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A novel deterministic SEIS model for the transmission of email viruses in growing communication
networks is formulated. Interestingly, the model is different from classical SEIS models not only in
the form, but also in the dynamical features. We study the equilibria and their stability and analyse
the bifurcation dynamics of the model. In particular, we find that the virus-free equilibrium is
locally asymptotically stable for any parameter values, which may attribute to the absence of the
basic reproduction number. It is shown that the model undergoes a saddle-node bifurcation and
admits the bistable phenomenon. Moreover, on the basis of the Lyapunov function, the domains
of attraction of equilibria are estimated by solving an LMI optimization problem. Based on the
above theoretical results, some effective strategies are also provided to control the propagation of
the email viruses. Additionally, our results are confirmed by numerical simulations.

1. Introduction

Currently, email has become one of the most basic applications in the Internet with
the development of networked computer. As more and more people rely on email
communications for business and everyday life, email viruses constitute one of the Internet
major security threats. When an email virus infects amachine, it sends an infected email to the
addresses in the computer’s email address book. This self-broadcast mechanism allows for
the virus’s rapid reproduction and spread. Due to this facility, and the advantages of sending
viruses through email [1], hackers mostly tend to choose the email as the vector of spreading
their viruses [2]. Indeed, according to the Virus Bulletin [3] and National Computer Virus
Emergency Response Center [4], the email viruses still account for a large share of the virus
prevalence today.
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In order to eradicate viruses, as well as to control and limit the impact of an outbreak,
a lot of efforts have been devoted to develop various mathematical models to simulate the
real case of viruses’ spreading [5–9]. Unlike scanning worms such as Code Red or Slammer,
email viruses spread over a logical network defined by email address relationship, making
traditional epidemic models invalid for modelling the propagation of email virus.

The spread of email virus is a complex process. An adequate modeling of this process
requires both a correct description of the logical network along which viruses spread [10–12]
and a quantitative formulation of various behavioral mechanisms of the users who motivate
the spread of the virus [1, 2].

Due to the specific characteristics of email viruses propagation, some researchers focus
attention on the topological structures of email networks [13], while some researchers deal
with the development of new techniques for the detection and elimination of viruses [14].
Immunization strategies in email networks are presented by experiments and simulations in
[15] and [16]. In 2003, Zou et al. [1] presented an email viruses’ model that accounts for the
behaviors of email users, such as email checking frequency and the probability of opening an
email attachment. But they rely primarily on simulation rather than mathematical analysis.
In [12], the simulations for a stochastic susceptible-hidden-infectious-recovered model and
mathematical analysis for homogeneous and heterogeneous SIR model are provided. When
considering immunization in the heterogeneous SIR model, the saddle-node bifurcation
occurs. Here we must emphasize the hidden state which is a key characteristic that the email
virus different from other viruses. So based on the spreading mechanism of email viruses, we
proposed a SEIS model in growing homogeneous networks by stochastic approach. Relying
primarily on mathematical analysis, we give some effective control strategies.

The rest of the paper is organized as follows. In Section 2, a discrete-time model of
the email viruses’ spreading is proposed whose detailed process is also given. Then we
deal with the model to derive the continuous-time equations for the dynamics of email
viruses spreading. In Section 3, we present a qualitative analysis of the model. We show that
the virus-free equilibrium is locally asymptotically stable for any parameter values and the
system admits a saddle-node bifurcation. Section 4 estimates the domain of attraction of the
equilibrium on the basis of the determined Lyapunov function. The subsequent sections are
the numerical examples and the conclusion and discussion.

2. Mechanism Analysis and Model Establishment

In this paper, we consider email viruses that are only transferred through users’ email
address books. Thus email address relationship forms a logical network for email viruses.
Email address book of a user usually contains the user’s friends’ or business partners’ email
addresses. Thus if user A has user B’s address, user B probably also has user A’s address
in his own address book. Due to this, we model the email network as an undirected graph,
although this may not always be true. Without loss of generality, we can safely assume that
every distinct email address is associated with one host computer which is associated with
a single user. Then the logical network can be seen as host computer network, in which the
vertices are the computers and the links are the address relationships of the corresponding
users. Here we consider the network as a homogeneous network that assumes each computer
has same neighbors which are supposed as k; that is, an email user has k addresses in his own
address book and his address is in k users’ address books.
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Figure 1: The flowchart of email virus spreading.

According to the already studied propagation characteristics, the spreading mecha-
nism of email viruses can be described as follows: a healthy computer, which links with
infectious one, would receive virus emails. But it may not be infectious immediately. The
email viruses are hiding in the email box. At this moment, the computer is infected but not
yet infectious. Only if the user opens the virus attachments, the computer becomes infectious.
Then if the computer has been found infectious, the user would take antivirus measures
to clean the viruses. After that, the computer recovers from infectious state and returns to
healthy state again.

