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The most important operating problem for intercity rail lines, which are characterized with the
train operations at rapid speed and high frequency, is to design a service-oriented schedule
with the minimum cost. This paper proposes a phase-regular scheduling method which divides
a day equally into several time blocks and applies a regular train-departing interval and the
same train length for each period under the period-dependent demand conditions. A nonlinear
mixed zero-one programming model, which could accurately calculate the passenger waiting time
and the in-train crowded cost, is developed in this study. A hybrid genetic algorithm associated
with the layered crossover and mutation operation is carefully designed to solve the proposed
model. Finally, the effectiveness of the proposed model and algorithm is illustrated through the
application to Hefei-Wuhan intercity rail line in China.

1. Introduction

Intercity rail lines, as a rapid transport mode connecting two cities, have been paid much
attention by the governments all over theworld. They have become one of themost important
engines for boosting regional economic development and accelerating the urbanization
process. In recent years, great importance has been attached to their construction in China.
The associated rail networks connecting many important cities have been built or are under
construction in several economically developed regions, such as Pearl River zone and Yangtze
River zone, and there is a current trend for them to expand to the rest of the country.

An intercity rail line, either in matters of passenger demands or operation scheduling,
is different from the general one. For intercity rail lines, the operations are characterized
with rapid speed and high frequency, and the process of passengers arriving at the stations
are time-dependent and stochastic. An even schedule with a constant headway between
consecutive trains may result in long passenger waiting times during oversaturated periods,
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Figure 1: The illustration of an intercity rail line.

or ineffective train capacity utilization during unsaturated periods due to the undercapacity.
A train schedule with inconstant headways, however, may lead to the frequent adjustment of
predetermined schedule and the complexity of operations management. There is also trouble
in determining the number of cars constituting a train, which should not be always steady or
frequently modified.

Various attempts have been made to obtain a train schedule for railroad transports
using optimization methods in the past decades. Ghoneim and Wirasinghe [1] defined the
total cost as the sum of the travel time and the relevant rail capital and operating cost and
designed a train scheduling plan with the minimum cost. Goossens et al. [2] introduced
several models for solving operational scheduling problems in which railway lines can have
different halting patterns. Liebchen [3] adapted a periodic event-scheduling approach and a
well-established graph model to optimize the Berlin subway timetable. Claessens et al. [4]
developed a mathematical programming model subjected to service and capacity constraints
to optimize train operations. Ghoseiri et al. [5] built a multiobjective optimization model
for the passenger train scheduling problem on a rail network which includes single and
multiple tracks, as well as multiple platforms with different train capacities. Khan and Zhou
[6] developed a stochastic optimization formulation for incorporating segment travel-time
uncertainty and dispatching policies into a medium-term train-timetabling process, which
is aimed to minimize the total trip time in a published timetable and reduce the expected
schedule delay. Zhou and Zhong [7] formulated train scheduling models which consider
segment and station headway capacities as limited resources, and developed algorithms to
minimize both the expected passenger waiting times and total train travel times. Nachtigall
and Voget [8] discussed the cost benefit between the investigation for reforming track states
and the quality of the resulting timetable measured by the remaining waiting times. Palma
and Lindsey [9] analyzed the schedule delay costs incurred from travelling earlier or later
than desired and formulated an optimizationmodel with the objective of minimizing the total
riders’ schedule delay costs. Nguyen et al. [10] presented a graph theoretic framework for the
passenger assignment problem. Wong et al. [11] presented a mixed-integer-programming
model for the schedule synchronization to minimize passengers’ transfer times. Meng and
Zhou [12] established a robust single-track train dispatching model under a dynamic and
stochastic environment. Carey and Crawford [13] formulated a train scheduling model on a
network of busy complex stations and designed a series of heuristics for finding and resolving
train conflicts so as to satisfy various operational constraints and objectives. Caimi et al. [14]
constructed a resource-constrainedmulticommodity flowmodel for conflict-free train routing
and scheduling. Chang et al. [15] built a multiobjective programming model for the optimal
allocation of passenger train services on an intercity high-speed rail line without branches.

The above-mentioned studies provide useful methods for the optimization of train
schedule for railway networks during a particular time period. Nonetheless, research to date
has focused primarily on scheduling problem with even headways, and a unified framework
for scheduling methods that can consider uneven headways and time-dependent demand
patterns is critically limited. This paper focuses on an intercity rail line and proposes a
phase-regular scheduling method, which divides a day equally into several time blocks and
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applies the regular train-departing interval and the same train length during each period. An
optimization model is presented to analytically calculate the passenger waiting time and the
in-train crowded cost under a dynamic demand condition.

