = b ⇐⇒ 2n | 2k(l + 1) ⇐⇒ n | k (because (l + 1, n) = 1), (2.20)

and hence the period is 6n.

Case 2 (l ≡ 3 (mod 4)). The proof is similar to Case 1 except that

x6k+2 = a−(n+2k(l+1)+1)b,

x6k+4 = a−(2k+1)(l+1)b.
(2.21)
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(ii) It is easily shown that the following relations hold for every k ≥ 0:

x3k = a, x6k = a, x6k+1 = a−2k(l+1)b, x6k+2 = a−(2k(l+1)+1)b,

x6k+3 = a, x6k+4 = a−(n+(2k+1)(l+1))b, x6k+5 = a−(n+1+(2k+1)(l+1))b.
(2.22)

Particularly, the period must be a multiple of 3. Since n + (2k + 1)(l + 1) is odd, then it is not a
multiple of 2n. Thus x6k+4 /= b. Further,

x6k+1 = b ⇐⇒ 2n | 2k(l + 1) ⇐⇒ n | k (because (l + 1, n) = 1), (2.23)

and hence the period is 6n.
(iii) By induction on k ≥ 0, we can prove the following relations:

x3k = a,

x3k+1 = a−k(l+1)b,

x3k+2 = a−(n+1+k(l+1))b.

(2.24)

Therefore, the period must be a multiple of 3. Now we have

x3k+1 = b ⇐⇒ 2n | k(l + 1) ⇐⇒ n | k (because (l + 1, n) = 1), (2.25)

and so the period is 3n.
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