Obviously, the viruses’ spreading is just the process of computers switching between
different states essentially. We call computers that have not received virus emails and could
be infected easily after receiving virus emails as the susceptible computers. The computer
that has received virus emails but the virus attachments have not been opened is called
the exposed computer. And further, a computer that has been infected by the viruses and
can transmit them to susceptible computers is called infectious computer. The numbers of
susceptible, exposed, and infectious computers at time t are denoted as S(t), E(t), and I(t),
respectively. Then the total number of computers at time t is N(t) = S(t) + E(t) + I(t). Here
we assume the total number of computers is varying dynamically as time t; that is, the new
computers can be connected to the network and some old computers can be removed from
the network (including the obsolescence computers). Suppose A is the rate at which new
computers are connected and d is the rate at which the computers are removed per unit time.
The flow diagram of the state transition is depicted in Figure 1.

By the above analysis, we have already known the mechanism of the virus
propagation. In the following, we will elaborate the probabilities of transforming from S to
E, E to I, and I to S, by assuming the number of infected contacts as a random variable that
follows the binomial distribution.

2.1. The Transition from Susceptible State to Exposed State

Consider now a computer U is in the susceptible state at time t. By the usual homogeneous
mixing approximation,Θ(t) = I(t)/N(t) denotes the rate that a neighbor of the computerU is
in the infectious state at time t. Suppose that k neighbors of computerU are independent with
each other, we have k independent events occurring with the same probability Θ(t). Then
the number of the infected neighbors of computer U is a random variable that follows the
binomial distribution B[k,Θ(t)]. And the probability of the number of the infected neighbors
of computer U equal to ki at time t can be written as follows:

P(X = ki) =
(
k
ki

)
Θ(t)ki(1 −Θ(t))k−ki . (2.1)
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When a computer is infected, it will send a virus email to all email addresses in the user’s
email address book. So as long as there are infected computers in the k neighbors, the
susceptible computers would have chance to turn into exposed. Let pSS denote the probability
that computerU still stays in the susceptible state in the time interval [t, t+Δt], then 1−pSS is
the probability that it enters into the exposed state. ki is the number of the infected neighbors
of computer U, and if p denotes the probability that the computer U received virus emails
from each infected neighbor per unit time, then we have

pSS(ki, t) =
(
1 −Δtp

)ki . (2.2)

Because the infected number ki of the computer’s k neighbors can change from 0 to k

and the corresponding pSS(ki, t) changes from 1 to (1−Δtp)k, using (2.1) and (2.2), we obtain
the transition probability pSS(t) averaged over all possible values of ki as

pSS(t) = E
(
pSS(ki, t)

)
=

k∑
ki=0

(
1 −Δtp

)ki(k
ki

)
Θ(t)ki(1 −Θ(t))k−ki =

(
1 −ΔtpΘ(t)

)k
. (2.3)

Then in the interval [t, t + Δt], the probability of a susceptible computer transforming to the
exposed state is 1 − (1 −ΔtpΘ(t))k.

2.2. The Transition from Exposed State to Infectious State

An exposed computer being infected or not depends on whether the user opens the virus
emails. As long as the email user opens a virus attachment (one virus email only has one
virus attachment) arbitrarily, the computer will be infected, so only if the user does not open
all virus emails that he has received, the computer will stay in the exposed state. Let po be
the probability that the email user opens a virus attachment (0 < po < 1); thus 1 − po is
the probability that the email user does not open a virus attachment. Let the number of the
virus emails that the computer U received during the time interval [t, t + Δt] be ne; then the
probability that all ne virus attachments would not be opened is (1 − po)

ne . Therefore, the
probability of the computer infected is 1 − (1 − po)

ne .
In addition, from (2.1), we can obtain that the average infected number of the

computer’s neighbors is

〈ki〉 =
k∑

ki=0

kiP(X = ki) =
k∑

ki=0

ki

(
k
ki

)
Θ(t)ki(1 −Θ(t))k−ki = kΘ(t). (2.4)

Suppose the computer U received a virus emails from each infected neighbor per unit time,
then in the time interval [t, t + Δt], the computer U received akΘ(t)Δt virus emails on
average; that is, ne = akΘ(t)Δt.

Substituting ne into the above formula, the probability of an exposed computer
becomes infected is 1 − (1 − po)

kaΘ(t)Δt in the time interval Δt.
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2.3. The Transition from Infectious State to Susceptible State

An infected computer recovering from the infection and reentering into the susceptible state
is dependent on the computer users. If the computers have been found virus-infected, the
users would take antivirus measures; as a result the viruses could be removed and the
computers will enter into susceptible state. But if the users do not do this, the computers
will stay in the infected state. So, we suppose the computers return to the susceptible state at
the probability δ per unit time.

Based on the above analyses and Figure 1, we can indeed write the spread mechanism
of email viruses as the following deterministic model:

S(t + Δt) = S(t) + ΔtA −
[
1 −
(
1 −Δtp

I(t)
N(t)

)k
]
S(t) + ΔtδI(t) −ΔtdS(t),

E(t + Δt) = E(t) +

[
1 −
(
1 −Δtp

I(t)
N(t)

)k
]
S(t) −

[
1 − (1 − po

)ka(I(t)/N(t))Δt
]
E(t) −ΔtdE(t),

I(t + Δt) = I(t) +
[
1 − (1 − po

)ka(I(t)/N(t))Δt
]
E(t) −ΔtδI(t) −ΔtdI(t).