The remainder of this paper is organized as follows. An optimization model to the
train scheduling problem for an intercity rail line is given in Section 2. In Section 3, a genetic
algorithm procedure with two-layer framework is presented. In Section 4, there is a numerical
example provided to illustrate the application of the proposed model and algorithm. The last
section brings the paper to a conclusion and outlines the possibilities for future research in
related areas.

2. Formulation

2.1. Problem Statement

This study considers the train operations along one direction at an intercity rail line which
consists of K stations as shown in Figure 1. The stations along the direction are numbered
as 1, 2, . . . ,K, and i is used to index a station. Assume that all trains have the same speed
between two consecutive stations and Ri is used to denote the running time between station
i and i + 1.

The passengers traveling by intercity rail lines arrive at the stations randomly, and they
wait for the latest arriving train and then reach their destinations. The demands associated
with intercity rail lines are characterized as being dynamic and stochastic. In terms of
demand, the travel purposes of passengers are mainly for work and business, and the phase
aggregation is significant. Based on such considerations, this paper divides a day equally into
several time blocks (e.g., 1 hour as a period) and uses τ to denote a period and� to represent
the set of periods (τ ∈ �). At the same time, this study usesDi,i+s(τ) to denote the number of
passengers who arrive at station i during period τ travelling to station i + s.

Based on the characteristics of passenger demands and train operations about the
intercity rail systems, a phase-regular train schedule, which has an even headway and the
same train length during each period, is adopted in this study. According to the operation
practice of intercity rail systems, this paper also assumes that there are only two train
patterns, namely, the large pattern and the small pattern, in order to simplify the problem.
The large pattern has more cars (e.g., 6 cars) and the small pattern has fewer cars (e.g., 4 cars)
to form a train. To design a train schedule is actually to determine the number of departed
trains and the associated train pattern for each period. The decision variables are defined as
follows:

x(τ): number of scheduled trains during period τ ;

y(τ): binary variables indicating the train pattern during period τ , which equals to
1 if the large train pattern is adopted and 0 otherwise.

It is obvious that a train schedule for the intercity rail line can be transformed to
calculate a set Ω = {(x(τ), y(τ)) | τ ∈ �}. In order to formulate a model accurately, two
other hypotheses are presented as follows. At first, the travel passengers between two stations
arrive uniformly at their origin station during a given period. Secondly, the passengers during
a period are to be carried by the trains scheduled at the same period. The following notations
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and parameters are defined for constructing a train scheduling model for the intercity rail
line:

C1: train capacity with large pattern (e.g., 600 persons);

C0: train capacity with small pattern (e.g., 340 persons);

hmin: prespecified minimum interval between two consecutive trains at the same
station (e.g., 5min);

hmax: prespecified maximum interval between two consecutive trains at the same
station (e.g., 30min);

N1: number of provided train-units with large pattern at the origin station;

N0: number of provided train-units with small pattern at the origin station;

Qi
j(τ): number of in-train passengers while train j departs from station i during

period τ ;

Pi,i+s
j (τ): number of passengers boarded on train j who arrive at station i travelling

to station i + s during period τ .

2.2. Constraints

(1) Train Operation Constraint. The minimum interval between two consecutive trains should
be required to ensure the operation safety of trains, while the predetermined maximum
interval should not be broken for the passenger waiting times at the stations cannot be
too long. Considering that the number of trains x(τ) is scheduled during period τ , the
same headway between two consecutive trains during this period is thus denoted by
60/x(τ) (min). As a result, the train operation constraint can be expressed by the following
inequality:

hmin ≤ 60
x(τ)

≤ hmax. (2.1)

(2) Demand and Supply Constraint. According to the second hypothesis, the passenger
demands generated during a period should be fulfilled by the trains scheduled at the same
period. The demand and supply constraint is determined by the following:

x(τ)∑

j=1

Pi,i+s
j (τ) = Di,i+s(τ). (2.2)

(3) The In-Train Passengers. When train j departs from station i during period τ , the
number of in-train passengers contains two parts: one is the boarded passengers whose
destinations are farther than station i, and the other is the passengers boarding at station
i. Thus, the in-train passengers can be calculated as follows.

