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Two types of coronary artery systemN-type and S-type, are investigated. The threshold conditions
for the occurrence of Smale horseshoe chaos are obtained by using Melnikov method. Numerical
simulations including phase portraits, potential diagram, homoclinic bifurcation curve diagrams,
bifurcation diagrams, and Poincaré maps not only prove the correctness of theoretical analysis
but also show the interesting bifurcation diagrams and the more new complex dynamical
behaviors. Numerical simulations are used to investigate the nonlinear dynamical characteristics
and complexity of the two systems, revealing bifurcation forms and the road leading to chaotic
motion. Finally the chaotic states of the two systems are effectively controlled by two control
methods: variable feedback control and coupled feedback control.

1. Introduction

Chaotic science is one of the three major scientific achievements in 20th century. Since the
Lorenz system was discovered in 1963, many new chaotic systems have been successively
raised [1–4]. The proposal of these systems promotes the theory research of chaos to continue
indepth and provides supports for the application of chaos in the field of engineering
technology, for example, information processes, secure communication. There are many in-
depth conclusions on the chaotic motion under the periodic or quasiperiodic perturbation.
Jing and Wang [5], and Jing et al. [6, 7] showed the complex dynamics in Duffing system,
including bifurcation and chaos.

The coronary artery system driven by periodic excitations is a typical nonlinear
vibration system and has a rich dynamic behavior. According to pathological studies, the
heart coronary artery atherosclerosis and coronary artery spasm are the cause of myocardial
infarction. From the mathematical point of view, the vascular spasm is the chaotic state of
vasomotor. There are two kinds of blood vessels: N-type and S-type.
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(A) N-Type Model

For N-type model, if z(t) is pressure difference and x(t) is diameter change, then the
nonlinear mathematical model [8] of the blood vessels can be written as

dz

dt
= λ

[
−x + x3 − z

]
+ λ

dx

dt
,

dx

dt
= −bz − cx.

(1.1)

The type can be rewritten as

d2x

dt2
= (bλ − λc)x − bλx3 − (λ + bλ + c)

dx

dt
. (1.2)

Let bλ − λc > 0, λ + bλ + c = εδ, bλ − λc = A + εr1, bλ = B + εr2, and dx/dt = y, by adding
periodic interference εr cosωt, then the above equation can be rewritten as

ẋ = y,

ẏ = Ax − Bx3 − εδy + εr cosωt + εr1x − εr2x
3.

(1.3)

(B) S-Type Model

For S-type model, the nonlinear mathematical model [8] can be written as

dz

dt
= λ

(
x + z − z3 +

dx

dt

)
,

dx

dt
= −az − bx.

(1.4)

The type can be rewritten as

d2x

dt2
= x(λb − λa) +

dx

dt
(λ − aλ − b) − λ

a2
b3x3 − λ

a2

(
dx

dt

)3

− λ

a2
3bx

(
dx

dt

)2

− 3λb2

a2
x2dx

dt
.

(1.5)

Let λ − aλ − b = −εδ, λ/a2 = εδ1, (λ/a2)3b = εδ2, 3λb2/a2 = εδ3, λb − λa = F + εr1, (λ/a2)b3 =
D + εr2 and dx/dt = y, by adding interference εr cosωt, then the above equation can be
rewritten as

ẋ = y,

ẏ = Fx −Dx3 − εδy − εδ1y
3 − εδ2y

2x − εδ3x
2y + εr cosωt + εr1x − εr2x

3.
(1.6)

The model of coronary artery system and its chaotic motion were given in [9],
and by using Melnikov method the conditions for chaos of the two types are shown.
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Melnikov method is an important theoretical way to determine whether there is chaos in
two-dimensional system [10–12]. However, there has been less attention to chaos control of
the coronary artery system in all kinds of literatures, as a major topic of control science, it is
necessary to investigate in detail.