(2.5)

In the limit Δt → 0, the above model can be simplified by keeping only the two first terms in
the development of the binomial. This leads to the following continuous-time model:

dS(t)
dt

= A − αS(t)
I(t)
N(t)

+ δI(t) − dS(t),

dE(t)
dt

= αS(t)
I(t)
N(t)

− βE(t)
I(t)
N(t)

− dE(t),

dI(t)
dt

= βE(t)
I(t)
N(t)

− dI(t) − δI(t),

(2.6)

where α = kp, β = ka ln(1/(1 − po)).
Summing up the three equations in (2.6), we obtain

dN(t)
dt

= A − dN(t), (2.7)

when t → +∞, N(t) → A/d � N0. It is easy to see that system (2.6) can be shown to be
mathematically well posed in the positive invariant region D = {(S, E, I) | 0 ≤ S+E + I ≤ N0}
and solution in D exists for all positive time.

Hence, (2.6) has the following limit system:

dE(t)
dt

=
α

N0
[N0 − E(t) − I(t)]I(t) − β

N0
E(t)I(t) − dE(t),

dI(t)
dt

=
β

N0
E(t)I(t) − (d + δ)I(t).

(2.8)
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Rescaling (2.8) by x1 = (α/N0(d + δ))E, x2 = (α/N0(d + δ))I, τ = (d + δ)t and still writing τ
as t, we obtain

dx1

dt
= (B − x1 − x2)x2 −mx1x2 − nx1,

dx2

dt
= mx1x2 − x2,

(2.9)

where B = α/(d + δ), m = β/α, n = d/(d + δ), and the corresponding positive invariant set
is X = {(x1, x2) | 0 ≤ x1 + x2 ≤ B}.

3. Dynamic Analysis of System (2.9)

The objective of this section is to perform a qualitative analysis of system (2.9). We first
consider the nonexistence of limit cycle. Then we study the equilibria and their stability.
Finally, we prove the occurrence of saddle-node bifurcation.

Theorem 3.1. For system (2.9), there is no limit cycle.

Proof. Take the Dulac function

D(x1, x2) =
1
x2

, (3.1)

where x1 > 0, x2 > 0.
Set

(B − x1 − x2)x2 −mx1x2 − nx1 = P(x1, x2), mx1x2 − x2 = Q(x1, x2); (3.2)

we have

∂(DP)
∂x1

+
∂(DQ)
∂x2

= −1 −m − n

x2
< 0. (3.3)

Therefore, there is not a closed orbit inside the first quadrant.

Next, we will study the equilibrium situation of system (2.9). The system always has
the virus-free equilibrium E0 = (0, 0), and the Jacobian matrix is JE0 =

[ −n B
0 −1

]
. Obviously,

(0, 0) is locally asymptotically stable for any parameter values.
To find the positive equilibrium, set

(B − x1 − x2)x2 −mx1x2 − nx1 = 0,

mx1 − 1 = 0,
(3.4)
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which yields the equation of x2:

mx2
2 + (1 +m − Bm)x2 + n = 0. (3.5)

We can obtain that

(1) there is no positive equilibrium if B < 2
√
n/m + 1/m + 1;

(2) there is one positive equilibrium if B = 2
√
n/m + 1/m + 1;

(3) there are two positive equilibria if B > 2
√
n/m + 1/m + 1.

In the following, we analyse the stability of the positive equilibria in different situations,
respectively, and prove the existence of saddle-node bifurcation, to elaborate from three cases.

Case 1 (only one positive equilibrium in system (2.9)). Suppose B = 2
√
n/m+1/m+1; system

(2.9) has one positive equilibrium

E∗ =
(
x∗
1, x

∗
2
)
=
(

1
m
,
1
2

(
B − 1

m
− 1
))

; (3.6)

the Jacobian matrix at E∗ is

JE∗ =
[−(1 +m)x∗

2 − n 0
mx∗

2 0

]
. (3.7)

Clearly, the eigenvalues of matrix JE∗ are σ1 = 0 and σ2 = −(1+m)x∗
2−n; E∗ is a nonhyperbolic

point. Therefore, we investigate the dynamics near E∗ by the center manifold theorem [17,
18].

Firstly, shift E∗ to the origin via y1 = x1 − x∗
1 and y2 = x2 − x∗

2; system (2.9) can be
transformed into

dy1

dt
=
[−n − (1 +m)x∗

2
]
y1 − (1 +m)y1y2 − y2

2 ,

dy2

dt
= mx∗

2y1 +my1y2.

(3.8)

Secondly, define the transformation

[
y1

y2

]
= H

[
z1
z2

]
, H =

⎡
⎣0 1

1
mx∗

2

σ2

⎤
⎦, (3.9)

which transformed system (3.8) into the following standard form:

dz1
dt

= f1(z1, z2),

dz2
dt

= σ2z2 + f2(z1, z2),

(3.10)
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where f1 = (1 + m)(mx∗
2/σ2)(z1z2 + (mx∗

2/σ2)z22) + (mx∗
2/σ2)(z1 + (mx∗

2/σ2)z2)
2 + m(z1z2 +

(mx∗
2/σ2)z22) and f2 = −(1 +m)(z1z2 + (mx∗

2/σ2)z22) − (z1 + (mx∗
2/σ2)z2)

2.
By the existence theorem [19], there exists a center manifold for system (3.10), which

can be expressed locally as follows:

