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This paper is devoted to investigate the global behavior of the following rational difference
equation: yn+1 = αyn−t/(β + γ

∑k
i=0 y

p

n−(2i+1)
∏k

i=0y
q

n−(2i+1)), n = 0, 1, 2, . . ., where α, β, γ, p, q ∈ (0,∞)
and k, t ∈ {0, 1, 2, . . .} with the initial conditions x0, x−1, . . . , x−2k, x−2max{k,t}−1 ∈ (0,∞). We will
find and classify the equilibrium points of the equations under studying and then investigate their
local and global stability. Also, we will study the oscillation and the permanence of the considered
equations.

1. Introduction

The aim of this paper is to study the dynamics of the solutions of the following recursive
sequence:

yn+1 =
αyn−t

β + γ
∑k

i=0 y
p

n−(2i+1)
∏k

i=0y
q

n−(2i+1)
, n = 0, 1, 2, . . . , (1.1)

where α, β, γ, p, q ∈ (0,∞) and K ∈ {0, 1, 2, . . .}, where K = max{k, t}, with the initial
conditions x0, x−1, . . ., x−2k, x−2K−1 ∈ (0,∞). We deal with the classification of the equilibrium
points of (1.1) in terms of being stable or unstable, where we investigate the global attractor
of the solutions of (1.1) as well as the permanence of the equation. Also, we establish some
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appropriate conditions, which grantee the oscillation of the solutions of (1.1). Formore results
in the direction of this study, see, for example, [1–23] and the papers therein.

In the sequel, we present some well-known results and definition that will be
useful in our investigation of (1.1). Let I be some interval of real numbers and let
f : Ik+1 → I be a continuously differentiable function. Then, for every set of initial conditions
x−k, x−k+1, . . . , x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (1.2)

has a unique solution {xn}∞n=−k.

Definition 1.1 (permanence). The difference equation (1.2) is said to be permanent if there
exist numbers m and M with 0 < m ≤ M < ∞ such that, for any initial conditions
x−k, x−k+1, . . . , x−1, x0 ∈ (0,∞), there exists a positive integer N which depends on the initial
conditions such that m ≤ xn ≤ M for all n ≥ N.

Definition 1.2 (periodicity). A sequence {xn}∞n=−k is said to be periodic with period p if xn+p =
xn for all n ≥ −k.

Definition 1.3 (semicycles). A positive semicycle of a sequence {xn}∞n=−k consists of a “string”
of terms {xl, xl+1, . . . , xm} all greater than or equal to the equilibrium point x, with l ≥ −k and
m ≤ ∞ such that either l = −k or l > −k and xl−1 < x; either m = ∞ or m < ∞ and xm+1 < x. A
negative semicycle of a sequence {xn}∞n=−k consists of a “string” of terms {xl, xl+1, . . . , xm} all
less than the equilibrium point x, with l ≥ −k andm ≤ ∞ such that either l = −k or l > −k and
xl−1 ≥ x; either m = ∞ or m < ∞ and xm+1 ≥ x.

Definition 1.4 (oscillation). A sequence {xn}∞n=−k is called nonoscillatory about the point x if
there exists N ≥ −k such that either xn > x for all n ≥ N or xn < x for all n ≥ N. Otherwise,
{xn}∞n=−k is called oscillatory about x.

2. Dynamics of (1.1)

The change of variables yn = (β/γ)1/[p+(k+1)q]xn reduces (1.1) to the following difference
equation

xn+1 =
rxn−t

1 +
∑k

i=0 x
p

n−(2i+1)
∏k

i=0x
q

n−(2i+1)
, n = 0, 1, 2, . . . , (2.1)

where r = α/β.
In this section, we study the local stability character and the global stability of the

equilibrium points of the solutions of (2.1). Also, we give some results about the oscillation
and the permanence of (2.1).

Recall that the equilibrium points of (2.1) are given by

x =
rx

1 + (k + 1)xp+(k+1)q
. (2.2)
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Then, whenever r ≤ 1, (2.1) has the only equilibrium point x = 0, and, while at r > 1, (2.1)
possesses the unique positive equilibrium point x = ((r − 1)/(k + 1))1/(p+(k+1)q).

The following theorem deals with the local stability of the equilibrium point x = 0 of
(2.1).

Theorem 2.1. The following statements are true.

(i) If r < 1, then the equilibrium point x = 0 of (2.1) is locally asymptotically stable.

(ii) If r > 1, then the equilibrium point x = 0 of (2.1) is a saddle point.