In this paper, the system (1.3) and (1.6) are analyzed from two aspects: quality and
quantity. By Melnikov method the thresholds of Smale horseshoe chaos for the system
(1.3) and (1.6) are given. By numerical simulations, including phase portraits, potential
diagram, homoclinic bifurcation curve diagrams, bifurcation diagrams, and Pioncaré maps,
the dynamical characteristics of the system (1.3) and (1.6)with the changes of the bifurcation
parameters are reflected intuitively, and it is proved that the system (1.3) and (1.6) exists
chaos indeed. Finally, the chaos of the system (1.3) and (1.6) is controlled to stable periodic
orbits by two kinds of control methods.

The paper is organized as follows. In Section 2, we briefly describe the necessary
conditions of existence of chaos resulting from the homoclinic bifurcation of two systems.
The numerical simulations which give support to the theoretical analysis are performed
in Section 3. The chaos in Section 3 is controlled by two kinds of chaos control methods
in Section 4: variable feedback control and coupled feedback control. Finally, we make
conclusions in Section 5.

2. The Necessary Conditions for Chaos

If ε = 0, the system (1.3) is considered as an Hamilton system with Hamilton function

H
(
x, y

)
=

1
2
y2 − A

2
x2 +

B

4
x4, (2.1)

and the function

V (x) = −A
2
x2 +

B

4
x4 (2.2)

is called the potential function. There are three fixed points as ε = 0 : (0, 0), (±
√
A/B, 0),

where (0, 0) is saddle, and (±
√
A/B, 0) are centers. There are two homoclinic orbits Γ±N :

x0(t) = ±
√

2A
B

sech
√
At,

y0(t) = ∓
√

2
B
Asech

√
At tanh

√
At.

(2.3)

The phase portrait and potential diagram of the system (1.3) as ε = 0 are shown in
Figures 1(a) and 1(b), respectively, where A = B = 1. In Figure 1(a) the saddle (0, 0) is
connected itself by two homoclinic orbits Γ±N .
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Figure 1: Phase portrait and potential of the system (1.3) and (1.6) as ε = 0. System (1.3):A = B = 1; System
(1.6): F = D = 1.

The Melnikov function for homoclinic orbits Γ±N can be given by

M(t0) =
∫+∞

−∞
y0(t)

[
r cosω(t − t0) − δy0(t)

]
dt +

∫+∞

−∞
y0(t)

[
r1x0(t) − r2x

3
0(t)

]
dt. (2.4)

According to the expression of homoclinic orbits Γ±N in (2.3), the Melnikov function can be
simplified as

M(t0) =
−A√

2r√
B
√
A
πω

1√
A
sech

πω

2
√
A

sinω
√
At0 − 4

3
δ
A2

B

1√
A
. (2.5)

Thus, if

r

δ
>

(4/3)A3/2

√
2
√
Bπωsech

(
πω/2

√
A
) , (2.6)

thenM(t0) has a simple zero and Smale chaos exists in the system (1.3).
If ε = 0, the system (1.6) is Hamilton system with Hamilton function

H
(
x, y

)
=

1
2
y2 − F

2
x2 +

D

4
x4, (2.7)

and the potential function is

V (x) = −F
2
x2 +

D

4
x4. (2.8)
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There are three fixed points in system (1.6) as ε = 0 : (0, 0), (±
√
F/D, 0), where (0, 0) is saddle,

and (±
√
F/D, 0) are centers. There are two homoclinic orbits Γ±S:

x0(t) = ±
√

2F
D

sech
√
Ft,

y0(t) = ∓
√

2
D
Fsech

√
Ft tanh

√
Ft.

(2.9)

The phase portrait and potential diagram of the system (1.6) as ε = 0 are shown in
Figures 1(a) and 1(b), respectively, where F = D = 1. In Figure 1(a) the saddle (0, 0) is
connected itself by two homoclinic orbits Γ±S.