Wc(0) =
{
(z1, z2) ∈ R

2 | z2 = h(z1), ‖z1‖ < ρ, h(0) = 0, Dh(0) = 0 | ρ > 0
}
, (3.11)

with ρ sufficiently small and Dh is the derivative of h with respect to z1.
To compute the center manifold Wc(0), we suppose h(z1) has the form

h(z1) = h1z
2
1 + h2z

3
1 + h3z

4
1 + h4z

5
1 + · · · . (3.12)

By the local center manifold theorem, the center manifold (3.12) satisfies

Dh · f1(z1, z2) − σ2z2 − f2(z1, z2) = 0, (3.13)

where Dh(z1) = 2h1z1 + 3h2z
2
1 + 4h3z

3
1 + 5h4z

4
1 + · · · .

Rewrite f1 and f2 as f1 = a1z
2
1+a2z1z2+a3z

2
2 and f2 = b1z

2
1+b2z1z2+b3z

2
2, respectively,

where

a1 =
mx∗

2

σ2
, a2 = (1 +m)

mx∗
2

σ2
+ 2
(
mx∗

2

σ2

)2

+m,

a3 = (1 +m)
(
mx∗

2

σ2

)2

+
(
mx∗

2

σ2

)3

+
m2x∗

2

σ2
,

b1 = −1, b2 = −(1 +m) − 2
mx∗

2

σ2
, b3 = −(1 +m)

mx∗
2

σ2
−
(
mx∗

2

σ2

)2

.

(3.14)

Substituting (3.10) into (3.13) and then equating coefficients on each power of z1 to zero
yields

h1 =
1
σ2

, h2 =
2a1h1 − b2h1

σ2
, h3 =

2a1h
2
1 + 3a1h2 − b2h2 − b3h

2
1

σ2
,

h4 =
5a2h1h2 + 2a3h

3
1 + 4a1h3 − b2h3 − 2b3h1h2

σ2
.

(3.15)

Then, we get the approximation for h:

h =
1
σ2

[
z21 + (2a1h1 − b2h1)z31 +

(
2a1h

2
1 + 3a1h2 − b2h2 − b3h

2
1

)
z41

+
(
5a2h1h2 + 2a3h

3
1 + 4a1h3 − b2h3 − 2b3h1h2

)
z51

]
+ · · · .

(3.16)
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Substituting (3.16) to the first equation of system (3.10), we achieve

dz1
dt

= f1(z1, z2) =
mx∗

2

σ2
z21 +

[
(1 +m)

mx∗
2

σ2
+ 2
(
mx∗

2

σ2

)2

+m

]
1
σ2

z31 + · · · . (3.17)

So from (3.17) (see [20, p. 338–340]), we get the following theorem.

Theorem 3.2. If B = 2
√
n/m + 1/m + 1, the system (2.9) has one positive equilibrium E∗ and E∗ is

a saddle node.

Case 2 (two positive equilibria in system (2.9)). Suppose B > 2
√
n/m+1/m+1, there are two

positive equilibria

E∗
1 =
(
x∗
1, x

1∗
2

)
=

⎛
⎜⎝ 1

m
,
B − 1/m − 1 −

√
(B − 1/m − 1)2 − 4n/m

2

⎞
⎟⎠,

E∗
2 =
(
x∗
1, x

2∗
2

)
=

⎛
⎜⎝ 1

m
,
B − 1/m − 1 +

√
(B − 1/m − 1)2 − 4n/m

2

⎞
⎟⎠.

(3.18)

We first determine the stability of E∗
1. The Jacobian matrix at E∗

1 is

JE∗
1
=

⎡
⎢⎣−(1 +m)x1∗

2 − n

√(
B − 1

m
− 1
)2

− 4
n

m
mx1∗

2 0

⎤
⎥⎦. (3.19)

Obviously, det(JE∗
1
) = −mx1∗

2

√
(B − 1/m − 1)2 − 4n/m < 0, so E∗

1 is a saddle.
Now we analyze the stability of the second positive equilibrium E∗

2. The Jacobian
matrix at E∗

2 is

JE∗
2
=

⎡
⎣−(1 +m)x2∗

2 − n B − 1
m

− 1 − 2x2∗
2

mx2∗
2 0

⎤
⎦. (3.20)

By a similar argument as above, we obtain that

det
(
JE∗

2

)
= −mx2∗

2

(
B − 1

m
− 1 − 2x2∗

2

)
= mx2∗

2

√(
B − 1

m
− 1
)2

− 4
n

m
> 0,

trace
(
JE∗

2

)
= −(1 +m)x2∗

2 − n < 0,

(3.21)

Δ = trace2
(
JE∗

2

)
− 4det

(
JE∗

2

)

= (1 +m)2
(
x2∗
2

)2
+ 2n(1 +m)x2∗

2 + n2 + 4(Bm −m − 1)x2∗
2 − 8m

(
x2∗
2

)2
.

(3.22)
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After some algebra calculations, we obtainΔ > 0;E2
∗ is a stable node. Sowe have the following

theorem.

Theorem 3.3. If B > 2
√
n/m + 1/m + 1, the system (2.9) has two positive equilibria E∗

1 and E∗
2; E

∗
1

is a saddle and E∗
2 is a stable node.