(iii) If r = 1, then the equilibrium point x = 0 of (2.1) is nonhyperbolic with λ = 0 < 1 and
λ = 1.

Proof. The linearized equation of (2.1) about x = 0 is un+1 − run−t = 0. Then, the associated
eigenvalues are λ = 0 and λ = r. Then, the proof is complete.

Theorem 2.2. Assume that r < 1, then the equilibrium point x = 0 of (2.1) is globally asymptotically
stable.

Proof. Let {xn}∞n=−2k−1 be a solution of (2.1). It was shown in Theorem 2.1 that the equilibrium
point x = 0 of (2.1) is locally asymptotically stable. So it suffices to show that

lim
n→∞

xn = 0. (2.3)

Now, it follows from (2.1) that

xn+1 =
rxn−t

1 + x
p+q
n−1x

q

n−3 · · ·x
q

n−(2k+1) + x
q

n−1x
p+q
n−3 · · ·x

q

n−(2k+1) + · · · + x
q

n−1x
q

n−3 · · ·x
p+q
n−(2k+1)

≤ rxn−2t.

(2.4)

Now, assume that X = max{x−2t, x−2t+1, . . . , x−1, x0/r}. Then, it follows from (1.1) and after
some simple computations are achieved that x2(n−1)t+i ≤ rnX, i = 0, 1, . . . , 2t. Therefore xn → 0
as n → ∞, and this completes the proof.

Theorem 2.3. Assume that r > 1. Then, every solution of (2.1) is either oscillatory or tends to the
equilibrium point x = ((r − 1)/(k + 1))1/(p+(k+1)q).

Proof. Let {xn}∞n=−2K−1 be a solution of (2.1). Without loss of generality, assume that
{xn}∞n=−2K−1 is a nonoscillatory solution of (2.1), then it is suffices to show that limn→∞ xn = x.
Assume that xn ≥ x for n ≥ n0 (the case where xn ≤ x for n ≥ n0 is similar and will be
omitted). It follows from (2.1) that

xn+1 =
rxn−t

1 + x
p+q
n−1x

q

n−3 · · ·x
q

n−(2k+1) + x
q

n−1x
p+q
n−3 · · ·x

q

n−(2k+1) + · · · + x
q

n−1x
q

n−3 · · ·x
p+q
n−(2k+1)

≤ xn−t

(
r

1 + (k + 1)xp+(k+1)q

)

= xn−t.

(2.5)
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Hence, each subsequence {x(t+1)n+i}, j = 0, 1, . . . , t, of {xn}∞n=0 is decreasing sequence and
therefore it has a limit. Let for some j = 0, 1, . . . , t, limn→∞x(t+1)n+j = μ, and, for the sake
of contradiction, assume that μ > x. Then, by taking the limit of both sides of

x(t+1)n+j+1 =
rx(t+1)n+j−t

1 +
∑k

s=0 x
p

(t+1)n+j−(2s+1)
∏k

s=0x
q

(t+1)n+j−(2s+1)
, n = 0, 1, 2, . . . , (2.6)

we obtain μ = rμ/(1 + (k + 1)μp+(k+1)q), which contradicts the hypothesis that x =
((r − 1)/(k + 1))1/(p+(k+1)q) is the only positive solution of (2.2). Therefore, limn→∞x(t+1)n+j =
μ, for all j = 0, 1, . . . , t. Thismeans that all the subsequences {x(t+1)n+i}, j = 0, 1, . . . , t, of {xn}∞n=0
have the same limit, x, and therefore limn→∞xn = x, which completes the proof.

Theorem 2.4. Assume that t = 0, r > 1, and let {xn}∞n=−2k−1 be a solution of (2.1) which is strictly
oscillatory about the positive equilibrium point x = ((r − 1)/(k + 1))1/(p+(k+1)q) of (2.1). Then, the
extreme point in any semicycle occurs in one of the first 2(k + 1) terms of the semicycle.