The Melnikov function for homoclinic orbits Γ±S can be given by

M(t0)

=
∫+∞

−∞
y0(t)

[
r cosω(t−t0)−δy0(t) − δ1y

3
0(t) − δ2y

2
0(t)x0(t) − δ3y0(t)x2

0(t) − r1x0(t) − r2x
3
0(t)

]
dt

= rI1 − δI2 − δ1I3 − δ2I4 − δ3I5 − r1I6 − r2I7,

(2.10)

where

I1 =
√
2√
D
πωsech

πω

2
√
F
sinω

√
Ft0, I2 = −F

3/2

D

4
3
, I3 =

4F3/2

D2

(
−316
35

)
,

I4 = I6 = I7 = 0, I5 =
4
15

4F3

D2

1√
F
.

(2.11)

If

∣∣∣∣∣∣∣

δ
(
4F3/2/3D

)
+ δ1

(
4F3/2/D2)(−316/35) + δ3

(
4F3/D2) (1/√F

)
(4/15)

r
(√

2/
√
D
)
πωsech

(
πω/2

√
F
)

∣∣∣∣∣∣∣
� 1, (2.12)

thenM(t0) has a simple zero and Smale chaos exists in the system (1.6).

3. The Numerical Simulations

The purpose of this section is to provide a basis for the preceding theoretical analysis by using
numerical simulation, and to seek more complex dynamical behaviors of the two systems.

First, numerical simulations are performed for the system (1.3).
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Figure 2: Homoclinic bifurcation curve for Smale horseshoe chaos in the (ω, r) plane for δ = 0.5, A = 1,
and B = 1. Above the curve transverse intersections of homoclinic orbits occur.

The homoclinic bifurcation curve for Smale chaos is in the (ω, r) plane for δ = 0.5,
A = 1, and B = 1 in Figure 2. In the parameter region below the bifurcation curve and
no transverse intersection of stable and unstable manifolds of saddle occurs and above
the bifurcation curve the transverse intersections of stable and unstable manifolds of the
saddle occur. Just above the homoclinic bifurcation curve, onset of cross-well chaos is
expected.

In order to show what happens to the solutions and attractors as one crosses the
homoclinic bifurcation curve, we plot the bifurcation diagram of the system (1.3) in (r, x)
plane for A = 1, B = 1, δ = 0.5, ω = 1, r1 = 0.01, and r2 = 0.001 in Figure 3(a). From it, we
can see the period-doubling bifurcation from period-1 orbit to chaos, intermittent dynamics
at r ≈ 0.825, and chaotic region with periodic windows. For clarity, the local amplified
bifurcation diagrams of Figure 3(a) for 0.30 � r � 0.50 (amplified period-double section),
0.40 � r � 0.65 (amplified chaotic window), and 0.55 � r � 0.80 (amplified chaotic window)
are given in Figures 3(b)–3(d). As r increases from r = 0, the system (1.3) is in stable state
of period-1 orbit, and, at r = 0.34669, period-doubling bifurcation occurs; that is, the original
period-1 orbit becomes unstable, and stable period-2 orbit is produced. With the r increasing,
the deeper period-doubling bifurcation occurs and generates stable period-4 orbit, period-8
orbit, and period-16 orbit,. . .. It shows that the onset of chaos is at r = 0.58717. Analytically
predicted Melnikov threshold value is r = 0.5902. The two values are almost similar, and
it is indicated that the theoretical analysis is consistent to the numerical simulation. From
Figure 3(c) we can find period-5 window, and period-3 window. The existence of a period-3
window is demonstrated in Figure 3(d). Chaos disappears at r = 0.82966, and the system
(1.3) eventually becomes stable period-1 orbit. The phase portraits of the system (1.3) for
r = 0.1 (period-1 orbit), r = 0.355 (period-4 orbit), r = 0.8 (chaos), and r = 0.9 (period-1 orbit)
are plotted in Figures 4(a)–4(d). The Pioncaré maps for r = 0.2, r = 0.355, r = 0.8, and r = 0.9
are shown in Figures 4(e)–4(h). We can see the process from the periodic orbits to chaos, and
then from chaos to periodic orbits.

Next, numerical simulations are performed for the system (1.6).



