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The topology of interactions has been proved very influential in the results of models based on
learning and evolutionary game theory. This paper is aimed at investigating the effect of structures
ranging from regular ring lattices to random networks, including small-world networks, in a
model focused on property distribution norms. The model considers a fixed and finite population
of agents who play the Nash bargaining game repeatedly. Our results show that regular networks
promote the emergence of the equity norm, while less-structured networks make possible the
appearance of fractious regimes. Additionally, our analysis reveals that the speed of adoption can
also be affected by the network structure.

1. Introduction

The emergence, prevalence, and collapse of social norms in groups have attracted scientists
from a wide range of disciplines [1–5]. Social norms are appealing because they can act as
mechanisms for regulating individual behaviour without the need of a central authority.
Social norms are indeed rules that are socially enforced [6, 7].

In the field of Economics, there are plenty of transactions that are commonly regulated
by means of habits, repeated interaction, community enforcement, social pressure, trust or
reputation, rather than by formal contracts [8]. In particular, among the set of economic
interactions that are often modulated by social norms, we can find those that govern the
distribution of property within a group. In this context, social norms sometimes favour
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equitable distributions, but this is not always the case. Social norms can also contribute to
the persistence of discriminatory allocations, often supported by observable differences in
individual characteristics or group membership, such as gender, race, ethnicity, age, and
caste.

Learning game theory provides a useful framework to analyse this type of norms
formally [9–12]. Social interactions are modelled as games played by actors that use the
history of the game to form expectations or beliefs about the other players’ behaviour, and
consequently select an appropriate strategy. In general, not all conceivable groups of players
within a population will be equally likely to interact, that is, the population may be somewhat
structured. In such cases, networks are particularly useful to describe the (sub)set of
interactions that may take place: a player can only directly interact in the game with his
neighbours in the network.

Relaxing the assumption of global interaction and using sophisticated learning rules
usually reduces the analytic tractability of the models and accentuates the relative usefulness
of computer simulation for exploration and analysis. Given the explicit correspondence
between players in the model and computational entities in the simulation, those players
are naturally implemented as agents in an agent-based model [13, 14]. This approach is
increasingly used in social and economic models [15–20].

Concretely, in the case of property distribution norms, interactions are often modelled
as Nash bargaining games (also known as Nash demand games) [21]. This game consists of
two players that have to divide a sum of money among them. Each player demands a share
without knowing the demand of the other. If the sum of their individual demands does not
exceed the total, the payoff for each player is the amount of money they asked for; however, if
the sum of the two demands exceeds the total, they both obtain nothing. Based on this game
and its posterior evolutionary version [22], Axtell et al. [23] designed an agent-based model
(henceforth AEY’s model) to understand the transient and the asymptotic dynamics of the
Nash bargaining game in a finite population. In their model, they assumed that the players
can make three possible demands only: low (L), medium (M), and high(H) and agents play
a noisy best reply to their past experience. The model shows that several persistent regimes
different from the equity norm can appear and perpetuate under several learning rules and
combination of parameters [23, 24].

AEY’s model has been extended to understand the effect of spatial structure. In
particular it has been analysed in regular square lattices with a fixed finite population of
tagged agents [25]. This study revealed that that the mesoscopic properties of the interaction
networks have a significant impact on the diffusion of strategies. However, real networks
usually differ from the regular lattice topology [26]. To get deeper insights on the effect of
social structure in the diffusion of norms, we analyse AEY’s model in networks that may
present the so-called small-world effect [27], that is, networks where the average distance
between agents is relatively short.

The scientific origin of small-world research is attributed to the pioneering work of
Pool and Kochen [28] and Milgram [29]. Nevertheless, the puzzle of how to explain the evi-
dence that several real networks are highly clustered (as lattices, e.g.), and at the same time
show the small-world effect (like, e.g., random networks), was not envisioned until the
seminal work of Watts and Strogatz [30]. In their work they proved that both properties
of real networks could be embodied in a simple mathematical network algorithm that
interpolates between order and randomness. In the transition, they found a class of networks,
small-world networks, displaying high clustering and the small-world effect simultaneously.
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Models of dynamical systems embedded in small-world networks display different
global behaviour due to enhanced signal-propagation speed, computational power, and
synchronizability [30, 31]. The effect of this type of topology has been investigated by the
academic community, examples of which include the analysis of iterated games such as
Hawk-Dove [32, 33], Prisoner’s Dilemma [34, 35], Minority Game [36], or Ultimatum Game
[37] but also in diffusion models [38].