Qi
j(τ) =

i∑

i1=1

K∑

i2=i+1

Pi1,i2
j (τ). (2.3)
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(4) The Fleet-Size Constraint. For the intercity rail transit lines with high-frequency train
schedules, it is very important to have enough train units for dispatching at anymoment. This
paper considers that the fleet size is the major resource constraint in our scheduling design
problem. Considering that the number of train units available at the origin station is known
in advance, the fleet size constraint can be expressed as follows:

∑

τ∈�
x(τ) · [k · y(τ) + (1 − k) · (1 − y(τ)

)] ≤ k ·Nk + (1 − k) ·N1−k (k = 1, 0). (2.4)

(5) The Number of Boarded Passengers. The number of boarded passengers traveling
from station i to station i + s for train j during period τ , Pi,i+s

j (τ), is actually to assign
the passengers to different trains. Considering that the passengers arrive uniformly at the
original station and the trains associated with a given period are scheduled with a constant
headway, the passenger demands should be evenly assigned to the trains during the period.
The following formula is thus achieved for calculating the number of boarded passengers:

Pi,i+s
j (τ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
Di,i+s(τ)
x(τ)

]
if 1 ≤ j ≤ x(τ) − R

[
Di,i+s(τ)
x(τ)

]
+ 1 if x(τ) − R < j ≤ x(τ),

(2.5)

where [·]means rounding, Di,i+s(τ) = [Di,i+s(τ)/x(τ)] · x(τ) + R, 0 ≤ R ≤ x(τ) − 1.

2.3. Objective Function

The objective function is to minimize the total costs, which are composed of the waiting times
of passengers at stations and the in-train crowded costs.

A constant interval between two consecutive trains is 60/x(τ) during period τ for
there are x(τ) trains operating at this period. If the passengers arrive at station iwith uniform
distribution, the average waiting time of each passenger during the period is 30/x(τ). The
number of passengers arriving at station i during the period is

∑K−i
s=1 D

i,i+s(τ), and the total
waiting times of passengers at station i is (30/x(τ)) · ∑K−i

s=1 D
i,i+s(τ). Thus, the total waiting

times of passengers during period τ can be expressed as follows:

W(τ) =
K−1∑

i=1

K−i∑

s=1

30
x(τ)

·Di.i+s(τ). (2.6)

This study introduces the in-train crowded cost to evaluate travel condition in the
trains. The cost is incurred while the number of onboard passengers exceeds the maximum
loading capacity of a train. As a result, the in-train crowded cost of train j running between
station i and station i + 1 during period τ is Qi

j(τ) · Ri if

Qi
j(τ) >

{
C1 if y(τ) = 1
C0 if y(τ) = 0

(2.7)
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and 0 otherwise. The total in-train crowded cost during period τ , F(τ), is thus presented as
follows:

F(τ) =
x(τ)∑

j=1

K−1∑

i=1

Qi
j(τ) · Ri · δ

[
Qi

j(τ) −
(
y(τ) · C1 +

(
1 − y(τ)

) · C0
)]
, (2.8)

where δ(u) is the sign function which is equal to 1 if u > 0 and 0 otherwise.
According to the above discussions, the objective function for minimizing the waiting

times of passengers at stations and the in-train crowded costs can be expressed as follows:

minZ =
∑

τ∈�
[F(τ) +W(τ)]. (2.9)

3. Solution Algorithm

The proposedmodel is a nonlinear programming problemwhich associates the tightly related
zero-one and integer variables. It can hardly be solved with conventional gradient-based
methods or commercial optimization solvers. Based on themechanics of natural selection and
natural genetics, genetic algorithm [16–18] is therefore adopted to solve the model developed
in this study. The appeal of genetic algorithm comes from its simplicity and elegance as robust
search algorithm as well as from its power to discover good solutions rapidly for difficult
high-dimensional problems. In practicular, a hybrid procedure with two-layer framework is
designed to solve the proposed model.

3.1. Encoding Approach

A special coding approach with two-layer structure, which includes two layers of decision
variables, namely, the number of trains and train pattern, is adopted to solve the model. A
day is divided equally into several short periods (e.g., one hour as a period in this study), and
the length of a chromosome is represented by the number of periods. An integer embedded
with the upper layer encoding indicates the number of trains scheduled during the given
period. A binary number embedded with the lower layer encoding means the train pattern,
where 1 indicates the large pattern and 0 indicates the small pattern.