Discrete Dynamics in Nature and Society 7

2

1

0

−1

−2

x

0 0.2 0.4 0.6 0.8 1

r

(a)

1

0.5

0

−0.5

−1

−1.5

x

r

0.3 0.35 0.4 0.45 0.5

(b)

1

0.5

0

−0.5

−1

−1.5

−2

x

r

0.4 0.45 0.5 0.55 0.6 0.65

(c)

1

0.5

0

−0.5

−1

−2

−1.5

x

r

0.55 0.6 0.65 0.7 0.75 0.8

(d)

Figure 3: (a) Bifurcation diagram of the system (1.3) in (r, x) plane for A = 1, B = 1, δ = 0.5, ω = 1, r1 =
0.01, and r2 = 0.001. (b, c, and d) Amplified bifurcation diagram of Figure 3(a): (b) 0.30 � r � 0.50; (c)
0.40 � r � 0.65; (d) 0.55 � r � 0.80.

The homoclinic bifurcation curve for Smale chaos in the (ω, r) plane for δ = 0.5, F = 1,
D = 1, δ1 = 0.05, and δ3 = 0.2 in Figure 5. In the parameter region below the bifurcation curve,
no transverse intersection of stable and unstable manifolds of saddle occurs, and above the
bifurcation curve the transverse intersections of stable and unstable manifolds of the saddle
occur. Just above the homoclinic bifurcation curve, onset of cross-well chaos is expected.

We plot the bifurcation diagram of the system (1.6) in r ∈ (0.4, 1.2) for F = 1,D = 1,δ =
0.5, δ1 = 0.05, δ2 = 0.1, δ3 = 0.2, ω = 1, r1 = 0.01, and r2 = 0.001 in Figure 6(a). From it, we
can see the period-doubling bifurcations from period-1 orbit leading to chaos, intermittent
dynamics at r ≈ 1.148, chaos with period windows. The local amplified bifurcation diagrams
of Figure 6(a) for r ∈ (0.55, 0.80), r ∈ (0.78, 0.88) and r ∈ (0.80, 1.20) are given in Figures
6(b)–6(d). It can be seen the existence of period-doubling bifurcations, and different period
windows: (b) period-3; (c) period-2; (d) periodic-3,4,5. The phase portraits of the system (1.6)
for r = 0.68 (period-3 orbit), r = 0.91 (period-5 orbit), r = 0.97 (period-3 orbit) and r = 1.1
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Figure 4: (a, b, c, and d) Phase portraits of the system (1.3); (e, f, g, and h) Pioncaré maps of the system
(1.3).
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Figure 5: Homoclinic bifurcation curve for Smale horseshoe chaos in the (ω, r) plane for δ = 0.5, F = 1,
D = 1, δ1 = 0.05, and δ3 = 0.2. Above the curve transverse intersections of homoclinic orbits occur.

(chaos) are plotted in Figures 7(a)–7(d). The Pioncaré maps corresponding to Figures 7(a)–
7(d) are shown in Figures 7(e)–7(h).

4. Chaos Control

The above-numerical results show that the systems is in chaotic state for some parameters.
In order to suppress and eliminate the chaotic behaviors, it is necessary to control the chaotic
motions. Two methods of control are proposed in this section. The results are demonstrated
by numerical results, that is, bifurcation diagram and phase portrait.

4.1. Variable Feedback Control

By using variable feedback control, the chaos of the system (1.3) is controlled. The dynamic
behavior of original system persists due to the change of small parameter having no effect
on the system. This method not only can stabilize the unstable periodic orbit in the original
system, but also can create a new cycle of orbits.

By adding a feedback variable K (K is the adjustable feedback factor) to the first
equation, the system (1.3) can be rewritten as

ẋ = y −Kx,

ẏ = Ax − Bx3 − εδy + εr cosωt + εr1x − εr2x
3.