In this paper we have extended the analysis of dynamic norm diffusion in a population
considering AEY’s model as a framework. We have analysed the influence of the small-
world topology on the results of the game. To this aim, we have organized the paper as
follows: first, we briefly explain the extensions and modifications that we have performed on
AEY’s original model and the main properties of the network generator mechanism based
on the Watts-Strogatz algorithm [30]. Next, we analyse the Markovian properties of the
unperturbed and perturbed model. Subsequently we characterize the equity norm from an
agent’s perspective and define the concepts and mechanisms used to analyse the dynamics
of the model. In the results section we design and discuss a set of experiments to analyse
the frequency of states, the diffusion of the equity norm and the effect of the size of the
population. We then finish with the conclusions of this work.

2. The Model

The model proposed in this paper is based on AEY’s model [23]. In their abstraction, agents
are randomly paired up to play a Nash Demand Game [21]. Agents play a game in which each
of them can demand three possible portions of a virtual cake (which is a metaphor for a piece
of available property): a low (L; 30%), a medium (M; 50%), or a high (H; 70%) share. Agents
get what they demand as long as the sum of the two demands is no more than one hundred
per cent of the pie. Otherwise, they get nothing (see the payoff matrix used in the model in
Table 1).

Agents are endowed with a memory (of size m) in which they store the portion of the
pie demanded by their opponents in the last m rounds. In order to make a decision, in AEY’s
model, an individual chooses the best reply that maximizes the expected payoff considering
their past experiences. In our model we consider a simpler decision rule, which dictates that
individuals choose the best reply against the most frequent demand in their memory (ties are
resolved randomly without bias). This last rule is cognitively less demanding than AEY’s
and, naturally, it induces different results than those obtained with the original decision
rule [24]. The response is assumed “noisy” in the sense that agents may make mistakes
in their decisions (or simply experiment from time to time) with small probability. Hence,
with probability (1 − ε) an individual chooses the best reply and with probability ε she
chooses one of the three possible demands at random (low, medium, or high with the same
probability). Afterwards, agents are paired up again with other agents (chosen at random)
and the bargaining process continues.

The influence of some parameters of the model (such as the number of agents, the
memory size, the payoff matrix, or the decision rule) has been thoroughly analysed in [24],
but that study only considered the situation where every player could interact with any other
player (i.e., a complete interaction network).

In a later extension of the model [25], agents were located on a regular square lattice
in such a way that one agent could play only with any of her eight surrounding neighbours
(Moore neighbourhood). The influence of this topology on the outcome of the Nash Demand
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Table 1: Payoff matrix of the Nash demand game.

H M L

H (0,0) (0,0) (70,30)

M (0,0) (50,50) (50,30)
L (30,70) (30,50) (30,30)

Game has been analysed. Results show that the mesoscopic properties of the interaction
networks of players with the same tag have an important influence on the diffusion of the
emergent norms. The regular square lattice was a first attempt to adapt the AEY’s model
to more realistic scenarios of human interaction. Nevertheless, regular interaction is still far
from most real-life patterns of relation.

The model that we present in this paper is an extension of AEY’s model [23] where
the agents (In this paper the term “agent”—coming from the ABM literature—and the term
“node”—coming from the network theory—could be applied indistinctly. However we prefer
to use the term “agent” in the description of the agents’ behavior and in the interaction
network properties.) are located on a Watts and Strogatz network [30]. Some real human
social networks have been proved [26] to be highly clustered (which, roughly speaking,
means that your friends’ friends are likely to be also your friends) and to have a short average
geodesic distance (which means that one can travel from any agent to any other in a small
number of hops, the so-called small-world effect) (In small-world networks, average path
length scales with the logarithm of the number of agents N in the network.). These two
properties do not occur simultaneously in regular or in random networks. On the one hand,
structured regular networks (such as lattices) are known to be highly clustered but they have
long average geodesic distances. On the other hand, random graphs, in which every possible
edge occurs independently with a fixed probability, have a short average geodesic distance
but they are not highly clustered. Watts and Strogatz [30] designed a mechanism that gives a
family of networks which can combine both properties at the same time (In a range of values
for the parameter “probability of rewiring.”): small-world effect and high clustering.