In view of the headway constraint, the value of integers associated with the
upper layer encoding, and the number of scheduled trains, should be located within
[60/Imax, 60/Imin]. The number of scheduled trains x(τ) should range from 2 to 12, for
example, if Imin = 5 min and Imax = 30 min. Figure 2 illustrates a chromosome using two-
layer coding approach, where a day is divided into 10 periods, the number of scheduled
trains is 6, 11, 7, 6, 9, 5, 4, 2, 8, 5, and the train pattern is large, large, small, small, large, large,
small, small, large, small, respectively, during the concerned period. Following the above-
mentioned method, we can generate the initial chromosomes at random, then determine the
number of trains x(τ) and the train pattern y(τ) and, finally, calculate the relevant parameters
and the objective function.
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Figure 2: The illustration of a chromosome with two-layer coding approach.
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Figure 3: The adjustment of an infeasible chromosome.

3.2. Feasibility Adjustment

It is necessary to pay special attention to the fleet size constraint in the proposed model,
because the number of trains departing from the original station during one day should not
exceed the provided train units, and the chromosomes are required to adjust the feasibility
as the execution process of the procedure. The total number of trains with large pattern is
calculated by checking the train pattern whose encoding is 1 at the lower layer. The number
of trains x(τ) associated with period τ should be reduced by 1 with descending order if the
total number of trains exceeds the available train unitsN1, until the condition is satisfied. The
total number of trains with small pattern is required to check its feasibility similarly. All other
chromosomes generated at the iterative process of genetic operation should be also adjusted
with the above-mentioned method. For example, a new chromosome as shown in Figure 3
can be obtained after the adjustment of the original one if the number of available train units
N1 and N0 are 25 and 30, respectively.

3.3. Fitness Function

By calculating the value of objective function, we can get the fitness of each chromosome. The
formulation can be expressed as follows:

fitness =
Zmax − Z

Zmax − Zmin
, (3.1)

where Z is the objective from (2.9), Zmax and Zmin denote, respectively, the maximum and
minimum values of the objectives associated with the current generation.

3.4. Crossover Operator

Considering that two-layer encoding approach is adopted in this paper, a layered crossover
operation with double probabilities is proposed. The procedure of the layered crossover
operation is presented as follows.

Algorithm 3.1. The layered crossover operation consists of the following steps.
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Figure 4: The illustration of two-layer crossover operation.

Step 1. Two crossover probabilities P 1
c and P 2

c are set to decide the upper layer operation
and the lower layer operation, and a random number θ with uniform distribution at [0, 1]
is generated to indicate the judgment criterion.

Step 2. Two crossover points are selected randomly, then two gene strings between two
crossover points on the parent chromosomes are exchanged with each other.

Step 3. Two new offspring chromosomes are generated by exchanging the corresponding gene
strings of the parent chromosomes if θ ≤ min{P 1

c , P
2
c }, which means that two gene strings

associated with the upper layer and the lower layer are exchanged simultaneously between
parent 1 and parent 2. If P 2

c < θ ≤ P 1
c , only the gene strings associated with the upper layer

of two parents take the crossover operation, and the gene strings associated with the lower
layer remain the same. If P 1

c < θ ≤ P 2
c , only the gene strings associated with the lower layer

of two parents take the crossover operation, and the gene strings associated with the upper
layer remain the same.

Assume that the crossover probability θ ≤ min{P 1
c , P

2
c }, the layered crossover

operation can be demonstrated by Figure 4.

3.5. Mutation Operator

According to the characteristics of the problem, the large train pattern is suitable for the
period with larger number of trains, while the small train pattern is suitable for the period
with less number of trains. A layered mutation operation with a single point is then
proposed in the paper. Firstly, a gene associatedwith the upper layer encoding takesmutation
operation, and the corresponding gene with the lower layer is then operated by the result of
the upper layer. The procedure of the layered mutation operation is summarized as follows.

Algorithm 3.2. The layered mutation operation consists of the following steps.

Step 1. Two mutation probabilities P 1
m and P 2

m are set to decide the mutation operations
associated with the upper layer and the lower layer, respectively, denoting the judgment
criteria of the mutation operation with upper and lower layers, and a random number θ
with uniform distribution at [0, 1] is generated to indicate the judgment criterion.
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Figure 5: The illustration of the layered mutation operation.
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Figure 6: The illustration of Hefei-Wuhan intercity rail line.

Step 2. A mutation point is selected randomly, and then the genes associated with the upper
layer and lower layer are mutated.