Case 3 (saddle-node bifurcation). From Cases 1 and 2, we can see system (2.9) experiences a
saddle-node bifurcation. In this part, we give the proof.

Let us consider B as a bifurcation parameter, define B0 = 2
√
n/m+1/m+1 and x0 = E∗.

Rewrite system (2.9) as

ẋ = f(x, B) =
[−nx1 + Bx2 − (1 +m)x1x2 − x2

2
−x2 +mx1x2

]
. (3.23)

Then we have

Df(x0, B0) =
[−(1 +m)x∗

2 − n 0
mx∗

2 0

]
,

fB(x0, B0) =
[
x∗
2
0

]
.

(3.24)

Df(x0, B0) has a simple eigenvalue λ = 0 with eigenvector v = [0, 1]T , and that DTf(x0, B0)
has an eigenvector w = [mx∗

2/((1 +m)x∗
2 + n), 1]T corresponding to λ = 0. Furthermore, the

following conditions are satisfied:

wTfB(x0, B0) =
mx∗

2
2

(1 +m)x∗
2 + n

/= 0, wTD2f(x0, B0)(v, v) = −2 mx∗
2

(1 +m)x∗
2 + n

/= 0. (3.25)

According to the theorem (Sotomayor; see [21, p.148]), we get the following result.

Theorem 3.4. System (2.9) experiences a saddle-node bifurcation at the equilibrium x0 = E∗ as the
parameter B passes through the bifurcation value B = B0.

4. Estimation of the Domain of Attraction

From the previous study, we know, when B > 2
√
n/m+1/m+1, E∗

2 is a stable node, and at the
same time, the virus-free equilibrium is also locally asymptotically stable, that is, the bistable
state. In this case, the eventual behavior of the system is sensitive to the initial positions. So
in this section, we study the domains of attraction about the two equilibria using the method
in [22]. For this task, we make some preparations.

Definition 4.1 (domain of attraction [23]). The domain of attraction of the origin is given by

S =
{
x0 ∈ R

n | lim
t→∞

x
(
t, x0
)
−→ 0

}
. (4.1)
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Consider the following system:

ẋ = f(x), (4.2)

where f : R
n → R

n is an analytical function with the following properties:

(1) f(0) = 0; that is, x = 0 is an equilibrium point of (4.2);

(2) every eigenvalue of ∂f/∂x(0), the Jacobian matrix of f at the origin, has negative
real part; that is, x = 0 is an asymptotically stable equilibrium point.

Let DA be the domain of attraction of the zero solution of (4.2). The following result
provides a tool to determine DA.

Lemma 4.2 (see [24]). DA coincides with the natural domain of analyticity of the unique V of the
problem

〈∇V, f
〉
= −‖x‖2,

V (0) = 0.
(4.3)

The function V is positive on DA and limx→x0V (x) = ∞ for any x0 ∈ ∂DA, where ∂DA is the
boundary of DA.

Based on Lemma 4.2, the problem of determining DA can be reduced to finding the
natural domain of analyticity of the solution V of (4.3). The function V is called the optimal
Lyapunov function for (4.2). Generally, it is not easy to construct the optimal Lyapunov
function V and determine its domain of analyticity. But, in the diagonalizable case, we can
determine the coefficients of the expansion of W = V ◦H at 0, where H reduces ∂f/∂x(0) to
the diagonal form. By the Cauchy-Hadamard-type theorem [25], we can obtain the domain
of convergence D0 of the series W , and DA0 = H−1(D0) is a part of the domain of attraction.

For system (4.2), the following lemma holds.

Lemma 4.3 (see [26]). For each isomorphismH : C
n → C

n and g = H−1 ◦ f ◦H, the problem

〈∇W,g
〉
= −‖Hz‖2,

W(0) = 0
(4.4)

has a unique analytical solution; namely, W = V ◦H, where V is the optimal Lyapunov function for
(4.2).

Let H : C
n → C

n be one isomorphism which reduces ∂f/∂x(0) to the diagonal form
H−1∂f/∂x(0)H = diag(λ1, λ2, . . . , λn). Denote g = H−1 ◦ f ◦H andW = V ◦H, where V is the
optimal Lyapunov function for (4.2).

For given H, we consider the expansion of W at origin:

W(z1, z2, . . . , zn) =
∞∑

m=2

∑
|j|=m

Bj1j2···jnz
j1
1 z

j2
2 · · · zjnn , (4.5)
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and the expansions of the scalar components gi of g at origin:

gi(z1, z2, . . . , zn) = λizi +
∞∑

m=2

∑
|j|=m

bij1j2···jnz
j1
1 z

j2
2 · · · zjnn , (4.6)

then the coefficients Bj1j2···jnof the development (4.5) are given by

Bj1j2···jn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2λi0

n∑
i=1

s2ii0 if
∣∣j∣∣ = ji0 = 2,

− 2
λp + λq

n∑
i=1

sipsiq if
∣∣j∣∣ = 2, jp = jq = 1,

− 1∑n
i=1 jiλi

if
∣∣j∣∣ ≥ 3,

×
|j|−1∑
p=2

∑
|k|=p,ki≤ji

n∑
i=1

[(
ji − ki + 1

) × bik1k2···knBj1−k1···ji−ki+1···jn−kn
]
,

(4.7)

where λi0 is the i0th eigenvalue of ∂f/∂x(0), i0 = 1, 2, . . . , n, sip(siq) represents the entry of H
which lies in the ith row and the pth(qth) column.