In the model implemented in this paper we use the Watts-Strogatz algorithm [30]
to create networks with different values of the probability of rewiring β. This parameter
smoothly interpolates between extreme cases of a regular ring lattice and a random network,
traversing “small-world” networks along the way (see Figure 1). As the probability of
rewiring increases, the network becomes less regular (and thus less clustered) and the
appearance of long-distance links reduces the average geodesic distance.

In our model, the network is created at the beginning of each run and remains fixed
thereafter. At each time period, all the agents are selected in a random order to play the Nash
Demand Game with one of their (randomly selected) neighbours. It is important to note that
each time period consists of N matches, and consequently it is probable that an agent plays
more than once in each period.

In the subsequent experiments we will show how the probability of rewiring (and thus
the properties of the resulting network) affects the regimes that can be reached in the AEY’s
game.

Notice that, unlike in previous works [24, 25] and to focus on topological effects, we
have not considered the fact that the agents could have tags (i.e., distinguishable labels, such
as the colour of the agent, which other agents can identify and condition their decisions on
them). In [23, 24] the consideration of tags led to two different games (intra- and intertype
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Figure 1: Network structure for several values of the probability of rewiring. N (number of nodes) = 10, k
(average degree) = 4.

games). In [25], as the agents were placed on a regular grid, each type of game gave rise to
a different network (intra- and intertype networks). In this work, however, the agents are
placed on a small-world network. If we had considered tags in this network and had split
it into two independent networks (as in [25]), the resulting networks would not necessarily
have small-world properties.

3. General Analysis

Before doing a computational exploration of the agent-based model, it is particularly
interesting to conduct a previous analysis using the framework of Markov Chains [39], to
get useful insights about the expected dynamics and behaviour of the model. In terms of
Markovian properties, the system is a time-homogeneous Markov Chain. Considering that
the interaction network is fixed and known, the state of the system is completely described
by a set of N vectors {Xi(t)}Ni=1 = {Li(t)/m,Mi(t)/m,Hi(t)/m}Ni=1 of the relative frequencies
of opponents’ demands for each agent i, where Li(t), Mi(t) and Hi(t) denote the number of
times that agent i’s opponents demanded L, M, and H, respectively, in the m most recent
interactions just before time t.

As previously explained, an interaction between two agents is modelled as a Nash
demand game [21] with three discrete strategies or decisions {H,M,L}—the corresponding
matrix payoff is represented in Table 1. For the one-shot game, there are three pure-strategy
Nash equilibriums, one equitable (M,M), and two other (symmetric) inequitable (H,L) and
(L,H). These states play a role of focal points that drive the bargaining evolution and explain
the asymptotic dynamics of the system.

3.1. The Unperturbed Model

The system dynamics are determined by the presence or absence of errors in agents’
decisions. In the absence of errors, that is, the unperturbed model, the system has absorbing
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states in which sooner or later it will be trapped (if we run the model for long enough). These
absorbing states are directly related with the pure-strategy Nash equilibriums just mentioned
before. Obviously, the interaction network conditions the probabilities of these states to be
reached. Assuming global interactions, that is, every agent can play with everybody without
any restriction, there is only one absorbing state corresponding to the equitable strategy.
This happens when everyone in the population expects the others will demand M, and
consequently everyone demands M, so the system ends up reaching an absorbing state, called
equity (EQ) state. This state is equitable because all agents get equal payoffs and is also efficient
(in Pareto sense) because no agent can be made better off without making another agent
worse off.

When we assume local interactions, that is, an agent can only play with her neighbours
in the interaction network, besides the EQ state, there are two other absorbing states
corresponding to the inequitable strategies (In networks with more than one component,
there can be more types of absorbing states. In these cases, because each component is
independent of the others, the absorbing state of the system is defined as the combination
of the absorbing states reached by each component.). This happens when there are two
separated groups of agents, in terms of the network, in which the individuals of one of the
groups expect the others will demand L and hence they will demand H; and at the same time,
the individuals of the other group will expect and demand the complementary decisions. In
these cases, the system reaches an absorbing state, which is efficient but not equitable in
the payoffs obtained by each agent. Considering the interaction network, these inequitable
absorbing states can only happen if the network is bipartite, that is, the network can be
divided into two independent subnetworks such that the agents of one of them are only
linked to agents of the other, and vice versa. In general, these states are rather improbable due
to this topological necessity. For instance (see Figure 2), whenever the interaction network has
triplets of agents or any odd cycles, the coordination in the strategies (H,L) is not stable since
there is at least one pair of agents with incentives to change their current states. Note in the
examples that the expected evolution is a series of continuous changes in agents’ strategies
between H and L. This unstable pattern (which is directly related with a fractious regime that
will be defined below) can persist for very long, until the only absorbing state (i.e., the EQ
state) is reached.