Proof. Assume that {xn}∞n=−2k−1 is a strictly oscillatory solution of (2.1). Let L ≥ M ≥ N ≥
2(k+1), and let {xN, xN+1, . . . , xM} be a positive semicycle followed by the negative semicycle
{xM, xM+1, . . . , xL}. Now, it follows from (2.1) that

xN+2(k+1) − xN =
rxN+2k+1

1 + x
p+q
N+2kx

q

N+2k−2 · · ·x
q

N + x
q

N+2kx
p+q
N+2k−2 · · ·x

q

N + · · · + x
q

N+2k · · ·x
p+q
N

− xN

≤ xN+2k+1

(
r

1 + (k + 1)xp+(k+1)q

)

− xN = xN+2k+1 − xN

=
rxN+2(k+t)

1 + x
p+q
N+2k−1x

q

N+2k−3 · · ·x
q

N−1 + · · · + x
q

N+2k−1 · · ·x
p+q
N−1

− xN

≤ xN+2k

(
r

1 + (k + 1)xp+(k+1)q

)

− xN

= xN+2k − xN ≤ xN+2k−1 − xN ≤ · · · ≤ xN+1 − xN ≤ xN − xN = 0.
(2.7)

Then, xN ≥ xN+2(k+1) for all N ≥ 2(k + 1).
Similarly, we see from (2.1) that

xM+2(k+1) − xM =
rxM+2k+1

1 + x
p+q
M+2kx

q

M+2k−2 · · ·x
q

M + x
q

M+2kx
p+q
M+2k−2 · · ·x

q

M + · · · + x
q

M+2k · · ·x
p+q
M

− xM

≥ xM+2k+1

(
r

1 + (k + 1)xp+(k+1)q

)

− xM = xM+2k+1 − xM
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=
rxM+2k

1 + x
p+q
M+2k−1x

q

M+2k−3 · · ·x
q

M−1 + · · · + x
q

M+2k−1 · · ·x
p+q
M−1

− xM

≥ xM+2k

(
r

1 + (k + 1)xp+(k+1)q

)

− xM

= xM+2k − xM ≤ xM+2k−1 − xM ≥ · · · ≥ xM+1 − xM ≥ xM − xM = 0.

(2.8)

Therefore, xM+2(k+1) ≥ xM for all M ≥ 2(k + 1). The proof is complete.

Theorem 2.5. Assume that t = 2k, r > 1, and let {xn}∞n=−2k−1 be a solution of (2.1) which is strictly
oscillatory about the positive equilibrium point x = ((r − 1)/(k + 1))1/(p+(k+1)q) of (2.1). Then, the
extreme point in any semicycle occurs in one of the first 2k terms of the semicycle.

Proof. Assume that {xn}∞n=−2k−1 is a strictly oscillatory solution of (2.1). Let L ≥ M ≥ N ≥
2k + 1, and let {xN, xN+1, . . . , xM} be a positive semicycle followed by the negative semicycle
{xM, xM+1, . . . , xL}. Now, it follows from (2.1) that

xN+2k+1 − xN =
rxN

1 + x
p+q
N+2kx

q

N+2k−2 · · ·x
q

N + x
q

N+2kx
p+q
N+2k−2 · · ·x

q

N + · · · + x
q

N+2k · · ·x
p+q
N

− xN

≤ xN

(
r

1 + (k + 1)xp+(k+1)q

)

− xN = xN − xN = 0.

(2.9)

Then, xN ≥ xN+2k for all N ≥ 2k + 1.
Similarly, we see from (2.1) that

xM+2k+1 − xM =
rxM

1 + x
p+q
M+2kx

q

M+2k−2 · · ·x
q

M + x
q

M+2kx
p+q
M+2k−2 · · ·x

q

M + · · · + x
q

M+2k · · ·x
p+q
M

− xM

≥ xM

(
r

1 + (k + 1)xp+(k+1)q

)

− xM = xM − xM = 0.

(2.10)

Therefore, xM+2k ≥ xM for all M ≥ 2k + 1. The proof is complete.

Theorem 2.6. Assume that t = 2k + 1, r > 1, and let {xn}∞n=−2k−1 be a solution of (2.1) which
is strictly oscillatory about the positive equilibrium point x = ((r − 1)/(k + 1))1/(p+(k+1)q) of (2.1).
Then, the extreme point in any semicycle occurs in one of the first 2k + 1 terms of the semicycle.
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Proof. Assume that {xn}∞n=−2k−1 be a strictly oscillatory solution of (2.1). Let L ≥ M ≥ N ≥
2k + 1 and let {xN, xN+1, . . . , xM} be a positive semicycle followed by the negative semicycle
{xM, xM+1, . . . , xL}. Now it follows from (2.1) that

xN+2(k+1) − xN =
rxN

1 + x
p+q
N+2k+1x

q

N+2k−1 · · ·x
q

N + x
q

N+2k+1x
p+q
N+2k−1 · · ·x

q

N + · · · + x
q

N+2k+1 · · ·x
p+q
N

−xN

≤ xN

(
r

1 + (k + 1)xp+(k+1)q

)

− xN = xN − xN = 0.

