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In this paper, a novel digital image denoising algorithm called generalized fractional integral
filter is introduced based on the generalized Srivastava-Owa fractional integral operator. The
structures of n×n fractional masks of this algorithm are constructed. The denoising performance is
measured by employing experiments according to visual perception and PSNR values. The results
demonstrate that apart from enhancing the quality of filtered image, the proposed algorithm
also reserves the textures and edges present in the image. Experiments also prove that the
improvements achieved are competent with the Gaussian smoothing filter.

1. Introduction

Fractional integration and fractional differentiation are generalizations of notions of integer-
order integration and differentiation and include nth derivatives and n-fold integrals as
particular cases. Many applications of fractional calculus in physics amount to replace the
time derivative in an evolution equation with a derivative of fractional order. Fractional
calculus has been applied to a variety of physical phenomena, including anomalous diffusion,
transmission line theory, problems involving oscillations, nanoplasmonics, solid mechanics,
astrophysics, and viscoelasticity [1–6].

Nowadays, fractional calculus (integral and differential operators) is utilized in signal
processing and image possessing. The fractional calculation enhances the quality of images,
with interesting possibilities in edge detection and image restoration, to reveal faint objects
in astronomical images and is devoted to astronomical images analysis [7, 8]. Further-
more, fractional calculus is employed in design problems of variables [9] and in different
applications in engineering [10]. Finally, the fractional calculus (integral operators) is used in
image denoising [11]. All results based on the fractional calculus operators (differential and
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integral) show that this method is not only effective, but also has good immunity. Therefore,
the fractional calculus in the field of image processing and signal prosecuting has broad
application prospect.

Many studies on fractional calculus and fractional differential equations, involving dif-
ferent operators, such as the Riemann-Liouville operators, the Erdélyi-Kober operators, the
Weyl-Riesz operators, the Caputo operators, and the Grünwald-Letnikov operators, have
evolved during the past three decades with its applications in other field. Moreover, the exi-
stence and uniqueness of holomorphic solutions for nonlinear fractional differential equa-
tions such as Cauchy problems and diffusion problems in complex domain are established
and posed [12–21].

Denoising is one of the most fundamental image restoration problems in computer
vision and image processing. In this paper, we have introduced an image denoising algorithm
called generalized fractional integral image denoising algorithm based on the Srivastava-
Owa fractional integral operator. The structures of n×n fractional masks of this algorithm are
constructed. The denoising performance is measured by employing experiments according
to standard of visual perception and PSNR values. This paper is organized as follows. In
Section 2, we introduce the generalized integral operator. In Section 3 construction of frac-
tional integral mask, which is the novelty of this work, is presented. The experimental results
are shown in Section 4. Finally, conclusion is presented in Section 5.

2. Generalized Integral Operator

In [22], Srivastava and Owa have defined fractional operators (derivative and integral as
follows.

The fractional derivative of order α is defined, for a function f(z), by

Dα
zf(z) :=

1
Γ(1 − α)

d

dz

∫z

0

f(ζ)
(z − ζ)α dζ; 0 ≤ α < 1, (2.1)

where the function f(z) is analytic in simply connected region of the complex z-plane C

containing the origin and the multiplicity of (z − ζ)−α is removed by requiring log(z− ζ) to be
real when (z − ζ) > 0.

The fractional integral of order α is defined, for a function f(z), by

Iαz f(z) :=
1

Γ(α)

∫z

0
f(ζ)(z − ζ)α−1dζ; α > 0, (2.2)

where the function f(z) is analytic in simply connected region of the complex z-plane C

containing the origin and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to
be real when (z − ζ) > 0.

In [23], Ibrahim derived a formula for the generalized fractional integral, considering
for natural n ∈ N = {1, 2, . . .} and real μ the n-fold integral of the form

I
α,μ
z f(z) =

∫z

0
ζ
μ

1dζ1

∫ ζ1

0
ζ
μ

2dζ2 · · ·
∫ ζn−1

0
ζ
μ
nf(ζn)dζn. (2.3)
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By employing the Cauchy formula for iterated integrals yields

∫z

0
ζ
μ

1dζ1

∫ ζ1

0
ζμf(ζ)dζ =

∫z

0
ζμf(ζ)dζ

∫z

ζ

ζ
μ

1dζ1 =
1

μ + 1

∫z

0

(
zμ+1 − ζμ+1

)
ζμf(ζ)dζ. (2.4)

Repeating the above step n − 1 times, we have

∫z

0
ζ
μ

1dζ1

∫ ζ1

0
ζ
μ

2dζ2 · · ·
∫ ζn−1

0
ζ
μ
nf(ζn)dζn =

(
μ + 1

)1−n
(n − 1)!