3.2. The Perturbed Model

When errors are possible in the agents’ decisions, (Errors refer to the noisy response
explained in the model’s section.), that is, the perturbed model, the system becomes ergodic,
regardless of the interaction network. In this case, there is a unique limiting distribution—and
consequently independent of the initial conditions—over the state space which determines
the probability of finding the system in each of its states in the long run. This limiting
distribution can be estimated by sampling just one simulation run for a sufficiently long
time, and computing the fraction of the time that the system spends in each state, that is,
the occupancy distribution [39]. For a finite population and global interaction this limiting
distribution concentrates on the EQ state, which is the only stochastically stable state [22].

The asymptotic behaviour is not very useful if we want to apply the model to real
situations in which the “long run” is a very vague concept. For that reason, it is interesting to
pay attention to the transient dynamics too, following the guidelines proposed by Axtell et al.
[23]. It can be shown by computer simulation that starting from random initial conditions
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Figure 2: An inequitable state in a triplet (a), and in an even cycle of 6 agents (b) with its corresponding
bipartite representation (c). Agents who demand high (H) are depicted in light blue, while those ones
who demand low (L) are in light yellow. Note that for inequitable states to be absorbing, the interaction
network has to be bipartite (second and third figures), that is, it should not have odd cycles.

the system quickly settles in one of two relevant regimes where it spends a considerable
fraction of the time (It is also possible that the system reaches a persistent inequitable regime,
where a set of agents persistently demands H against another set of agents that consequently
demands L. Notwithstanding the topological conditions to reach this regime is very unlikely
as explained in the analysis of the unperturbed model.). One of these persistent regimes,
which we call EQ regime, is characterized by the EQ state and its surroundings in the state
space. In the other, called fractious (FR) regime (We use the concept proposed originally
by Axtell et al. [23], although there are other names in the literature, such as “fluctuating
agents” [40, 41], used to refer the same concept, that is, agents that intermittently change
their strategy.), the agents alternate their demands between H and L. Axtell et al. [23]
demonstrated that the transition time from this fractious regime to the stochastically stable
state can be enormously long—the system presents broken ergodicity [42]—; in fact this time
grows exponentially with the number of agents and their memory length.

4. The Equity Norm

All the states and persistent regimes defined in the previous section correspond to a set of
Markovian states of the system. However, in order to complete the analysis and discussion
of the model, we also need to characterize some of the individual states in which an agent
can be from the point of view of the agent’s behaviour, that is, which of the three possible
decisions {L,M,H} an agent will take in the next interaction. We say that an agent follows the
equity norm whenever she demands M in the next interaction (ignoring the effect of error
on decisions). Obviously, this type of behaviour is directly related with the corresponding
persistent regimes where the system can settle in the transient period: when all agents follow
the equity norm the system reaches the EQ regime (which is equivalent to say that the popu-
lation follows the equity norm).
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Figure 3: The effect of a mutation within a triplet (a), and on a nonclustered triad (b), when agents are
initially coordinated in the equity norm and the mutant changes her demand from M (light green) to H
(light blue).

4.1. Clustering Effect on the Equity Norm

It is well known that many real social networks show a significant propensity to form groups
or clusters of agents more densely interconnected among them than what could be expected
by pure randomness [26, 30, 43]. A typical statistic of this property is the clustering coefficient
of a network C [30], measured (4.1) as the average of the clustering coefficients Ci of the
agents, that is, the proportion of links between her neighbours (triplets) divided by the
number of links that could exist between all of them, which depend directly on the number
of connections (degree ki) of the agents

C =
1
N

N∑

i

Ci =
1
N

N∑

i

2
ki(ki − 1)

# tripletsi. (4.1)

This measure of network transitivity estimates the probability that two neighbours of any
agent have a link between them too, and consequently that they all form a triplet. We have
seen that the existence of triplets hinders the stability of the inequitable regime, and, in the
case of a state close to them it is very probable that the system falls in the trap of the fractious
regime. Besides, it is also interesting to understand the effect of clustering on the equity norm.
A simple analysis of the two idealized cases showed in Figure 3 should give us some insights
about how clustering influences the stability of this state (in terms of persistence in a finite
time period).