Step 3. The selected gene at the upper layer of the parent chromosome is replacedwith another
number which is located within the predetermined range if θ ≤ P 1

m. The mutation operation
with the lower layer will be determined by the result of the upper layer if θ ≤ P 2

m. If the
value of the gene at the upper layer encoding increases, the value of the corresponding gene
at the lower layer should be changed from 0 to 1. If the value of the gene at the upper layer
decreases, the value of the corresponding gene at the lower layer encoding should replace 1
with 0.

Assume, for example, that the mutation probability is θ ≤ P 1
m and θ ≤ P 2

m, the layered
mutation operation can be demonstrated by Figure 5.

4. Numerical Example

4.1. Line

Hefei-Wuhan intercity rail line, which has operated since April, 2009, is an important
passenger dedicated railway line between Hefei city and Wuhan city in China. The line has a
total length of 364 kilometers with the designed speed of 250 km/h. There are 5 stations along
the line, namely Wuhan station, Macheng North station, Jinzhai station, LiuAn station, and
Hefei station as shown in Figure 6.
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Figure 7: The period-dependent passenger demands counted in terms of one hour.

Table 1: The running time between two adjacent stations (min).

Adjacent stations Running time Adjacent stations Running time
Wuhan-Macheng North 52 Jinzhai-Liuan 22
Macheng North-Jinzhai 44 Liuan-Hefei 32

4.2. Demands

With a particular focus on a typical weekday, the example below considers the operation
from 6:00AM to 21:00 PM at the origin station. The period-dependent passenger demands, as
shown in Figure 7, are illustrated by the total number of passengers arriving at the stations
during each one hour.

4.3. Results

The running times between two adjacent stations for Hefei-Wuhan intercity rail line are given
in Table 1. The capacities associated with two train patterns C1 and C0 are 600 and 340,
respectively, and the fleet sizes of available train units N1 and N0 at the origin station are
40 and 50, respectively. The prespecified minimum and maximum headways Imin and Imax

are 5 and 30 minutes, respectively.
The parameter values for the layered genetic algorithm are listed as follows. The

population size is 100 and the number of total iterations is 300. The crossover probabilities
P 1
c and P 2

c are 0.90 and 0.95, and the mutation probabilities P 1
m and P 2

m are 0.10 and 0.30,
respectively. After 252 iterations, a train schedule for Hefei-Wuhan intercity rail line from
6:00AM to 21:00 PM is obtained by the developed procedure, which is shown in Table 2, and
the trend of objective value in processing the algorithm can be shown in Figure 8.

FromTable 2, we can see that the total number of trains scheduled during the operation
period is 77, of which the number of trains with large pattern is 37, and the number of trains
with small pattern is 40. The average full-load rate of trains is 95.65%, which means the
optimized train schedule could both economize the operation cost for the railway department
and provide comfortable travel environment for the passengers. The number of scheduled
trains and the train pattern during each period are shown in Figure 9.

We can see from Figure 9 that the number of scheduled trains is generally proportional
to passenger demand, which means that the number of trains during high-peak periods is
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Table 2: The number of trains and train pattern during each period.

Period Number of trains Train pattern Average load-rate (%)
6:00-7:00 5 0 96.00
7:00-8:00 6 1 85.14
8:00-9:00 5 1 95.50
9:00-10:00 6 0 99.71
10:00-11:00 5 0 99.24
11:00-12:00 4 0 99.88
12:00-13:00 6 1 83.64
13:00-14:00 6 0 90.69
14:00-15:00 5 1 99.57
15:00-16:00 5 0 97.53
16:00-17:00 4 0 94.71
17:00-18:00 6 1 70.58
18:00-19:00 5 1 89.57
19:00-20:00 4 1 90.21
20:00-21:00 5 0 97.53
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larger and vice versa. The train pattern is mainly with large pattern during the high-peak
periods, and during the low-peak periods the train pattern is mainly with small pattern.

5. Conclusion

This paper proposes a phase-regular scheduling method for an intercity rail line, which
divides an operational day evenly into several time blocks and applies a regular train-
departing interval and the same train length for each period. A nonlinear mixed zero-one
programming model, which could accurately calculate the passenger waiting time and the
in-train crowded cost, is established. A hybrid genetic algorithmwith two-layer framework is
designed to solve the proposed model. Finally, the validation of the model and the algorithm
has been tested with the application of Hefei-Wuhan intercity rail line in China. The results
show that the proposed method can effectively solve the scheduling problem of intercity rail
lines. Considering the modeling details which are closer to reality, such as under a random or
fuzzy environment, is an important topic for further research. At the same time, there is the
necessity to explore the response of passengers to the optimized schedule and to extend the
method to a network case.
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