Let Vp, p ≥ 2 be the Taylor polynomials of degree p associated to V at the origin. For
Vp, we have the following results [27].

Lemma 4.4. For any p ≥ 2, there exists rp > 0 such that for any x ∈ B(rp) \ {0} one has

Vp(x) > 0,
〈∇Vp(x), f(x)

〉
< 0,

(4.8)

where B(rp) = {x ∈ R
n | ‖x‖ < rp} and B(rp) is its closure.

Hence, for any positive integer p ≥ 2, Vp is a Lyapunov function for system (4.2) in
B(rp).

Now, we construct the Lyapunov function at the virus-free equilibrium. Define the
following transformation:

[
z1
z2

]
= H−1

[
x1

x2

]
, H =

⎡
⎣1 B

1 − n
0 −1

⎤
⎦ :=

[
s11 s12
s21 s22

]
. (4.9)

Then system (2.9) is transformed into the following form:

dz

dt
= g(z), (4.10)
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where

z =
[
z1
z2

]
, g(z) =

⎡
⎢⎢⎣
−nz1 +

(
1 +m − B

1 − n

)
z1z2 +

(
B(1 +m)
1 − n

− 1 −
(

B

1 − n

)2

m

)
z22

−z2 +mz1z2 +
Bm

1 − n
z22

⎤
⎥⎥⎦.

(4.11)

For the isomorphism H : C
2 → C

2 and the function g : R
2 → R

2, it follows from Lemma 4.3
that there exists a unique analytical function W = V ◦ H such that 〈∇W,g〉 = −‖Hz‖2 and
W(0) = 0, where V is the optimal Lyapunov function for the reduced system (4.10).

Let the expansion of W at (0, 0) be

W(z1, z2) =
∞∑

m=2

∑
|j|=m

Bj1j2z
j1
1 z

j2
2 , (4.12)

and denote the components gi of g as

gi(z1, z2) = λizi +
∞∑

m=2

∑
|j|=m

bij1j2z
j1
1 z

j2
2 , i = 1, 2. (4.13)

The coefficients of expansion forW are given by

Bj1j2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2λi0

2∑
i=1

s2ii0 if
∣∣j∣∣ = ji0 = 2,

− 2
λp + λq

2∑
i=1

sipsiq if
∣∣j∣∣ = 2, jp = jq = 1,

− 1∑2
i=1 jiλi

|j|−1∑
p=2

∑
|k|=p,ki≤ji

Φ if
∣∣j∣∣ ≥ 3,

(4.14)

where Φ = (j1 − k1 + 1) × b1k1k2Bj1−k1+1j2−k2 + (j2 − k2 + 1) × b2k1k2Bj1−k1j2−k2+1.
Let λ1 = −n, λ2 = −1; we obtain

B20 = − 1
2λ1

(
s211 + s221

)
=

1
2n

,

B11 = − 2
λ1 + λ2

(s11s12 + s21s22) =
2B

1 − n2
,

B02 = − 1
2λ2

(
s212 + s222

)
=

1
2

(
B2

(1 − n)2
+
1
2

)
.

(4.15)



14 Discrete Dynamics in Nature and Society

Let W2(z1, z2) be the sum of the square terms of the expansion (4.12). Clearly,

W2(z1, z2) = B20z
2
1 + B11z1z2 + B02z

2
2. (4.16)

Correspondingly, by the reversibility of H, we obtain an analytical function

V2(x1, x2) =
(
W2 ◦H−1

)
(x1, x2)

= B20

(
x1 +

B

1 − n
x2

)2

+ B11

(
x1 +

B

1 − n
x2

)
(−x2) + B02(−x2)2

= k1x
2
1 + k2x1x2 + k3x

2
2,

(4.17)

where

k1 =
1
2n

> 0, k2 =
B

n(1 + n)
> 0, k3 =

B2

2n(1 + n)
+
1
2
> 0. (4.18)

By using Lemma 4.4, it is easy to see that there exists a domain of the origin and in which
V2 is a positive definite function and further, it provides a Lyapunov function to guarantee
that the trivial equilibrium E0 of system (2.9) is asymptotically stable. Obviously, this domain
belongs to DA.

Next step, we will use the Lyapunov function V2 to estimate the domain of attraction
for the virus-free equilibrium. For this, we first introduce the following results.

Lemma 4.5 (see [28]). Let V (x) be a Lyapunov function for system (4.2) in the domain

Ωc = {x ∈ R
n | V (x) ≤ c, c > 0}. (4.19)

Assume, moreover, that Ωc is bounded and contains the origin. If V̇ is negative definite in Ωc, then
the origin is asymptotically stable and every solution in Ωc tends to the origin as t → ∞.

To determinate the whole domain of attractionDA of a general nonlinear system is an
extremely difficult problem. However, by Lemma 4.5 it is possible to compute subsets of the
domain of attraction which are defined by (4.19). Our objective is to find the maximum value
c∗ of c [29]. This c∗ is defined by the following optimization problem.

c∗ = minV (x),

x ∈
{

R
n | dV (x)

dt
= 0, x /= 0

}
.