The first case represents a triplet of agents initially following the equity norm, when
one of them changes (mutates) her demand from M to H. The topology of agents’ interactions
weakens the state of the mutant, who has incentives to change her strategy back because
all her expected opponents demand M. On the contrary, the other two agents do not have
incentives to change their current strategy M because it is successful in half of their expected
interactions. In the second case, there is the same triplet but without the link between the two
agents who demand M. Now, these last agents have incentives to change their current strat-
egy M, making the equity norm less robust against random mutations.
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Obviously, the analysis is not so trivial if the network is bigger and much more
complex, but the intuition, inferred from these simple examples, is that the equity norm is
much more robust against random mutations when agents are clustered than when they
are not. Consequently, we should expect that the evolution of the bargaining (under the hy-
pothesis of the model proposed in this work) tends to reach the EQ regime more frequently
in networks with higher clustering. The design of experiments and the computer simulations
described in the next section aim to confirm this intuition.

4.2. The Diffusion Process of the Equity Norm

The purpose of this section is to describe how the equity norm emerges and spreads
across the population in finite time (transient dynamics). In simple and abstract terms, the
dynamic process evolves as follows: the population starts from a randomly initialized state;
these random initial conditions make it likely that, initially, one or more agents adopt the
equity norm and coordinate with each other in small groups that reinforce the norm; if this
coordination process occurs quickly, and some of these equity nuclei are able to reach a critical
size (which depends on the particular properties of the network they are embedded in), then
they will be able to expand their limits and grow, making the equity norm spread across
the whole population. Unlike other diffusion phenomena already studied in the literature
[38, 44–46], the diffusion process in our model is more difficult to follow, since the adoption
mechanism of the norm depends on a learning decision rule and a stochastic response. To
overcome this obstacle, we propose an abstraction that captures the essence of the process
and allows us to understand the effect of the network structure on the system dynamics more
clearly.

In order to do so, we initially define a new unit of analysis called equity nucleus, that
is, a connected component of the subgraph of agents that follow the equity norm. At any
time, there could be none, one, or more equity nuclei; and we will measure their sizes and
their clustering coefficients with the purpose of correlating these properties with the posterior
evolution of the nuclei: they may grow until they finally invade the population or they may
decrease until their disappearance in the transient period.

Second, we need to determine a metric to measure the change in an equity nucleus
after a complete interaction at each time period t, that is, every agent plays the Nash demand
game with one of her neighbours randomly selected. To that end, we define two new
concepts: the inner border and the outer border of a nucleus. Given any equity nucleus in the
population (see Figure 4), its inner border is the set of agents in the nucleus who have one or
more neighbours out of it, that is, neighbours who will not play M in the next interaction; its
outer border is the set of agents not belonging to the nucleus who have one or more neighbours
within it.

Note that any change in a nucleus must involve one of these two borders. A nucleus
can grow by adding new members of the outer border who adopt the equity norm. Similarly,
a nucleus can decrease as a consequence of losing members of the inner border who leave
the norm. Obviously, the real nuclei dynamics might be a little different, since in each time
period t there are N individual interactions that can modify these borders in different ways.
For example, one interaction could make a border grow and the next interaction could make
it decrease. Despite that, this approach is accurate enough for understanding the effect of the
network structure.
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Figure 4: An equity nucleus (dark and light green agents). The inner border is made up of the (light green)
agents belonging to the nucleus who have one or more neighbours out of it. The outer border consists of
the (light blue) agents not belonging to the nucleus who have one or more neighbours within it.