∫z

0

(
zμ+1 − ζμ+1

)n−1
ζμf(ζ)dζ, (2.5)

which implies the fractional operator type

I
α,μ
z f(z) =

(
μ + 1

)1−α
Γ(α)

∫z

0

(
zμ+1 − ζμ+1

)α−1
ζμf(ζ)dζ, (2.6)

where α and μ/= − 1 are real numbers and the function f(z) is analytic in simply connected
region of the complex z-plane C containing the origin and the multiplicity of (zμ+1 − ζμ+1)−α is
removed by requiring log(zμ+1−ζμ+1) to be real when (zμ+1−ζμ+1) > 0.When μ = 0, we arrive at
the standard Srivastava-Owa fractional integral, which is used to define the Srivastava-Owa
fractional derivatives.

Corresponding to the generalized fractional integrals (2.6), we define the generalized
differential operator of order α by

D
α,μ
z f(z) :=

(
μ + 1

)α
Γ(1 − α)

d

dz

∫z

0

ζμf(ζ)(
zμ+1 − ζμ+1)α dζ, 0 ≤ α < 1, (2.7)

where the function f(z) is analytic in simply connected region of the complex z-plane C

containing the origin and the multiplicity of (zμ+1 − ζμ+1)−α is removed by requiring log(zμ+1−
ζμ+1) to be real when (zμ+1 − ζμ+1) > 0.

3. Construction of Fractional Integral Mask

Using the generalized fractional integral operator defined in (2.6), we have proceeded to
construct the generalized fractional integral maskwhich is themain contribution of this work.
Since the fractional differential operator is performed if the order is positive and the fractional
integral operator is performed if the order is negative; for analytic function s(z), we assume
that ν < 0, and then

I
ν,μ
z s(z) =

(
μ + 1

)1+ν
Γ(−ν)

∫z

0

(
zμ+1 − ζμ+1

)−ν−1
ζμs(ζ)dζ

=

(
2μ+1 − 1

)(
μ + 1

)1+ν
Γ(−ν)

∫z

0

(
ζμ+1

)−ν−1
(z − ζ)μs(z − ζ)dζ.

(3.1)
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For converting continuous integral into discrete sum. Integral section [0, z] is equally
transformed into the sum of the integrals ofN parts, and whenN is greater enough, an ap-
proximate formula can be obtained:

I
ν,μ
z s(z) =

(
2μ+1 − 1

)(
μ + 1

)1+ν
Γ(−ν)

N−1∑
k=0

∫ (k+1)z/N

kz/N

(z − ζ)μs(z − ζ)(
ζμ+1

)ν+1 dζ.
(3.2)

Moreover, we can derive that

∫ (k+1)z/N

kz/N

ζμs(ζ)dζ =
s(kz/N) + s((kz + z)/N)

2

∫ (k+1)z/N

kz/N

ζμdζ

=
s(kz/N) + s((kz + z)/N)

2
ζμ+1

μ + 1

∣∣∣∣∣
(k+1)z/N

kz/N

=
s(kz/N) + s((kz + z)/N)

2
((k + 1)z/N)μ+1 − (kz/N)μ+1

μ + 1

=
s(kz/N) + s((kz + z)/N)

2

(
(k + 1)μ+1 − kμ+1(

μ + 1
)
Nμ+1

)
zμ+1,

(3.3)

∫ (k+1)z/N

kz/N

(z − ζ)μs(z − ζ)(
ζμ+1

)ν+1 dζ ∼=
[s(z − kz/N) + s(z − (kz + z)/N)]

[
(k + 1)μ+1 − kμ+1

]

2
(
μ + 1

)

×
(
ζμ+ 1)−ν
−ν

∣∣∣∣∣
(k+1)z/N

kz/N

=
[s(z − kz/N) + s(z − ((kz + z)/N))]

[
(k + 1)μ+1 − kμ+1

]

−2ν(μ + 1
)

×
[((

kz + z
N

)μ+1
)−ν

−
(
(kz/N)μ+1

)−ν
]

=
(sk + sk+1)

(
(k + 1)μ+1 − kμ+1

)

−2ν(μ + 1
)

×
[((

kz + z
N

)μ+1
)−ν

−
(
(kz/N)μ+1

)−ν
]
.