(2.11)

Then, xN ≥ xN+2k for all N ≥ 2k + 1.
Similarly, we see from (2.1) that

xM+2(k+1) − xM=
rxM

1 + x
p+q
M+2k+1x

q

M+2k−1· · ·x
q

M + x
q

M+2k+1x
p+q
M+2k−1· · ·x

q

M +· · ·+ x
q

M+2k+1 · · ·x
p+q
M

−xM

≥ xM

(
r

1 + (k + 1)xp+(k+1)q

)

− xM = xM − xM = 0.

(2.12)

Therefore xM+2k ≥ xM for all M ≥ 2k + 1. The proof is complete.

Theorem 2.7. Equation (2.1) is permanent.

Proof. Let {xn}∞n=−2k−1 be a solution of (2.1). There are two cases to consider.

(i) {xn}∞n=−2k−1 is a nonoscillatory solution of (2.1). Then, it follows from Theorem 2.3
that

lim
n→∞

xn = x, (2.13)

that is, there is a sufficiently large positive integer N such that |xn − x| < ε for all
n ≥ N and for some ε > 0. So x − ε < xn < x + ε, this means that there are two
positive real numbers, say C and D, such that C ≤ xn ≤ D.

(ii) {xn}∞n=−2k−1 is strictly oscillatory about x = ((r − 1)/(k + 1))1/(p+(k+1)q).

Now, let {xs+1, xs+2, . . . , xt} be a positive semicycle followed by the negative semicycle
{xt+1, xt+2, . . . , xu}. If xV and xW are the extreme values in these positive and negative
semicycles, respectively, with the smallest possible indices V and W , then by Theorem 2.4
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we see that V − s ≤ 2(k + 1) andW − u ≤ 2(k + 1). Now, for any positive indices μ and Lwith
μ < L, it follows from (2.1) for n = μ, μ + 1, . . . , L − 1 that

xL = xL−1

(
r

1 + x
p+q
L−2x

q

L−4 · · ·x
q

L−2k−2 + x
q

L−2x
p+q
L−4 · · ·x

q

L−2k−2 + · · · + x
q

L−2x
q

L−4 · · ·x
p+q
L−2k−2

)

=
r2xL−2

(
1 + x

p+q
L−3 · · ·x

q

L−2k−3 + · · · + x
q

L−3 · · ·x
p+q
L−2k−3

)(
1 + x

p+q
L−2 · · ·x

q

L−2k−2 + · · · + x
q

L−2 · · ·x
p+q
L−2k−2

)

...

= xL−ζrζ
ζ∏

η=1

⎛

⎝ 1

1 +
∑k

i=0 x
p

L−(2i+1)−η
∏k

i=0x
q

L−(2i+1)−η

⎞

⎠

= xμr
L−μ

L−1∏

η=μ

⎛

⎝ 1

1 +
∑k

i=0 x
p

η−(2i+1)
∏k

i=0x
q

η−(2i+1)

⎞

⎠.

(2.14)

Therefore, for V = L and s = μ, we obtain

xV = xsr
V−s

V−1∏

η=s

⎛

⎝ 1

1 +
∑k

i=0 x
p

η−(2i+1)
∏k

i=0x
q

η−(2i+1)

⎞

⎠

≤ xr2k+1 = H.

(2.15)

Again whenever W = L and μ = t, we see that

xW = xtr
W−t

W−1∏

η=t

⎛

⎝ 1

1 +
∑k

i=0 x
p

η−(2i+1)
∏k

i=0x
q

η−(2i+1)

⎞

⎠

≥ xrW−t
W−1∏

η=t

(
1

1 + (k + 1)Hp+(k+1)q

)

= xrW−t
(

1
1 + (k + 1)Hp+(k+1)q

)W−t−1

≥ x

(
1

1 + (k + 1)Hp+(k+1)q

)2k+1

= G.

(2.16)

That is G ≤ xn ≤ H. It follows from (i) and (ii) that min{C,G} ≤ xn ≤ max{D,H}. Then, the
proof is complete.
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[15] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open

Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002.
[16] D. Simsek, C. Cinar, and I. Yalcinkaya, “On the recursive sequence xn+1 = xn−3/(1+xn−1),” International

Journal of Contemporary Mathematical Sciences, vol. 1, no. 10, pp. 475–480, 2006.
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Journal of Applied Mathematics, vol. 9, no. 2, pp. 3–8, 2008.
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