Finally, we set a procedure to compute all these properties over a simulation run.
Before a complete interaction at time period t, we identify all equity nuclei j ∈ {1, . . . , K}
and their borders and compute and collect their sizes and clustering {Sj(t), Cj(t)}Kj=1. After
all agents have played the game, we compute the changes in the inner and outer borders
of every nucleus. We will use the set of pairs, {Sj(t), Cj(t)}Kj=1 and {Sj(t + 1), Cj(t + 1)}K

j=1, to
infer some conclusions of the expected development of an equity nucleus depending on its
size and clustering.

5. Results

5.1. Design of Experiments

In the ABM model proposed, agents are embedded in a small-world interaction network
(SWN from now). We have chosen the small-world algorithm by Watts and Strogatz [30] to
model the interaction network because it provides a useful framework to study the clustering
effect, besides other properties of the network, using only one parameter. Then, the rewiring
probability is going to be the main control parameter, which will govern the network creation
and its properties. The design of experiments aims to show how this kind of network family
affects the system dynamics.

The parameterization of all scenarios studied in this paper corresponds to a model of
N = 100 agents randomly distributed in a particular instance of the SWN for a fixed rewiring
probability, and an average degree equal to 8 (for beta = 0 and degree = 8, the properties of the
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resulting network are close to the ones of the regular square lattice used in previous research
[25]). Each agent is endowed with a memory of length m = 10, randomly initialized at the
beginning of a simulation run. At a time period t, each agent (selected in a random order)
randomly selects one of her neighbours to interact. Both agents decide the best reply against
the most frequent demand in their memory. However, with a small probability ε = 0.01 an
agent decides randomly between the three possible demands {L,M,H}. We have sampled
100 simulation runs during Tf = 2000 time periods for each combination of parameters. This
time is enough for the system to reach a persistent regime (either EQ or FR).

During a simulation run, we say that an agent follows the equity norm strongly
whenever she has at least (1 − ε) × m instances of M in her memory. Similarly, the system
reaches the FR regime whenever every agent has at least a combination of (1−ε)×m instances
of both L and H (Note that the memory vector has a finite number of instances, so we
approximate (1 − ε) × m to the lower integer and ε × m to the higher integer.). Finally, in
order to identify an equity nucleus, and its inner and outer borders, we apply the equity norm
definition and consider that an agent belongs to an equity nucleus if the mode of her memory
is M, which is enough to guarantee that the agent will demand M in the next interaction in
absence of errors.

5.2. Frequencies of Transient Regimes

As explained before, in the transient dynamics of the system, simulations often reach one
of two expected regimes: the EQ regime or the FR regime. The first one corresponds to
the emergence of the equity norm, while the second represents a confusing and disordered
state in agents’ decisions that prevents any coordination in the bargaining. Now, the first
question that arouses our interest is to understand how small-world networks condition the
emergence of these regimes. To determine this influence we have computed the frequencies
of both regimes when the rewiring probability β of the network varies. Figure 5 presents the
frequency of the EQ regime reached by a set of simulations at the end of the runs (Note that
since the system reaches one of the two transient regimes, the rest of the cases correspond to
simulations which ended at the FR regime.).

The first inference that can be made from the results is that the emergence of the
EQ regime depends significantly on the rewiring probability, and more concretely on the
structure of the interaction network. In the case of regular ring lattices (β = 0) characterized
by the highest values of clustering and path length, the population follows the norm in
(almost) all cases. As randomness increases (β > 0) the networks show lower values of
clustering and average path length, and the frequency of the norm decays with them,
particularly with the clustering coefficient, being finally quite close to 50% in the extreme
case of pure random networks (β = 1). Moreover, in the well-known small-world range
(0.05 < β < 0.1) (The small-world range is sensible to variations in the rest of the parameters,
the size of the network and the average degree of the agents.), characterized by high values
of clustering and low values of average path length, the frequency of the norm is nearly the
same as in regular ring lattices. Then, it seems that the average path length does not explain
the dynamics of the norm in the bargaining model (at least for small networks), which makes
sense because the distance between agents, that is, the minimum number of links between
two agents, does not seem to play any role in how agents take decisions. This contrasts with
the clustering coefficient, which does reflect the characteristics of the neighbourhoods, and is
consequently related with the agents’ interactions and the bargaining evolution.
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Figure 5: Above, the frequency of the EQ regime reached at the end of the simulations when the rewiring
probability β (represented in logarithmic scale on the abscissa axis) varies. Below, the average of the
clustering coefficient C and the average path length L of the interaction networks of the simulations (both
statistics are normalized dividing each value by the corresponding ones of the regular ring lattice (β = 0)).