(3.4)
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Substituting (3.4) into (3.2), we obtain

I
ν,μ
z s(z) =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

N−1∑
k=0

(sk + sk+1)
(
(k + 1)μ+1 − kμ+1

)

×
[((

kz + z
N

)μ+1
)−ν

−
((

kz

N

)μ+1
)−ν]

=

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) s(z) +

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

×
N−1∑
k=1

(
(k + 1)μ+1 − kμ+1

)((
(k + 1)μ+1

)−ν −
(
kμ+1

)−ν)
s(z − k), (

ν < 0, μ ≥ 0
)
.

(3.5)

However, in the context of image processing, (3.5) is applied uniformly in the whole digital
image and therefore should be in two directions of z and w. Thus for two variables on the
negative direction of z and w coordinates, we have

I
ν,μ
z s(z−, w) =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) s(z,w) +

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

×
N−1∑
k=1

(
(k + 1)μ+1 − kμ+1

)((
(k + 1)μ+1

)−ν −
(
kμ+1

)−ν)
s(z − k,w),

I
ν,μ
z s(z,w−) =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) s(z,w) +

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

×
N−1∑
k=1

(
(k + 1)μ+1 − kμ+1

)((
(k + 1)μ+1

)−ν −
(
kμ+1

)−ν)
s(z,w − k).

(3.6)

The next two formulae show the construction of the numerical implementation algo-
rithm for generalized fractional integral operation in sense of the Srivastava-Owa operators

I
ν,μ
z s(z−, w) =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) s(z,w) +

(
2μ+1 − 1

)(
2(−ν)(μ+1) − 1

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

× s(z − 1, w) +

(
3μ+1 − 2μ+1

)(
3(−ν)(μ+1) − 2(−ν)(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

× s(z − 2, w) + · · ·

+

(
nμ+1 − (n − 1)μ+1

)(
n(−ν)(μ+1) − (n − 1)(−ν)(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

× s(z − n + 1, w),
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I
ν,μ
z s(z,w−) =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) s(z,w) +

(
2μ+1 − 1

)(
2(−ν)(μ+1) − 1

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

× s(z,w − 1) +

(
3μ+1 − 2μ+1

)(
3(−ν)(μ+1) − 2(−ν)(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

× s(z,w − 2) + · · ·

+

(
nμ+1 − (n − 1)μ+1

)(
n(−ν)(μ+1) − (n − 1)(−ν)(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν)

× s(z,w − n + 1).

(3.7)

The nonzero values of corresponding terms in formula (3.7) are

φ0 =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) ,

φ1 =

(
2μ+1 − 1

)(
2(−ν)(μ+1) − 1−ν(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) ,

φ2 =

(
3μ+1 − 2μ+1

)(
3(−ν)(μ+1) − 2(−ν)(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) ,

...

φn−1 =

(
nμ+1 − (n − 1)μ+1

)(
n(1−ν)(μ+1) − (n − 1)(1−ν)(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) , μ ≥ 0, ν < 0,

(3.8)

which are all fractional coefficients according to the generalized Srivastava-Owa fractional
integral operator. Note that when μ = 0, we have the Riemann-Liouville integral operator

φ0 =
1

Γ(−ν)(−2ν) , φ1 =
2−ν − 1

Γ(−ν)(−2ν) , φ2 =
3−ν − 2−ν

Γ(−ν)(−2ν) , . . . , (3.9)

while for two variables on the positive direction of z and w coordinates, we have obtained

I
ν,μ
z s(z+, w) =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) s(z,w) +

(
2μ+1 − 1

)(
μ + 1

)ν
(2ν)Γ(−ν)

×
N−1∑
k=1

(
(k + 1)μ+1 − kμ+1

)((
(k + 1)μ+1

)−ν −
(
kμ+1

)−ν)
s(z + k,w),
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I
ν,μ
z s(z,w+) =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) s(z,w) +

(
2μ+1 − 1

)(
μ + 1

)ν
(2ν)Γ(−ν)

×
N−1∑
k=1

(
(k + 1)μ+1 − kμ+1

)((
(k + 1)μ+1

)−ν −
(
kμ+1

)−ν)
s(z,w + k).