(4.1)

Even if the feedback coefficient is small, it can also significantly weaken the chaotic
behavior, so the chaotic behavior of the system (1.3) can be inhibited by selecting the
appropriate K in bifurcation diagram. The bifurcation diagram of the system (4.1) at
K ∈ (0, 1) forA = 1, B = 1, δ = 0.5, ω = 1, r1 = 0.01, r2 = 0.001, r = 0.8 is shown in Figure 8(a).
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Figure 6: (a) Bifurcation diagram of the system (1.6) in (r, x) plane for F = 1, D = 1, δ = 0.5, δ1 = 0.05, δ2 =
0.1, δ3 = 0.2, ω = 1, r1 = 0.01, and r2 = 0.001. (b, c, and d) Amplified bifurcation diagram of Figure 6(a):
(b) 0.55 � r � 0.80; (c) 0.78 � r � 0.88; (d) 0.80 � r � 1.20.

From this, we can see the chaos region with period-2,3 windows. Near K = 0.59319,
system occurs inverse period-double bifurcation, that is, chaos disappears,. . ., period-16 orbit,
period-8 orbit, period-4 orbit, period-2 orbit, until the stable period-1 orbit are produced. It
shows that the feedback variable K has impact of suppression on the chaos of the original
system, chaos disappears and the periodic orbits produce. For clarity, the phase portraits of
the system (4.1) for K = 0.05 (chaos), K = 0.4 (period-3 orbit), and K = 0.8 (period-1 orbit)
are plotted in Figures 8(b)-8(d). The Pioncaré maps for K = 0.4 and K = 0.8 are shown in
Figures 8(e) and 8(f).

By numerical simulation (Bifurcation diagrams, different phase portraits, and Pioncaré
maps of the system (4.1) under feedback variableK (K > 0)), chaos, generated in Section 3, is
controlled. Through numerical simulation, it is found that variable feedback control method
has good control effect, and the method is simple and easy to implement, without too much
of the knowledge of the controlled system, and it controls chaos stably and reliably.
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Figure 7: (a,b,c, and d) Phase portraits of the system (1.6); (e, f, g, and h) Pioncaré maps of the system
(1.6).
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Figure 8: (a) Bifurcation diagram of the system (4.1) in K ∈ (0, 1). (b, c, and d) Phase portraits for three
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4.2. Coupled Feedback Control

With the control signal f(t) = L[x(t) − y(t)] coupled with the periodic signal y(t) and the
output x(t) of the system (1.6), where L is the weight for the control signal to adjust the
intensity, so we can get the the system(4.2)

ẋ = y,

ẏ = Fx −Dx3 − εδy − εδ1y
3 − εδ2y

2x − εδ3x
2y + εr cosωt + εr1x − εr2x

3 + L
(
x − y

)
.

(4.2)

The bifurcation diagram of the system (4.2) for L ∈ (0, 1) is shown in Figure 9(a).
We can see that the behavior of the system (4.2) remains chaotic as L increases from zero,
period-2, 3, 5 windows within the chaotic regions, and the period-doubling bifurcations from
period-2, 3, 5 orbits leading to chaos. When L arrives at and pass through a critical value
L ≈ 0.41082, the behavior changes from chaotic to periodic; namely, L suppresses chaos in
the system (4.2). The phase portraits of different L (L > 0) in the system (4.2) are shown in
Figures 9(b), 9(c), and 9(d): (b) L = 0.001 (chaos); (c) L = 0.3 (period-3 orbit); (d) L = 0.8
(period-1 orbit). The Pioncaré maps for L = 0.3 and L = 0.8 are shown in Figures 9(e) and
9(f). From Figure 9, we can also select the appropriate parameters to control chaos.

5. Conclusion

ApplyingMelnikovmethod, phase portraits, potential diagram, homoclinic bifurcation curve
diagrams, bifurcation diagrams, and Pioncaré maps, the bifurcation and chaotic behavior
of the system (1.3) and (1.6) are studied qualitatively and quantitatively. By numerical
simulation, the impact of excitation amplitude r on the system (1.3) and (1.6) is analyzed
respectively. Using two control methods on the system (1.3) and (1.6), respectively, the
chaotic state is controlled effectively. Different control methods have different advantages
and may be required to choose.
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