(4.20)

Geometrically, this means that we seek the global minimum of the Lyapunov function
V (x) along the hypersurface {x ∈ R

n | dV (x)/dt = 0, x /= 0}.
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Correspondingly, for system (2.9) and the determined Lyapunov function V2, the
optimization problem (4.20) should be reformulated as

c∗ = minV2(x),

x ∈
{

R
2 | dV2(x)

dt
= 0, x /= 0

}
,

(4.21)

where V2 is defined by (4.17).
Clearly, (4.21) is a linear matrix inequality (LMI) relaxations of global optimization

problem with multivariable real-valued polynomial criterion and constraints (see [30, 31]
and the references therein for details).

Then Ωc∗ is the estimation of domain of attraction for E0.
Let Λ1 = (−[(1 + m)x2∗

2 + n] +
√
Δ)/2 and Λ2 = (−[(1 + m)x2∗

2 + n] −
√
Δ)/2, where

Δ = (1 +m)2(x2∗
2 )2 + 2n(1 +m)x2∗

2 + n2 + 4(Bm −m − 1)x2∗
2 − 8m(x2∗

2 )2 > 0 (defined by (3.22)),
analogously, for the positive equilibrium E∗

2, after tedious computation, we can obtain the
Lyapunov function:

V2(x1, x2) = k′
1

(
x1 − x∗

1

)2 + k′
2
(
x1 − x∗

1

)(
x2 − x2∗

2

)
+ k′

3

(
x2 − x2∗

2

)2
, (4.22)

where

k′
1 = − 1

2Δ
(Λ1 −Λ2)2

Λ1 + Λ2

(
mx2∗

2

)2 + Λ1Λ2

Λ1Λ2
,

k′
2 =

1√
Δ

(Λ1 −Λ2)2

Λ1Λ2
,

k′
3 = − 1

2Δ
(Λ1 −Λ2)2

Λ1 + Λ2

(
mx2∗

2

)2((Λ1 + Λ2)2 + Λ1Λ2

)
+ Λ2

1Λ
2
2(

mx2∗
2

)2Λ1Λ2

.

(4.23)

From the discussion in Section 3, we can obtain

Λ1 + Λ2 = −
[
(1 +m)x2∗

2 + n
]
< 0, Λ1Λ2 = mx2∗

2

√(
B − 1

m
− 1
)2

− 4
n

m
> 0; (4.24)

hence k′
1, k

′
2, and k′

3 are all positive.
Correspondingly, we can obtain the estimation of domain of attraction for E∗

2.

5. Numerical Examples

In this section, we will perform numerical examples to verify the results that obtained in
previous sections, hence, provide an intuitive impression about saddle-node bifurcation,
bistability, and the domain of attraction.
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Figure 2: The phase diagram of system (2.9) when B < 2
√
n/m + 1/m + 1.
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Figure 3: The phase diagram of system (2.9)when B = 2
√
n/m + 1/m + 1 (saddle node).

Firstly, we present the saddle-node bifurcation. Here we emphasize that the virus-free
equilibrium is locally asymptotically stable for any parameter values, and it can be observed
in Figures 2, 3, and 4 simultaneously (the green asterisk in Figures 2–4). In Figure 2, k = 3,
p = 0.65, δ = 0.6, d = 0.05, po = 0.35, and a = 1; we have B = 3, m = 0.66274294783454,
n = 0.07692307692308, which satisfy the condition B < 2

√
n/m+ 1/m+ 1. In this case, system

(2.9) has only virus-free equilibrium, and it is asymptotically stable.
Setting k = 4, p = 0.4005, and keeping other parameter values unchanged, we have

B = 2.46455056685463, m = 1.07561277426331, n = 0.07692307692308, then B = 2
√
n/m +

1/m+ 1. According to Theorem 3.2, system (2.9) has a positive equilibrium, and it is a saddle
node. If p = 0.52, we have B = 3.2, m = 0.82842868479318, n = 0.07692307692308, then
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Figure 4: The phase diagram of system (2.9) when B > 2
√
n/m + 1/m + 1 (bistability).

B > 2
√
n/m + 1/m + 1. According to Theorem 3.3, there have been two positive equilibria;

one of them is a saddle and the other is a node.
Above all, system (2.9) experiences a saddle-node bifurcation which can be seen

obviously from Figures 2–4. After crossing the critical value, the saddle node (the red
asterisk in Figure 3) becomes one saddle and one node (the red pentagrams in Figure 4).
Consequently, the bistable case occurs.

Secondly, we show the domain of attraction for the equilibria. From Figure 4, we can
see that system (2.9) has two locally asymptotically stable equilibria under the condition
B > 2

√
n/m+1/m+1. Letting the parameters be the same as in Figure 4, we give the estimated

results of domains of attraction (Figures 5 and 6). From (4.17), we get the Lyapunov function
corresponding to E0 as follows:

VE0
2 = 6.5x2

1 + 38.62857143x1x2 + 62.30571430x2
2, (5.1)

and its total derivative along the trajectory of system (2.9) has the form

dV E0
2

dt
= −x2

1 − x2
2 + 8.231443707x2

1x2 + 19.60209380x1x
2
2 − 38.62857143x3

2.
(5.2)

Then solving (4.21) by using the MATLAB tool, we obtain c∗1 = 2.8989975698 for E0. The
corresponding region is V2(x)

E0 = c∗1 which is shown in Figure 5.
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Figure 5: The white region is the estimation of domain of attraction for E0.