(3.10)

The nonzero values of corresponding terms in formula (3.10) are

ψ0 =

(
2μ+1 − 1

)(
μ + 1

)ν
(−2ν)Γ(−ν) ,

ψ1 =

(
2μ+1 − 1

)(
2(−ν)(μ+1) − 1−ν(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(2ν)Γ(−ν) ,

ψ2 =

(
3μ+1 − 2μ+1

)(
3(−ν)(μ+1) − 2(−ν)(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(2ν)Γ(−ν) ,

...

ψn−1 =

(
nμ+1 − (n − 1)μ+1

)(
n(1−ν)(μ+1) − (n − 1)(1−ν)(μ+1)

)(
2μ+1 − 1

)(
μ + 1

)ν
(2ν)Γ(−ν) , μ ≥ 0, ν < 0.

(3.11)

For digital images, 2-dimensional fractional integral filter coefficients can be obtained in eight
directions of 180◦, 0◦, 90◦, 270◦, 45◦, 135◦, 315◦, 225◦ as shown in Figure 1. These filters are
rotation invariant and are used to describe the edges present and for removing noise. They
are, respectively, on the directions of negative x-coordinate, positive x-coordinate, negative
y-coordinate, positive y-coordinate, right upward diagonal, left upward diagonal and right
downward diagonal, and left downward diagonal, which are all implemented. In this paper,
we have applied fractional mask convolution on eight directions with the gray value of
corresponding digital grayscale image pixels, adding all product terms to obtain weighting
sum on eight directions. For digital color images, the same algorithm which is used for gray
image can be applied but it performs separately for each of the R, G, B color components
(RGB).

The fractional integral filter coefficients are labeled as f180(n), f0(n), f90(n), f270(n),
f45(n), f135(n), f315(n), and f255(n), respectively, where n = 1, . . . , m represents the location of
pixel inside each mask.

The magnitude for each filter can be obtained as follows:

G180
(
i, j

)
=

16∑
n=1

an
(
i, j

) ∗ f180(n),

G0
(
i, j

)
=

16∑
n=1

an
(
i, j

) ∗ f0(n),
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G90
(
i, j

)
=

16∑
n=1

an
(
i, j

) ∗ f90(n),

G270
(
i, j

)
=

16∑
n=1

an
(
i, j

) ∗ f270(n),

G45
(
i, j

)
=

16∑
n=1

an
(
i, j

) ∗ f45(n),

G135
(
i, j

)
=

16∑
n=1

an
(
i, j

) ∗ f135(n),

G315
(
i, j

)
=

16∑
n=1

an
(
i, j

) ∗ f315(n),

G225
(
i, j

)
=

16∑
n=1

an
(
i, j

) ∗ f255(n).
(3.12)

The proposed image denoising algorithm for grayscale images includes the following steps:

(i) set the mask window size and the values of the fractional powers μ and ν;

(ii) apply fractional mask convolution on eight directions with the gray value of
corresponding image pixels, adding all product terms to obtain weighting sum on
eight directions;

(iii) find the arithmetic mean of the weighting sum value on the eight directions as
approximate value of fractional integral for image pixel;

(iv) repeat steps (ii) and (iii) for all image pixels;

(v) measure the PSNR for the result image.

The fractional mask convolution is performed by sliding the mask window over the image,
generally starting at the top left corner of the image through all the pixels where the fractional
fits entirely within the boundaries of the image. The size of the mask window and the values
of the fractional powers μ and ν are chosen to achieve the requirements of image denoising.
For testing we have added a Gaussian noise to the original image, and the noisy image is then
used for image smoothing; therefore the PSNR can be calculated for the restored images.

4. Experimental Results

This section aims at demonstrating that the proposed image denoising algorithm using
fractional integral masks has better capability than the traditional approaches for image
denoising.