5.3. Equity Norm Diffusion

In this section we characterize the diffusion process of the equity norm. We apply our
particular approach based on observing the emergence and evolution of clusters of agents
playing the norm-equity nuclei. We also try to correlate the dynamics of these nuclei with
their network properties and estimate their expected change. We will see how the rewiring
probability of the small-world networks conditions significantly not only the probabilities of
the emergence of successful equity nuclei, but also their growing speed over the population.

The diffusion of the equity norm is quite similar to the movement of a wave of adopters
in a population embedded in a social network. By randomness, one or more small groups
of linked agents start to follow the equity norm (equity nuclei), and depending on their
internal structure and the structure of the network that surrounds them, they have greater
or lower probabilities of growing successfully by incorporating new members which modify
the properties of the nuclei. Overall, if an equity nucleus reaches a critical size with particular
properties, it will invade the population, but these properties will depend highly on the
parameters of the interaction network.

We have analysed the observed dynamics of the equity nuclei by means of a gradient
map obtained through computer simulation data (this procedure has also been used in
[47]). The statistical procedure to make this sort of graph is described as follows: we start
from the matrix of change {Sj(t), Cj(t), Sj(t + 1), Cj(t + 1)}K

j=1 that collects the size (S) and
the clustering (C) of all equity nuclei before and after a game round, and which have
been computed following the way described in previous sections. Each row element can be
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interpreted as a vector of change of a nucleus in the size-clustering space. Consequently, the
matrix of change of a particular parameterization of the model collects a set of vectors of
change of equity nuclei that happened in the corresponding simulation runs. We divide the
size-clustering space in a regular square lattice. For each cell we compute the vectorial sum
of all vectors with initial points included in the cell and represent the resulting vector as
an arrow of normalized magnitude (we are only interested in the direction of the expected
movement). We additionally colour each square according to the probability that a nucleus
of given S and C increases in size, computed as the relative frequency of occurrence in the
simulated data. The gradient maps for different rewiring probabilities are shown in Figure 6.

In most cases of Figure 6 we see two different movement regions: a first one corre-
sponding to a developing stage, in which the equity nuclei emerge and grow slowly, and a
second one corresponding to a spreading stage, in which the consolidated nuclei grow fast
and invade finally the whole population.

For regular ring lattice (β = 0) and small rewiring probabilities (β ≤ 0.05), the
difference between these two stages is not quite clear, and although there is a region in which
nuclei emerge, grow, and decay, nuclei do not need to reach a big critical size to consolidate an
unstoppable growth. Remember that for all these cases the equity norm is always established,
what is explained by the high level of clustering of these networks. Taking into account the
regular structure of the interaction network it is not surprising that the spreading of the equity
norm in quasiregular ring lattices is very homogeneous and slow: the norm supported by
very clustered nuclei advances invading also very clustered subnetworks, and this slows
down significantly the diffusion speed reflected in the gradient map by probabilities of
growing close to 0.5.

On the other hand, for greater rewiring probabilities (β ≥ 0.2) these two regions
are much easier to observe in the gradient map (a green region versus a blue region). In
these cases the frequency of the establishment of the equity norm decays with the rewiring
probability (see Figure 5), being finally close to 0.5 in pure random networks (β = 1). The
developing stage in which small nuclei grow and decay is represented by a more extensive
area (green region), and the critical size necessary to start an unstoppable growth is bigger.
Unlike regular ring lattices, once a consolidated nucleus emerges and the equity norm
spreads over the whole population (blue region), the diffusion speed is much faster because
the norm has to invade less clustered subnetworks.

We can summarize these inferences into the next statements: locally structured
networks—in the sense of having more clustering—promote the emergence of the equity
norm, while less locally structured networks facilitate the appearance of disordered or
fractious states (according to the data of Figure 5); nevertheless, the clustering of the network
can slow down the diffusion of the equity norm making more difficult the process of adoption
(according to the data of Figure 6). For example, in the case of quasiregular ring lattices, an
equity nucleus that invades the whole population always emerges, sooner or later, although
the clustering of the network slows down the convergence to the norm. On the contrary, in
more random networks, the probability of this event decreases with lower clustering values,
although if an equity nucleus succeeds, the speed of the convergence to the norm is much
faster.