In analogy with the virus-free equilibrium E0, we obtain the Lyapunov function of E∗
2

as follows:

V
E∗
2

2 = 0.5698434628
(
x1 − x∗

1

)2 + 1.327812551
(
x1 − x∗

1

)(
x2 − x2∗

2

)
+ 2.081459239

(
x2 − x2∗

2

)2
,

dV
E∗
2

2

dt
= − 0.9616845362

(
x1 − x∗

1

)2 − 0.088571026
(
x1 − x∗

1

)(
x2 − x2∗

2

)

− 1.040809141
(
x2 − x2∗

2

)2 − 0.983838261
(
x1 − x∗

1

)2(
x2 − x2∗

2

)

− 0.118816403
(
x1 − x∗

1

)(
x2 − x2∗

2

)2 − 1.327812551
(
x2 − x2∗

2

)3
,

(5.3)

c∗2 = 0.9898659789. The corresponding region is V
E∗
2

2 = c∗2 which is shown in Figure 6.

6. Conclusion and Discussion

In this paper, we have established a model to study email virus propagation and analyzed
its dynamical behaviors. It is worthwhile to note that we use βEI/N instead of βE to depict
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Figure 6: The white region is the estimation of domain of attraction for E∗
2.

the transition from E to I, which is different from most SEIS infectious disease models. For
example, Fan et al. [32] proposed an SEISmodel as

dS(t)
dt

= A − λS(t)I(t) + δI(t) − dS(t),

dE(t)
dt

= λS(t)I(t) − εE(t) − dE(t),

dI(t)
dt

= εE(t) − dI(t) − δI(t) − θI(t).

(6.1)

It is shown that the global dynamics is completely determined by the basic reproduction
number R0. If R0 ≤ 1, the disease-free equilibrium is globally stable. If R0 > 1, a unique
endemic equilibrium is globally stable in the interior of the feasible region.

The reason of using βEI/N is that we have considered the number of virus emails
that the user received in our model, which is proportional to the relative number of infected
computers, that is, I/N. Due to this difference in the form, our model shows many different
and complex dynamics. In our model, however, the basic reproduction number R0 does not
appear; hence the virus-free equilibrium is locally asymptotically stable for any parameter
values. And it is proved that the model experiences a saddle-node bifurcation as parameter
varies through the bifurcation value, which also occurs in vector-borne disease model [33].
Furthermore, the bistability is obtained. In short, the spreading mechanism and dynamical
features of email virus are indeed different from most biological virus. This can offer a
valuable perspective to the future dynamics modeling. Especially, the amount of virus is
considerable in the transition from E to I when modeling the infectious disease. By doing so,
the models would be beneficial for better understanding the infectious disease propagation.
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Figure 7: The combined influence of parameters on R; R is plotted as a function of p and δ. Here, k = 6,
a = 1, po = 0.5, d = 0.05.

The main aim of the model is to investigate how email viruses transmit and to identify
effective strategies for their prevention and control. So based on the arguments above and the
simulation results, it is straightforward to provide some control strategies.

From the theoretical analyses and Figures 2–4, we can take

R = B − 2
√

n

m
− 1
m

− 1 =
kp

d + δ
− 2

√
dp

aln
(
1/
(
1 − po

))
(d + δ)

− p

aln
(
1/
(
1 − po

)) − 1 (6.2)

as a threshold parameter. If R < 0, the virus will die out; if R > 0, virus may die out or
outbreak.

In the first case, to make R below than zero, the most direct way is to change the
parameter values which correspond to the related measures. Obviously, R increases with k,
a, and po. The relationships between R and p, δ are shown in Figure 7; R increases with p,
while decreases with δ. According to the sensitivity analysis, some measures can be taken to
control virus propagation for instance, enhancing the people’s understanding of email viruses
to minimize the probability of opening a virus email (po) and appealing people to install the
antivirus software and update in time to increase the ability of finding and removing the
viruses (δ).

In the second case, from the definition of the domain of attraction, we know that
starting from any initial points in the regionΩc∗ of an equilibrium, the solution of a dynamical
system will converge to the equilibrium. As is well known, the solution tending to the virus-
free equilibrium indicates that the virus will be extinct without taking any measures, whereas
tending to the positive equilibrium indicates the outbreak of the virus; that is, a large number
of computers will be infected. As a result, in order to control the propagation of the virus,
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we should take measures to restrict the initial value of the computers within the domain of
attraction for virus-free equilibrium (the white region in Figure 5), such as improving the
computers’ detection ability and enhancing the people’s awareness of email virus defense.

It should be noted that the epidemiological model described here for email viruses
could also be used to study other disease similar to email viruses from an epidemiological
point of view. Moreover, in our model, we only consider some fundamental factors. In the
future work; more factors will be incorporated into new and improved models for prediction
and containment of email viruses.
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