The test image employed here is the grayscale images “Lena,” “Cameraman,” “Boat”
and “Peppers” with 512 × 512 pixels. The default Gaussian noise is added into the image with
different noise variances. All filters considered operate using 3 × 3 processing window mask.
The values of the fractional powers are taken with the range μ ∈ (10−3, 10−2) and ν = −0.441.
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Figure 1: Fractional integral masks on directions of 180◦, 0◦, 90◦, 270◦, 45◦, 135◦, 315◦, and 225◦.

The performance of filters was evaluated by computing the peak signal to noise ratio (PSNR)
which has been wildly used in the literature [11, 24]. The value of PSNR depends totally
on the size of the mask window and the values of the fractional powers μ and ν. PSNR is
defined via the mean squared error (MSE) for two images I and K, where one of the images
is considered the original noisy image and the other is the filtered image:

MSE =
1

MN

M−1∑
i−0

N−1∑
j=0

[
I
(
i, j

) −K(
i, j

)]2
,

PSNR =
10log10 max (I,K)2

MSE
,

(4.1)

wheremax is themaximum possible pixel value of the image. In grayscale image, this is equal
to 255. Table 1 shows the results of PSNR values of our proposed method as compared with
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Original image

(a)

With white Gaussian noise

(b)

Fractional integral filter

(c)

Gaussian lowpass filter

(d)

Figure 2: Results of denoising by fractional integral and Gaussian smoothing filter with noise variance =
0.01.

Gaussian smoothing filter with different Gaussian variance noise values. As it can be seen,
the maximum PSNR value was obtained by our proposed approach. From the human visual
system effect, Figures 2, 3, 4, and 5, illustrate that the proposed denoising algorithm using
fractional integral masks has good denoising performance for both testing images by different
degrees of noise. The proposed algorithm not only enhances the quality of filtered image
but also reserves the textures and edges present in the image. Table 2 shows the comparison
of experimental results of the proposed algorithm with other denoising algorithm with the
variance of noise (σ) of 10, 15, 20 and 25. The proposed algorithm for image denoising
algorithm provides satisfactory results. The good PSNR of the proposed algorithm acts as
one of the important parameters to judge its performance.

5. Conclusion

In this paper, a novel digital image denoising algorithm called generalized fractional integral
filter based on generalized Srivastava-Owa fractional integral operator was used. Fractional
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Table 1: Results of denoising by Gaussian smoothing filter and fractional integral filter with different noise
variance values.

Images
(512 × 512)

Gaussian with noise
variance

Input PSNR
(dB)

PSNR (dB) Gaussian
smoothing filter

PSNR (dB)
Fractional integral
filter

Lena 0.01 20.0966 23.8478 31.93251
Cameraman 0.02 17.5301 21.2419 28.8437
Boats 0.03 15.6127 19.3674 27.7730
Peppers 0.05 13.74429 17.5075 25.9861

Original image

(a)

With white Gaussian noise

(b)

Fractional integral filter

(c)

Gaussian filter

(d)

Figure 3: Results of denoising by fractional integral and Gaussian smoothing filter with noise variance =
0.02.

mask convolution on eight directions with the gray value had been applied on eight
directions. The results proved that the proposed algorithm not only enhances the quality
of filtered image but also reserves the textures and edges present in the image. Changing the
size of the mask window or any of the values of the fractional powers μ and ν will allow
adjusting the fractional integral filter coefficients to each image according to it characteristics.
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Table 2: Comparison of the experimental results with other standard methods.

Boats (512 × 512)

σ of a noise image Input PSNR of a noise image Proposed algorithm [24] [11]

10 28.49 31.23 15.74 31.2

15 25.63 29.93 14.10 29.2

20 22.15 28.01 12.65 27.91

25 20.95 27.35 11.57 26.97

Original image

(a)

With white Gaussian noise

(b)

Fractional integral filter

(c)

Gaussian filter

(d)

Figure 4: Results of denoising by fractional integral and Gaussian smoothing filter with noise variance =
0.03.

Several experiments proved that the improvements achieved were comparable to Gaussian
smoothing filter. Besides, the proposed algorithm exhibited better PSNR than the other two
standard denoising methods.
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Original image

(a)

With white Gaussian noise

(b)

Fractional integral filter

(c)

Gaussian filter

(d)

Figure 5: Results of denoising by fractional integral and Gaussian smoothing filter with noise variance =
0.05.
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