Figure 7 shows the speed of the diffusion of the equity norm, that is, the minimum time
necessary for the whole population to converge to the norm. In accordance with previous
results, the times of convergence are significantly higher for quasiregular ring lattices (β ≤
0.1) than for more random networks (β ≥ 0.2), as a consequence of the higher resistance
to adopt the norm that clustered groups of non-equity agents show in the convergence
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Figure 6: Gradient maps of the observed dynamics of equity nuclei for different values of the rewiring
probability. Each arrow represents the direction of the change in the size-clustering space, while the colour
of the cells is the probability of growing in size, which can be interpreted as a measure of the speed in
nuclei growth. When there is no simulation data for a particular combination of size and clustering, the
corresponding square cell of the map is coloured in white.
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Figure 7: Above, the average of the time of convergence to the equity norm, and below the corresponding
boxplot, when the rewiring probability β varies. Note that the results are computed with the simulation
runs that ended in the equity norm a number that decreases with the rewiring probability (see Figure 5).
The range [0.1 < β < 0.2] separates two system behaviours: a first one characterized by high clustering
networks in which the system always reaches the EQ regime in the simulation time, and a second one
characterized by significantly lower values of clustering in which the system alternates between the EQ
regime and the FR regime but in cases when the system reaches the EQ regime it takes it lower times of
convergence.

process. Note that the results represented graphically in Figure 7 correspond to the times
of convergence of all simulation runs that reached the EQ regime; this percentage adds up
to 100% in the case of quasiregular ring lattices, but decreases with the rewiring probability
from 80% (β = 0.2) to quite less than 50% (β = 1). There seems to be a sort of phase change
in the range [0.1 < β < 0.2], coincident with a significant drop of the clustering levels of the
network (see Figure 5), that explains the significant dispersion in the times of convergence
for β = 0.2. For rewiring probabilities greater than this value, we can infer that the time of
convergence to the equity norm decreases with β, reaching the lowest value in pure random
networks (β = 1).

Finally, we have extended the computing analysis of the bargaining model by running
other simulations in order to check the sensitivity of the results to changes in other
parameters, mainly in the size of the population. Figure 8 shows the frequency of the EQ
regime for different population sizes. Overall, these results are not qualitative different from
the previous ones obtained with a population of 100 agents. Nevertheless, it is interesting to
observe that the growth of the size of the network seems to promote the establishment of the
equity norm in even more random realizations. For example, for β = 0.2 and a number of
agents greater than 400, the equity norm is reached in almost 100% of the simulation runs, in
contrast to the 80% reached by populations of 100 agents.
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Figure 8: The frequency of the EQ regime for different sizes of the interaction network. The qualitative
results do not differ from those ones analysed in the previous sections for a population of 100 agents.
Regular ring lattices and networks with low rewiring probability support the dominance of the equity
norm, while more random networks contribute to the emergence of fractious states.

6. Conclusions

In this work we have addressed the effect of topologies of interaction ranging from regular
ring lattices to random networks, including small-world networks on the Nash demand
game in a finite population of agents. Our analysis shows that locally structured networks—
in the sense of having more clustering—promote the emergence of the equity norm, while
less locally structured networks facilitate the appearance of disordered or fractious states.
At the same time, results indicate that the clustering of the network can slow down the
diffusion of the equity norm making more difficult the process of adoption. For example, in
the case of quasiregular ring lattices, an equity nucleus that invades the whole population
always emerges, sooner or later, although the clustering of the network slows down the
convergence to the norm. On the contrary, in more random networks, the probability of this
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event decreases with lower clustering values; although if an equity nucleus succeeds, the
speed of the convergence to the norm is much faster. Our findings seem robust to the size
of population and corroborate the influence of some properties of the interaction structure in
learning and evolutionary games.
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[40] J. Gómez-Gardeñes, M. Campillo, L. M. Florı́a, and Y. Moreno, “Dynamical organization of coopera-
tion in complex topologies,” Physical Review Letters, vol. 98, no. 10, Article ID 108103, 2007.

[41] L. M. Florı́a, C. Gracia-Lázaro, J. Gómez-Gardeñes, and Y. Moreno, “Social network reciprocity as a
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